

Introduction to Statistics

Swiss Institute of Bioinformatics

Joao Lourenço (joao.lourenco@sib.swiss) and Rachel Marcone (rachel.marcone@sib.swiss)

January 2024

T-tests: summary

T-test in general Used to compare means

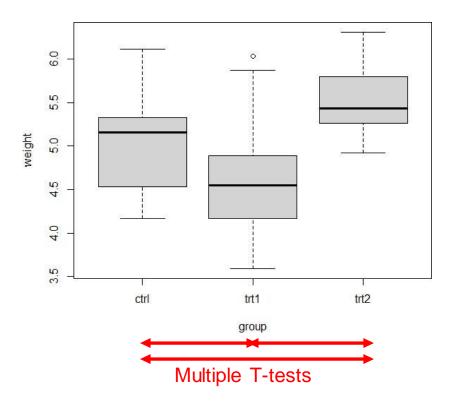
One-sample t-test
Compare the mean of a sample to a given number

Two-sample t-test
Compare the means of two samples

Paired t-test
Compare the difference between pairs of related data points

One or two groups How to compare the mean of 3 groups?

Example: What is the effect of treatment conditions on plant growth (weight)?



How to compare the mean of 20 groups?

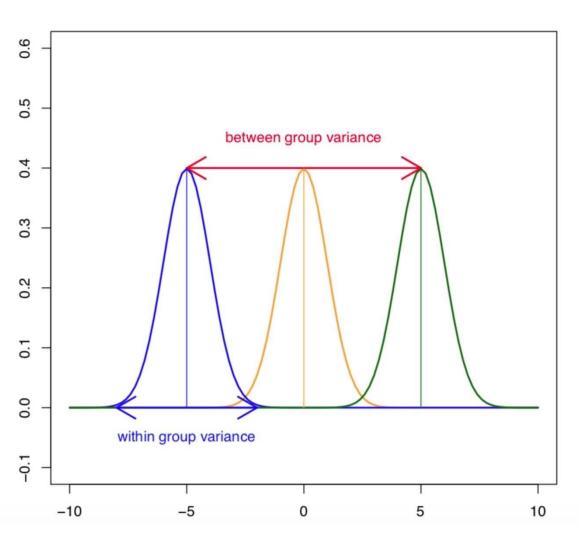
Multiple T-tests

Multiple testing correction!

Another solution? ANOVA = ANalysis Of Variance

allows to determine whether there are any statistically significant differences between the means of three or more independent groups

ANOVA – Schematic view



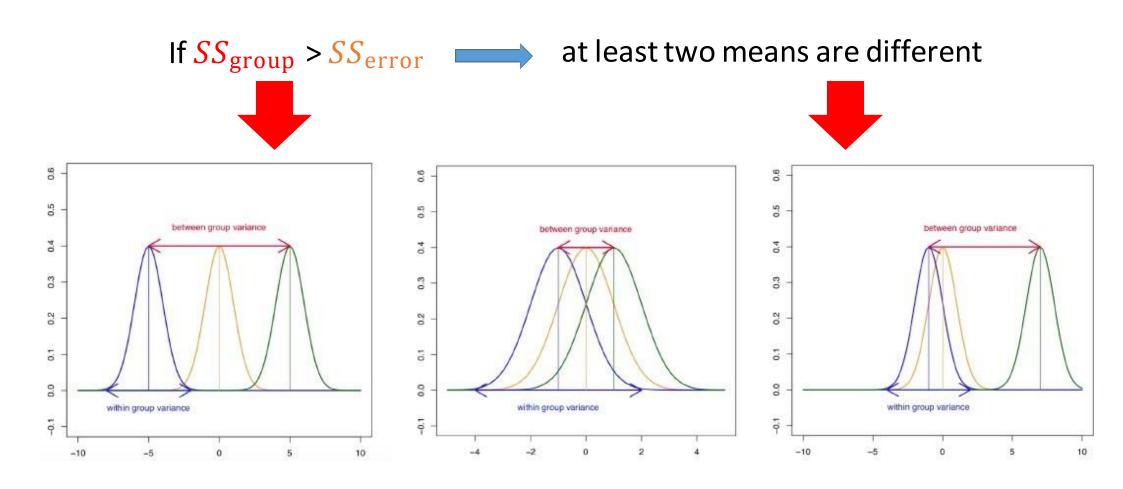
Within group variance = SS_{error}

Assumption: $SS_{error} = SS_{error} = SS_{error}$

Between group variance = SS_{group}

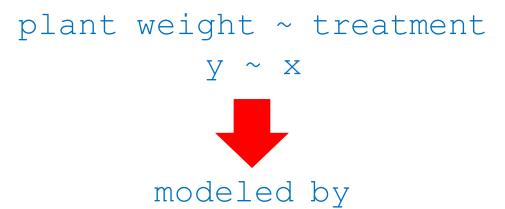
$$SS_{\text{total}} = SS_{\text{group}} + SS_{\text{error}}$$

ANOVA - Schematic view



ANOVA – Hypothesis testing

- H₀: all group means are equal
- H₁: at least one mean is different
- A simple model formula in R with one factor is written as

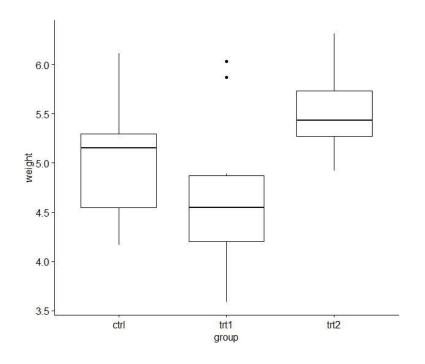


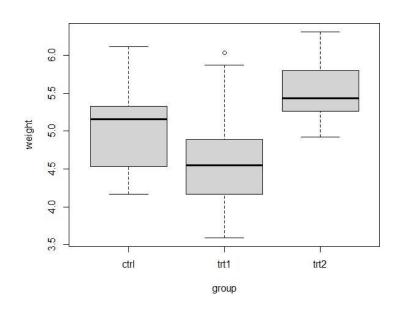
ANOVA - in R

```
# read data
> PlantGrowth <- read.csv("PlantGrowth.csv", header = T)</pre>
> dim(PlantGrowth)
> levels(PlantGrowth$group)
> summary(PlantGrowth)
# if the levels are not automatically in the correct order, re-order them as follow:
>PlantGrowth <- PlantGrowth %>% reorder levels(group, order = c("ctrl", "trt1",
"trt2"))
# compute some summary statistics (count, mean and sd) per group
>PlantGrowth %>% group by(group) %>% get summary stats(weight, type = "mean sd")
# A tibble: 3 \times 5
  group variable n mean
                                sd
 <fct> <chr> <dbl> <dbl> <dbl> <dbl>
1 ctrl weight 10 5.03 0.583
2 trt1 weight 10 4.66 0.794
3 trt2 weight 10 5.53 0.443
```

ANOVA – in R

```
# create a box plot of weight by group:
> ggboxplot(PlantGrowth, x = "group", y = "weight")
> boxplot(PlantGrowth$weight ~ PlantGrowth$group, xlab="group", ylab="weight")
```





ANOVA - in R

```
>anova.res <- aov(PlantGrowth$weight ~ PlantGrowth$group)</pre>
Call:
   aov(formula = PlantGrowth$weight ~ PlantGrowth$group)
Terms:
               PlantGrowth$group Residuals
                3.76634 10.49209
Sum of Squares
                                        2.7
Deg. of Freedom
Residual standard error: 0.6233746
Estimated effects may be unbalanced
> summary(anova.res)
                 Df Sum Sq Mean Sq F value Pr(>F)
PlantGrowth$group 2 3.766 1.8832 4.846 0.0159 *
Residuals 27 10.492 0.3886
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

ANOVA - in R

> summary(anova.res)

Df Sum Sq Mean Sq F value Pr(>F)

PlantGrowth\$group 2 3.766 1.8832 4.846 0.0159 *

Residuals 27 10.492 0.3886

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Source of variation	Sum of squares	Degrees of freedom	Mean squares	F ratio
Between groups (factor)	SSB	k-1	MSB=SSB/k-1	F=MSB/MSW
Within groups (error)	SSW	n-k	MSW=SSW/n-k	
Total	SST=SSB+SSW	n-1		

$$SSB = \sum_{j=1}^{k} n_{j} (\bar{X}_{j} - \bar{\bar{X}})^{2} \qquad SSW = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (X_{ij} - \bar{X}_{j})^{2} \qquad SST = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (X_{ij} - \bar{\bar{X}})^{2}$$

ANOVA assumptions

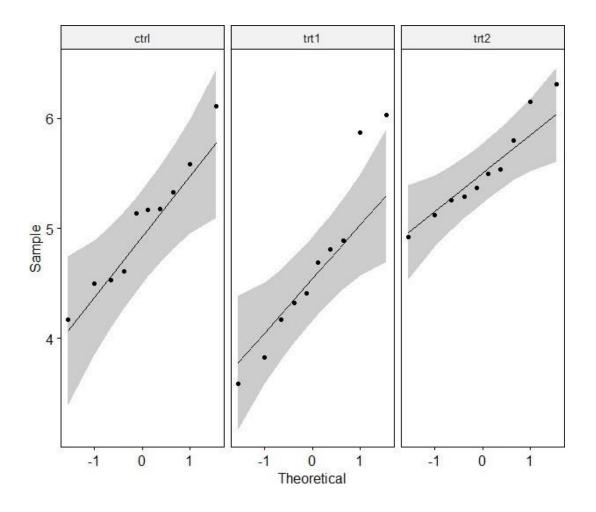
- Independence of observations
- Equal variance

$$W = \frac{n-k}{k-1} \frac{\sum_{i=1}^k n_i (\frac{1}{n_i} \sum_{j=1}^{n_i} |Y_{ij} - \overline{Y_i}| - \frac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} |Y_{ij} - \overline{Y_i}|)^2}{\sum_{i=1}^k \sum_{j=1}^{n_i} (|Y_{ij} - \overline{Y_i}| - \frac{1}{n_i} \sum_{j=1}^{n_i} |Y_{ij} - \overline{Y_i}|)^2} \sim F(k-1, n-1)$$

ANOVA assumptions

Normal distribution

```
> PlantGrowth %>% group_by(group)
%>% shapiro test(weight)
# A tibble: 3 x 4
  group variable statistic
                               р
  <fct> <chr>
                     <dbl> <dbl>
1 ctrl weight
                    0.957 0.747
2 trt1 weight
                  0.930 0.452
3 trt2
       weight
                    0.941 0.564
>ggggplot(PlantGrowth, "weight",
facet.by = "group")
```



Post-hoc tests

• A significant one-way ANOVA is generally followed up by Tukey post-hoc tests to perform multiple pairwise comparisons between groups

ANOVA is parametric

- ANOVA assumptions
 - Independence of observations
 - Equal variance
 - Normal distribution
- if the above assumptions are not met: non-parametric alternative:
 Kruskal-Wallis test

Two-way ANOVA

• Example: the combined effect of treatment type and concentration on the growth (weight) of plants

Treatment type

\subseteq
.≃
Ţ
ര
ਗ
~~
\simeq
0
Ö
\sim

	Control	Treatment 1	Treatment 2
Low			
High			

ANOVA – Hypothesis testing

A model formula in R with x factors is written as

- Some useful symbols
- add more variables
- leave out variables
- interaction between two terms
- * include the terms and the interactions a*b=a+b+a:b
- adds all terms and all interactions up to order n
- I () include a mathematical expression

Two-way ANOVA

• Example: the combined effect of treatment type and concentration on the growth (weight) of plants

Treatment type

	Control	Treatment 1	Treatment 2
Low			
High			

Plant growth ~ treatment type * concentration

ANOVA - in R

```
# compute some summary statistics (count, mean and sd) per group
>PlantGrowth new %>% group by(group, concentration) %>%
get summary stats(weight, type = "mean sd")
# A tibble: 6 x 6
  group concentration variable
                                             sd
                                  n mean
  <chr> <chr>
                     <chr>
                              <dbl> <dbl> <dbl>
1 ctrl high
                     weight
                                 10 5.16 1.00
                     weight
                                 10 5.24 0.755
2 ctrl low
                                 10 4.51 0.552
3 trt1 high
                     weight
4 trt1
      low
                     weight
                                 10 5.30 0.69
                                 10 4.77 0.745
5 trt2 high
                     weight
                                 10 4.55 0.775
                     weight
6 trt2 low
```

ANOVA – in R

trt1

group

trt2

weight 7.0

4.5 -

4.0

ctrl

ANOVA – in R – check assumptions

- Independence of observations
- Equal variance

ANOVA – in R – check assumptions

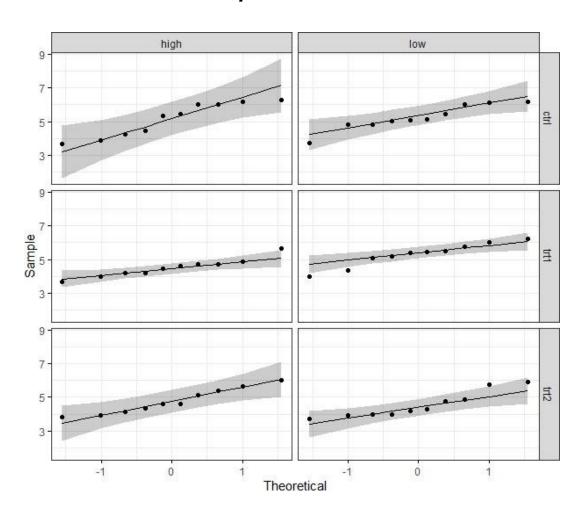
Normal distribution

```
> PlantGrowth new %>% group by(group, concentration) %>% shapiro test(weight)
# A tibble: 6 x 5
 group concentration variable statistic
                                         р
 <chr> <chr>
                   <chr>
                               <dbl> <dbl>
1 ctrl high
               weight
                               0.883 0.143
2 ctrl low
                   weight
                               0.914 0.313
                   weight
                               0.963 0.817
3 trt1 high
4 trt1 low
               weight 0.941 0.562
5 trt2 high
                 weight
                               0.943 0.585
                   weight
                               0.867 0.093
6 trt2 low
```

ANOVA – in R – check assumptions

Normal distribution

```
>ggqqplot(PlantGrowth_new,
"weight", ggtheme = theme_bw()) +
facet_grid(group ~ concentration)
```



ANOVA - in R

ANOVA - in R

Source of variation	Sum of squares	Degrees of freedom	Mean squares	F ratio
Factor A	SSA	a-1	MSA = SSA/(a-1)	MSA/MSE
Factor B	SSB	b-1	MSB = SSB/(b-1)	MSB/MSE
Interaction	SSAB	(a-1)(b-1)	SSAB = MSAB/(a-1)(b-1)	MSAB/MSE
Error	SSE	ab(n _{ij} -1)	SSE = $MSE/(ab(n_{ij}-1))$	
Total	SST	n-1		

 X_{ijk} : value of kth observation of level i of factor A and level j of factor B

 n_i : number of observations of level i of factor A

 n_i : number of observations of level j of factor B

 n_{ij} : number of observations of level i of factor A and level j of factor B

$$SSA = \sum_{i=1}^{a} n_{i} (\overline{X}_{i} - \overline{X}_{i})^{2} \qquad SSB = \sum_{j=1}^{b} n_{j} (\overline{X}_{j} - \overline{X}_{i})^{2} \qquad SSAB = \sum_{i=1}^{a} \sum_{j=1}^{b} n_{ij} (\overline{X}_{ij} - \overline{X}_{i} - \overline{X}_{j} + \overline{X}_{i})^{2}$$

$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (X_{ijk} - \overline{X}_{ij})^{2} \qquad SST = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (X_{ijk} - \overline{X}_{i})^{2}$$

Confidence intervals

Confidence intervals

- Confidence interval is related to the p-value.
- It is a measure of the study's precision.
- P-value answers the question:

"Is there a statistically significant difference between the two treatments?"

The point estimate and its confidence interval answer the questions:

"What is the size of that treatment difference?"

"How precisely did this trial determine or estimate the treatment difference?"

Confidence intervals - representation

• Width of a confidence interval:

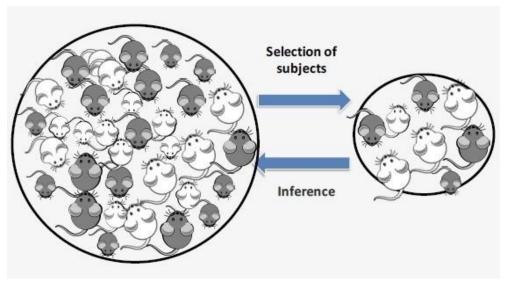
Confidence Limits: The upper and lower end points of the confidence interval.

- A narrow CI implies high precision
- A wide CI implies poor precision (usually due to inadequate sample size)

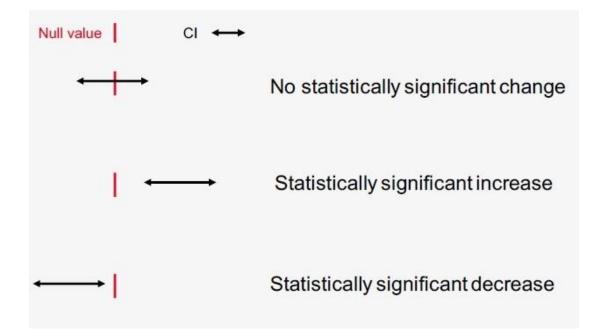
Confidence intervals – computation

- CI = (Sample statistic) ± [(confidence level) × (Sampling variability measure)]
 - Sample statistic: observed magnitude of effect or association (e.g., odds ratio, risk ratio, difference in mean)
 - Confidence level: (1.0α) , usually expressed as a percentage (e.g. 90%, 95% or 99%).
 - Sampling variability: a measure of how high the sampling variability is. Ex: Standard error
 (S.E.) of the estimate is a measure of variability

• 95% C.I. means that true estimate of effect (ex: difference in mean, risk, rate) lies within 2 standard errors of the population mean 95 times out of 100 (given some assumptions).



- If the 95% confidence interval does NOT include the null value, then we declare a "statistically significant" association.
- If the 95% confidence interval includes the null value, then the test result is "not statistically significant."



- Interpretation of C.I. for means: does the interval include 0?
- Interpretation of C.I. for ratio: does the interval include 1?
- Connection between P-values and C.I.s
 - If a 95% CI includes the null effect, the Pvalue is > 0.05 (and we would fail to reject the null hypothesis)
 - If the 95% CI excludes the null effect, the Pvalue is < 0.05 (and we would reject the null hypothesis)

alcohol intake (high versus low) Exposure: Incidence of breast cancer Outcome: 1.32 (point estimate) Risk Ratio: 0.14 (not statistically significant) p-value: 95% C.I.: 0.87 - 1.9895% confidence interval 1.5 1.0 0.0 0.5 2.0 (null value)

Women with high alcohol intake are 1.32 times (or 32%) more likely to develop breast cancer compared to women with low alcohol intake.

However, we are 95% confident that the true value (risk) of the population lies between 0.87 and 1.98

=> not significant!