

Introduction to Statistics

Swiss Institute of Bioinformatics

Joao Lourenço (joao.lourenco@sib.swiss) and Rachel Marcone (rachel.marcone@sib.swiss)

6th - 9th February 2023

T-tests: summary

T-test in general Used to compare means

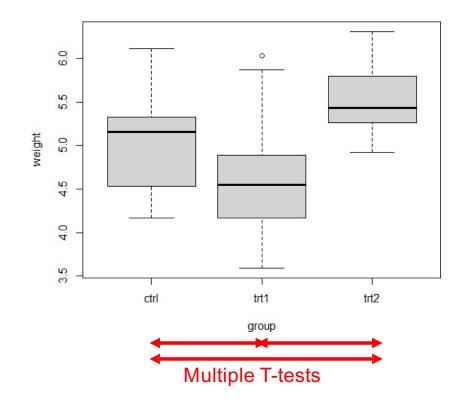
One-sample t-test Compare the mean of a sample to a given number

> Two-sample t-test Compare the means of two samples

Paired t-test Compare the difference between pairs of related data points

One or two groups How to compare the mean of 3 groups ?

Example: What is the effect of treatment conditions on plant growth (weight) ?



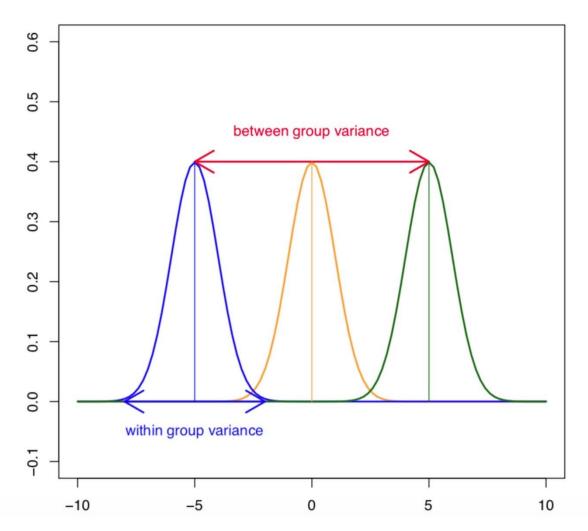
How to compare the mean of 20 groups ?

Multiple T-tests Multiple testing correction !

Another solution ? ANOVA = ANalysis Of Variance

allows to determine whether there are any statistically significant differences between the means of three or more independent groups

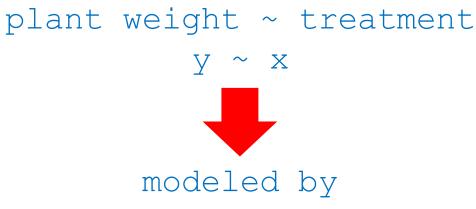
ANOVA – Schematic view



Within group variance = SS_{error} Assumption: $SS_{error} = SS_{error} = SS_{error}$ Between group variance = SS_{group} $SS_{total} = SS_{group} + SS_{error}$ ANOVA – Schematic view

ANOVA – Hypothesis testing

- H₀: all group means are equal
- H₁: at least one mean is different
- A simple model formula in R with one factor is written as



- # read data
- > PlantGrowth <- read.csv("PlantGrowth.csv", header = T)</pre>
- > dim(PlantGrowth)
- > levels(PlantGrowth\$group)
- > summary(PlantGrowth)

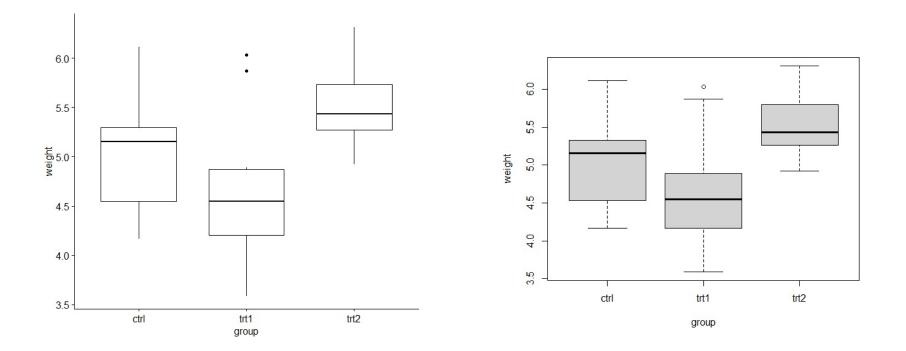
if the levels are not automatically in the correct order, re-order them as follow:
>PlantGrowth <- PlantGrowth %>% reorder_levels(group, order = c("ctrl", "trt1",
"trt2"))

```
# compute some summary statistics (count, mean and sd) per group
>PlantGrowth %>% group_by(group) %>% get_summary_stats(weight, type = "mean_sd")
# A tibble: 3 x 5
```

	group	variable	n	mean	sd
	<fct></fct>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	ctrl	weight	10	5.03	0.583
2	trt1	weight	10	4.66	0.794
3	trt2	weight	10	5.53	0.443

create a box plot of weight by group:

- > ggboxplot(PlantGrowth, x = "group", y = "weight")
- > boxplot(PlantGrowth\$weight ~ PlantGrowth\$group, xlab="group", ylab="weight")



>anova.res <- aov(PlantGrowth\$weight ~ PlantGrowth\$group)
Call:</pre>

```
aov(formula = PlantGrowth$weight ~ PlantGrowth$group)
```

Terms:

	PlantGrowth\$group	Residuals
Sum of Squares	3.76634	10.49209
Deg. of Freedom	2	27

Residual standard error: 0.6233746 Estimated effects may be unbalanced

> summary(anova.re	es)
	Df Sum Sq Mean Sq F value Pr(>F)
PlantGrowth\$group	2 3.766 1.8832 4.846 0.0159 *
Residuals	27 10.492 0.3886
Signif. codes: 0	`***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1

Source of variation	Sum of squares	Degrees of freedom	Mean squares	F ratio
Between groups (factor)	SSB	k-1	MSB=SSB/k-1	F=MSB/MSW
Within groups (error)	SSW	n-k	MSW=SSW/n-k	
Total	SST=SSB+SSW	n-1		

k	k nj	k nj
$SSB = \Sigma n_j (\bar{X}_j -\!\! \ddot{X})^2$	$SSW = \Sigma \Sigma (X_{ij} - \bar{X}_j)^2$	$SST = \Sigma \Sigma (X \text{ ij } - X)^2$
j = 1	j=1 i=1	j=1 i=1

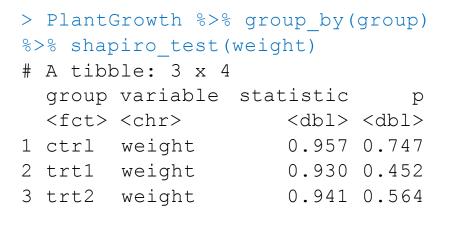
ANOVA assumptions

- Independence of observations
- Equal variance

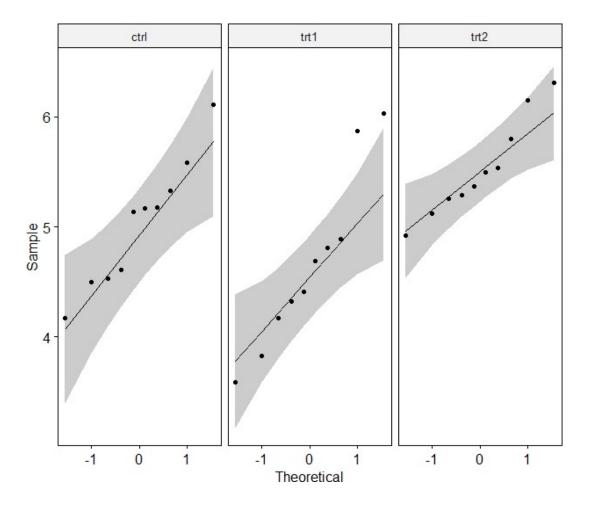
$$W = \frac{n-k}{k-1} \frac{\sum_{i=1}^{k} n_i (\frac{1}{n_i} \sum_{j=1}^{n_i} |F_{ij} - \overline{F_i}| - \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} |F_{ij} - \overline{F_i}|)^2}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (|F_{ij} - F_i| - \frac{1}{n_i} \sum_{j=1}^{n_i} |F_{ij} - F_i|)^2} \sim F(k-1, n-1)$$

ANOVA assumptions

Normal distribution



>ggqqplot(PlantGrowth, "weight", facet.by = "group")



Post-hoc tests

• A significant one-way ANOVA is generally followed up by Tukey post-hoc tests to perform multiple pairwise comparisons between groups

>tukey.res <- PlantGrowth %>% tukey hsd(weight ~ group) # A tibble: 3 x 9 term group1 group2 null.value estimate conf.low conf.high p.adj p.adj.signif * <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> 1 group ctrl trt1 -0.371 -1.06 0.320 0.391 ns 0 2 group ctrl trt2 0 0.494 -0.197 1.19 0.198 ns 3 group trt1 trt2 0.865 0.174 1.56 0.012 * 0

ANOVA is parametric

- ANOVA assumptions
 - Independence of observations
 - Equal variance
 - Normal distribution
- if the above assumptions are not met: non-parametric alternative: Kruskal-Wallis test

```
> kruskal.res <- PlantGrowth %>% kruskal_test(weight ~ group)
> kruskal.res
# A tibble: 1 x 6
   .y. n statistic df p method
* <chr> <int> <dbl> <int> <dbl> <chr>
1 weight 30 7.99 2 0.0184 Kruskal-Wallis
```

Two-way ANOVA

• Example: the combined effect of treatment type and concentration on the growth (weight) of plants

Treatment ty	ре
--------------	----

	Control	Treatment 1	Treatment 2
Low			
High			

ANOVA – Hypothesis testing

• A model formula in R with x factors is written as

 $y \sim x1+x2+x3$ Response ~ predictors

- Some useful symbols
- + add more variables
- leave out variables
- : interaction between two terms
- * include the terms and the interactions a*b=a+b+a:b
- ^n adds all terms and all interactions up to order n
- I () include a mathematical expression

Two-way ANOVA

Treatment type

• Example: the combined effect of treatment type and concentration on the growth (weight) of plants

~			atment type	
atior		Control	Treatment 1	Treatment 2
	Low			
	High			
ر				

Plant growth ~ treatment type * concentration

```
# compute some summary statistics (count, mean and sd) per group
>PlantGrowth new %>% group by(group, concentration) %>%
get summary stats(weight, type = "mean sd")
# A tibble: 6 x 6
 group concentration variable n mean
                                          sd
 <chr> <chr>
                   <chr> <dbl> <dbl> <dbl>
                   weight
                               10 5.16 1.00
1 ctrl high
                               10 5.24 0.755
2 ctrl low
                   weight
3 trt1 high
                   weight
                               10 4.51 0.552
4 trt1 low
                   weight
                               10 5.30 0.69
5 trt2 high
                   weight
                               10 4.77 0.745
6 trt2 low
                   weight
                               10 4.55 0.775
```

visualization

> ggboxplot(PlantGrowth_new, x = "group", y = "weight", color = "concentration")

concentration 🖨 high 🛱 low 6.0 . 5.5 weight 7.0 4.5 4.0 ctrl trt1 trt2 group

ANOVA – in R – check assumptions

- Independence of observations
- Equal variance

```
>PlantGrowth_new %>% levene_test(weight ~ group*concentration)
# A tibble: 1 x 4
    df1 df2 statistic p
    <int> <int> <db1> <db1><
1 5 54 0.898 0.489</pre>
```

ANOVA – in R – check assumptions

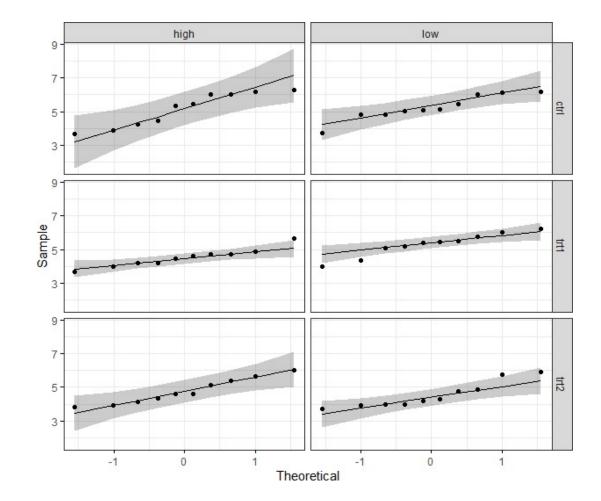
• Normal distribution

>	Plant	Growth_new %>%	group_by((group, cor	ncentration)	<pre>%>% shapiro_test(weight)</pre>
#	A tibk	ole: 6 x 5				
	group	concentration	variable	statistic	р	
	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	
1	ctrl	high	weight	0.883	0.143	
2	ctrl	low	weight	0.914	0.313	
3	trt1	high	weight	0.963	0.817	
4	trt1	low	weight	0.941	0.562	
5	trt2	high	weight	0.943	0.585	
6	trt2	low	weight	0.867	0.093	

ANOVA – in R – check assumptions

• Normal distribution

>ggqqplot(PlantGrowth_new, "weight", ggtheme = theme_bw()) + facet_grid(group ~ concentration)



```
>anova.res <- aov(PlantGrowth_new$weight ~ PlantGrowth_new$group *
PlantGrowth_new$concentration)
> summary(anova.res)
Df Sum Sq Mean Sq F value Pr(>F)
PlantGrowth_new$group
PlantGrowth_new$concentration
PlantGrowth_new$concentration
1 0.700 0.6998 1.197 0.2788
PlantGrowth_new$group:PlantGrowth_new$concentration
2 2.734 1.3668 2.338 0.1063
Residuals
54 31.575 0.5847
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
```

Source of variation	Sum of squares	Degrees of freedom	Mean squares	F ratio
Factor A	SSA	a-1	MSA = SSA/(a-1)	MSA/MSE
Factor B	SSB	b-1	MSB = SSB/(b-1)	MSB/MSE
Interaction	SSAB	(a-1)(b-1)	SSAB = MSAB/(a-1)(b-1)	MSAB/MSE
Error	SSE	ab(n _{ij} -1)	SSE = MSE/(ab(n _{ij} -1))	
Total	SST	n-1		

 X_{ijk} : value of kth observation of level i of factor A and level j of factor B n_i : number of observations of level i of factor A n_i : number of observations of level j of factor B n_{ij} : number of observations of level i of factor A and level j of factor B а b a b $SSA = \Sigma n_i (\bar{X}_i - \ddot{X})^2$ $SSB = \Sigma \quad n_{j} (\bar{X}_{j} - X_{j})^{2} \qquad SSAB = \Sigma \quad \Sigma \quad n_{ij} (\overline{X_{ij}} - \bar{X}_{i} - X_{j} + X_{j})^{2}$ i=1 j = 1 i = 1 j = 1a b n_{ij} a b n_{ij} $SSE = \Sigma \quad \Sigma \quad (X_{ijk} - \overline{X_{ij}})^2 \qquad SST = \Sigma \quad \Sigma \quad (X_{ijk} - \overline{X})^2$ i=1 j=1 k=1 i=1 j=1 k=1

Confidence intervals

Confidence intervals

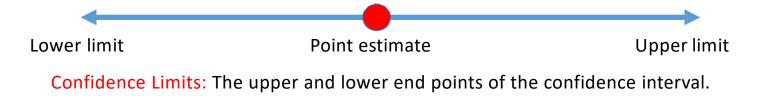
- Confidence interval is related to the p-value.
- It is a measure of the study's precision.
- P-value answers the question:

"Is there a statistically significant difference between the two treatments ?"

 The point estimate and its confidence interval answer the questions: "What is the size of that treatment difference?" "How precisely did this trial determine or estimate the treatment difference?"

Confidence intervals - representation

• Width of a confidence interval:

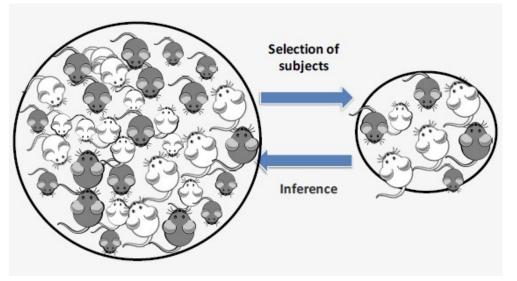


- A narrow CI implies high precision
- A wide CI implies poor precision (usually due to inadequate sample size)

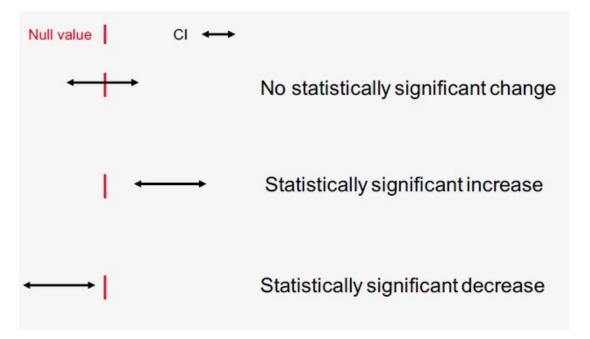
Confidence intervals – computation

- CI = (Sample statistic) ± [(confidence level) × (Sampling variability measure)]
 - Sample statistic: observed magnitude of effect or association (e.g., odds ratio, risk ratio, difference in mean)
 - Confidence level: (1.0α) , usually expressed as a percentage (e.g. 90%, 95% or 99%).
 - Sampling variability: a measure of how high the sampling variability is. Ex: Standard error (S.E.) of the estimate is a measure of variability

 95% C.I. means that true estimate of effect (ex: difference in mean, risk, rate) lies within 2 standard errors of the population mean 95 times out of 100 (given some assumptions).



- If the 95% confidence interval does NOT include the null value, then we declare a "statistically significant" association.
- If the 95% confidence interval includes the null value, then the test result is "not statistically significant."



- Interpretation of C.I. for means: does the interval include 0 ?
- Interpretation of C.I. for ratio: does the interval include 1?
- Connection between P-values and C.I.s
 - If a 95% CI includes the null effect, the Pvalue is > 0.05 (and we would fail to reject the null hypothesis)
 - If the 95% CI excludes the null effect, the Pvalue is < 0.05 (and we would reject the null hypothesis)

Exposure:
Outcome:
Risk Ratio:
p-value:
95% C.I.:

alcohol intake (high versus low) Incidence of breast cancer 1.32 (point estimate) 0.14 (not statistically significant) 0.87 - 1.98

Women with high alcohol intake are 1.32 times (or 32%) more likely to develop breast cancer compared to women with low alcohol intake. However, we are 95% confident that the true value (risk) of the population lies between 0.87 and 1.98 => not significant !