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T-tests: summary

T-test in general 
Used to compare means

One-sample t-test
Compare the mean of a sample to a given number

Two-sample t-test 
Compare the means of two samples

Paired t-test
Compare the difference between pairs of related data points



One or two groups
How to compare the mean of 3 groups ?

Example: What is the effect of treatment conditions on plant growth (weight) ?

Multiple T-tests



How to compare the mean of 20 groups ?

Multiple T-tests Multiple testing correction !

Another solution ?
ANOVA = ANalysis Of Variance

allows to determine whether there are any statistically significant 
differences between the means of three or more independent groups



ANOVA – Schematic view

Within group variance = 𝑆𝑆error	
Assumption: 𝑆𝑆error=𝑆𝑆error=𝑆𝑆error	
Between group variance = 𝑆𝑆group

𝑆𝑆total = 𝑆𝑆group + 𝑆𝑆error



ANOVA – Schematic view

𝑆𝑆total = 𝑆𝑆group + 𝑆𝑆error

If 𝑆𝑆group > 𝑆𝑆error at least two means are different



ANOVA – Hypothesis testing
• H0: all group means are equal
• H1: at least one mean is different

• A simple model formula in R with one factor is written as
plant weight ~ treatment 

y ~ x

modeled by



ANOVA – in R
# read data
> PlantGrowth <- read.csv("PlantGrowth.csv", header = T)
> dim(PlantGrowth)
> levels(PlantGrowth$group)
> summary(PlantGrowth)

# if the levels are not automatically in the correct order, re-order them as follow:
>PlantGrowth <- PlantGrowth %>% reorder_levels(group, order = c("ctrl", "trt1", 
"trt2"))

# compute some summary statistics (count, mean and sd) per group
>PlantGrowth %>% group_by(group) %>% get_summary_stats(weight, type = "mean_sd") 
# A tibble: 3 x 5

group variable n mean sd
<fct> <chr> <dbl> <dbl> <dbl>

1 ctrl weight 10 5.03 0.583
2 trt1 weight 10 4.66 0.794
3 trt2 weight 10 5.53 0.443



ANOVA – in R
# create a box plot of weight by group:
> ggboxplot(PlantGrowth, x = "group", y = "weight")
> boxplot(PlantGrowth$weight ~ PlantGrowth$group, xlab="group", ylab="weight")



ANOVA – in R
>anova.res <- aov(PlantGrowth$weight ~ PlantGrowth$group) 
Call:

aov(formula = PlantGrowth$weight ~ PlantGrowth$group)

Terms:
PlantGrowth$group Residuals

Sum of Squares 3.76634 10.49209
Deg. of Freedom 2 27

Residual standard error: 0.6233746
Estimated effects may be unbalanced

> summary(anova.res)
Df Sum Sq Mean Sq F value Pr(>F)

PlantGrowth$group 2 3.766 1.8832 4.846 0.0159 *
Residuals 27 10.492 0.3886
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



ANOVA – in R
> summary(anova.res)

Df Sum Sq Mean Sq F value Pr(>F)
PlantGrowth$group 2 3.766 1.8832 4.846 0.0159 *
Residuals 27 10.492 0.3886
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Source of variation Sum of squares Degrees of freedom Mean squares F ratio

Between groups (factor) SSB k-1 MSB=SSB/k-1 F=MSB/MSW

Within groups (error) SSW n-k MSW=SSW/n-k

Total SST=SSB+SSW n-1
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ANOVA assumptions
• Independence of observations
• Equal variance
>PlantGrowth %>% levene_test(weight ~ group) 
# A tibble: 1 x 4

df1 df2 statistic p
<int> <int> 

1 2 27
<dbl> <dbl> 
1.12 0.341
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ANOVA assumptions
• Normal distribution
> PlantGrowth %>% group_by(group)
%>% shapiro_test(weight)
# A tibble: 3 x 4

group variable statistic p
<fct> <chr> <dbl> <dbl>

1 ctrl weight 0.957 0.747
2 trt1 weight 0.930 0.452
3 trt2 weight 0.941 0.564

>ggqqplot(PlantGrowth, "weight", 
facet.by = "group")



Post-hoc tests
• A significant one-way ANOVA is generally followed up by Tukey post-hoc tests to 

perform multiple pairwise comparisons between groups

>tukey.res <- PlantGrowth %>% tukey_hsd(weight ~ group) 
# A tibble: 3 x 9

term group1 group2 null.value estimate conf.low conf.high p.adj p.adj.signif
* <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 group ctrl trt1 0 -0.371 -1.06 0.320 0.391 ns
2 group ctrl trt2 0 0.494 -0.197 1.19 0.198 ns
3 group trt1 trt2 0 0.865 0.174 1.56 0.012 *



ANOVA is parametric
• ANOVA assumptions

• Independence of observations
• Equal variance
• Normal distribution

• if the above assumptions are not met: non-parametric alternative: 
Kruskal-Wallis test

> kruskal.res <- PlantGrowth %>% kruskal_test(weight ~ group)
> kruskal.res
# A tibble: 1 x 6

.y. n statistic df p method
* <chr> <int> <dbl> <int> <dbl> <chr>
1 weight 30 7.99 2 0.0184 Kruskal-Wallis



Two-way ANOVA
• Example: the combined effect of treatment type and concentration 

on the growth (weight) of plants

Control Treatment 1 Treatment 2

Low

High

Treatment type

Co
nc
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tr
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n



ANOVA – Hypothesis testing
• A model formula in R with x factors is written as

y ~ x1+x2+x3 
Response ~ predictors

• Some useful symbols
+

:
*

add more variables
- leave out variables

interaction between two terms
include the terms and the interactions a*b=a+b+a:b

^n adds all terms and all interactions up to order n
I() include a mathematical expression



Two-way ANOVA
• Example: the combined effect of treatment type and concentration 

on the growth (weight) of plants

Control Treatment 1 Treatment 2

Low

High

Treatment type

Co
nc

en
tr
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n

Plant growth ~ treatment type * concentration



ANOVA – in R
# compute some summary statistics (count, mean and sd) per group
>PlantGrowth_new %>% group_by(group, concentration) %>% 
get_summary_stats(weight, type = "mean_sd")
# A tibble: 6 x 6

group concentration variable n mean sd
<chr> <chr> <chr> <dbl> <dbl> <dbl>

1 ctrl high weight 10 5.16 1.00
2 ctrl low weight 10 5.24 0.755
3 trt1 high weight 10 4.51 0.552
4 trt1 low weight 10 5.30 0.69
5 trt2 high weight 10 4.77 0.745
6 trt2 low weight 10 4.55 0.775



ANOVA – in R
# visualization
> ggboxplot(PlantGrowth_new, x = "group", y = "weight", color = "concentration")



ANOVA – in R – check assumptions
• Independence of observations
• Equal variance

>PlantGrowth_new %>% levene_test(weight ~ group*concentration) 
# A tibble: 1 x 4

df1 df2 statistic p
<int> <int> <dbl> <dbl>

1 5 54 0.898 0.489



ANOVA – in R – check assumptions

> PlantGrowth_new %>% group_by(group, concentration) %>% shapiro_test(weight)
# A tibble: 6 x 5

group concentration variable statistic p
<chr> <chr> <chr> <dbl> <dbl>

1 ctrl high weight 0.883 0.143
2 ctrl low weight 0.914 0.313
3 trt1 high weight 0.963 0.817
4 trt1 low weight 0.941 0.562
5 trt2 high weight 0.943 0.585
6 trt2 low weight 0.867 0.093

• Normal distribution



ANOVA – in R – check assumptions
• Normal distribution

>ggqqplot(PlantGrowth_new, 
"weight", ggtheme = theme_bw()) + 
facet_grid(group ~ concentration)



ANOVA – in R
>anova.res <- aov(PlantGrowth_new$weight ~ PlantGrowth_new$group * 
PlantGrowth_new$concentration)
> summary(anova.res)

Df Sum Sq Mean Sq F value Pr(>F)
PlantGrowth_new$group 2 2.980 1.4898 2.548 0.0876 .
PlantGrowth_new$concentration 1 0.700 0.6998 1.197 0.2788
PlantGrowth_new$group:PlantGrowth_new$concentration 2 2.734 1.3668 2.338 0.1063
Residuals 54 31.575 0.5847
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



ANOVA – in R

Source of variation Sum of squares Degrees of freedom Mean squares F ratio

Factor A SSA a-1 MSA = SSA/(a-1) MSA/MSE

Factor B SSB b-1 MSB = SSB/(b-1) MSB/MSE

Interaction SSAB (a-1)(b-1) SSAB = MSAB/(a-1)(b-1) MSAB/MSE

Error SSE ab(nij-1) SSE = MSE/(ab(nij-1))

Total SST n-1
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Confidence intervals



Confidence intervals

• Confidence interval is related to the p-value.
• It is a measure of the study’s precision.
• P-value answers the question:

"Is there a statistically significant difference between the 
two treatments ?“

• The point estimate and its confidence interval answer the questions: 
"What is the size of that treatment difference?"

"How precisely did this trial determine or estimate the 
treatment difference?”



Confidence intervals - representation

• Width of a confidence interval:

Lower limit Point estimate Upper limit 

Confidence Limits: The upper and lower end points of the confidence interval.

• A narrow CI implies high precision
• A wide CI implies poor precision (usually due to inadequate sample size)



Confidence intervals – computation

• CI = (Sample statistic) ± [(confidence level) × (Sampling variability measure)]
§ Sample statistic: observed magnitude of effect or association (e.g., odds ratio, risk ratio, 

difference in mean)
§ Confidence level: (1.0 – α), usually expressed as a percentage (e.g. 90%, 95% or 99%).
§ Sampling variability: a measure of how high the sampling variability is. Ex: Standard error 

(S.E.) of the estimate is a measure of variability



Confidence intervals – interpretation

• 95% C.I. means that true estimate of effect (ex: difference in mean, risk, rate) lies
within 2 standard errors of the population mean 95 times out of 100 (given some
assumptions).



Confidence intervals – interpretation

• If the 95% confidence interval does 
NOT include the null value, then we 
declare a “statistically significant” 
association.

• If the 95% confidence interval 
includes the null value, then the test 
result is “not statistically significant.”



Confidence intervals – interpretation

• Interpretation of C.I. for means: does the interval include 0 ?

• Interpretation of C.I. for ratio: does the interval include 1 ?

• Connection between P-values and C.I.s
§ If a 95% CI includes the null effect, the Pvalue is > 0.05 (and we would fail to 

reject the null hypothesis)
§ If the 95% CI excludes the null effect, the Pvalue is < 0.05 (and we would reject 

the null hypothesis)



Confidence intervals – interpretation

Women with high alcohol 
intake are 1.32 times (or 32%) 
more likely to develop breast 
cancer compared to women 
with low alcohol intake.
However, we are 95% confident
that the true value (risk) of the 
population lies between
0.87 and 1.98
=> not significant !


