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birthwt (MASS}  Risk Factors Associated with Low Infant Birth VWeight

The birthwt data frame has 189 rows and 10 columns. The data were collected

at Baystate Medical Center, Springfield, Mass during 1986.

This data frame contains the following columns:

low: indicator of birth weight less than 2.5 kg

age: mother's age in years

lwt: mother's weight in pounds at last menstrual period
race: mother's race (1 = white, 2 = black, 3 = other)
smoke: smoking status during pregnancy

ptl: number of previous premature labours

ht: history of hypertension

ui: presence of uterine irritability

ftv: number of physician visits during the first trimester

bwt: birth weight in grams
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Apply several linear regression models to the birthwt dataset

Inspect the dataset

Does the mother's age allow us to predict the birth weight ?

Check the assumptions of the model you used in 2.

Can you better predict birth weight using other variables in the dataset, in
addition to mother’s age ?

Which set of variables in the dataset predict best birth weight ?



Apply several linear regression models to the birthwt dataset

Inspect the dataset

Apply a simple linear regression model to predict birth weight in grams
using mother’s age

Check the assumptions of the linear regression model

Apply a multiple linear regression model to predict birth weight in grams
using multiple predictors

Perform model selection



(Simple) Linear Regression

Simple linear regression refers to drawing a (particular, special) line through a scatterplot

It is used for 2 broad purposes: explanation and prediction.

The equation for a line to predict y knowing x (in slope- intercept form) looks like
y=a+bx

where a is called the intercept and b is the slope.




Linear regression: least-squares fitting

Regression line

Least-square fitting such that:
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The least-squares procedure finds the straight line with the
smallest sum of squares of vertical errors.



Linear regression: least-squares fitting

Formalization and extension of linear regression

Y, :response (known)

Y=+ X +¢& [, P : model parameters (estimated)
i=1--,n X, : predictor (known)
Y represents one data point g, -error term ~ N(0,07) (estimated)

Minimizing ng yields b, and b, estimators of £, and S,

b,= Z(Xx_})(yz_}_r) boz}_r_blf
> (X, -X)’




(Simple) Linear Regression: interpretation of parameters

The regression line has two parameters: the slope and the intercept
The regression slope is the average change in Y when X increases by 1 unit
The intercept is the predicted value for Y when X =0

If the slope = 0, then X does not help in predicting Y (linearly)



(Simple) Linear Regression: residuals

There is an error in making a regression prediction:
error = observed Y — predicted Y =y — (a + bX)
These errors are called residuals

The regression equation is calculated so that the sum (and mean) of the
residuals is O (« in average, the model is correct »).

Ideally, we want the regression to include all the predictable variance, so that
the distribution of the residuals is random and does not depend on X or on the
predicted Y.



Apply several linear regression models to the birthwt dataset

These statistical tests tell us if
the parameters are
significantly different from O.
“*It is not interesting for the
intercept, but usually
interesting for the slope.

Estimate and Std. Error are »

used for hypothesis testing
T-value = Estimate / Std. Error

This assumes that the
residuals follow a normal
distribution !

= summary {1ml)

call:

Im{formula = birthwt.grams ~ mother.age, data = birthwt)

Max

Residuals:
Min 10 Median g
-2294.78 -517.63 10.51 530,80 1774.92

Coefficients:

Estimate Std. Error t wvalue
(Intercept) 2655.74 238. 86 11.12
mother . age 12.43 10.02 1.24

signif. codes: O “#*#%=' 0,001 ***' 0.01

Pri=ltl)
<Z2a-16
0.216

' 0.05

rResidual standard error: 728.2 on 187 degrees of

Multiple R-squared: 0.008157,
F-statistic: 1.5%38 on 1 and 187 DF,

Adjusted R-squared:
p-value: 0.2165
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Apply several linear regression models to the birthwt dataset

number of DF =
total observations — number of
parameters estimated

residual standard error =
standard deviation of the
residuals

R2 = proportion of the total
variance in the response
data that is explained by
the model

Y

= summary Tml)

call:

Tm{formula = birthwt.grams ~ mother.age, data = birthwt)

Residuals:

Min 1q Madian Ely] Max
-2294.78 -517.63 10.51 530.80 1774.92
Coefficients:

Estimate std. Error t© value Pri=|t|)
(Intercept) 2655.74 238. 86 11.12 <2e-16
mother. age 12.43 10.02 1.24 0.216
signif. codes: 0O “##%*' 0,001 *#**' 0.01 “*' 0.05

rResidual standard error: 728.2 on 187 degrees of

Multiple R-squared: ©O.008157,
F-statistic: 1.5%38 on 1 and 187 DF,

Adjusted R-squared:
p-value: 0.2165
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The F-statistic allows us to test if the whole regression (adding all variables vs
having only the intercept in) is significant. With only one variable, it provides
exactly the same result as the t-test for the significance of the coefficient of this

variable.



Assumptions of a linear regression model

Linearity of the data. The relationship between the predictor (x) and the
outcome (y) is assumed to be linear.

Normality of residuals. The residual errors are assumed to be normally
distributed: Ei ~ N(O,V)

Homogeneity of residuals variance. The residuals are assumed to have a
constant variance (homoscedasticity): V(Ei) =V

Independence of residuals error terms: Ei are independent from Xi and

mutually independent



Model selection

* The regsubsets() function (from the leaps library) performs best subset
selection by identifying the best model that contains a given number of
predictors, where best is quantified using the residual sum of squares for
each model. The syntax is the same as for Im(). The summary() command

outputs the best set of variables for each model size.

* Validation set approach:
1. split the observations into a training set and a test set
2. apply regsubsets() to the training set in order to perform best subset
selection
3. compute the validation set error for the best model of each model size
on the test set

4. estimate the parameters of the best model on the full data set



