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T-tests: summary

T-test in general
Used to compare means

One-sample t-test
Compare the mean of a sample to a given number

Two-sample t-test
Compare the means of two samples

Paired t-test
Compare the difference between pairs of related data points




One or two groups
How to compare the mean of 3 groups “?

Example: What is the effect of treatment conditions on plant growth (weight) ?
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How to compare the mean of 20 groups ?

Multiple T-tests =) Multiple testing correction !

Another solution ?
ANOVA = ANalysis Of Variance

allows to determine whether there are any statistically significant
differences between the means of three or more independent groups
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ANOVA — Schematic view

between group variance
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Within group variance = SSerror

Assumption: SSerror=

=SSerror

Between group variance = SSgroup

SStotal =

SSgroup +S5S8error



ANOVA - Schematic view

If SSgroup > 5S5error mmmmp atleasttwo means are different
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ANOVA - Hypothesis testing

* Ho: all group means are equal
* Hi: at least one mean is different

* Asimple model formula in R with one factor is written as
plant weight ~ treatment

y ~ X

\ 4

modeled by



ANOVA-In R

read data

PlantGrowth <- read.csv("PlantGrowth.csv", header = T)
dim (PlantGrowth)

levels (PlantGrowth$group)

summary (PlantGrowth)

vV V. V V

# 1f the levels are not automatically in the correct order, re-order them as follow:
>PlantGrowth <- PlantGrowth %$>% reorder levels(group, order = c("ctrl", "trtl",
"trt2 H) )

# compute some summary statistics (count, mean and sd) per group

>PlantGrowth $%>% group by (group) $%>% get summary stats(weight, type = "mean sd")

# A tibble: 3 x 5
group variable n mean sd
<fct> <chr> <dbl> <dbl> <dbl>
1 ctrl weight 10 5.03 0.583
2 trtl weight 10 4.66 0.79%4

3 trt2 weilght 10  5.53 0.443



ANOVA-In R

# create a box plot of weight by group:
> ggboxplot (PlantGrowth, x = "group", y = "weight")
> boxplot (PlantGrowth$Sweight ~ PlantGrowth$group, xlab="group", vylab="weight")
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ANOVA-In R

>anova.res <- aov(PlantGrowthSweight ~ PlantGrowthS$group)
Call:
aov (formula = PlantGrowth$weight ~ PlantGrowthS$Sgroup)

Terms:

PlantGrowth$group  Residuals
Sum of Squares 3.76634 10.49209
Deg. of Freedom 2 277

Residual standard error: 0.6233746
Estimated effects may be unbalanced

> summary (anova.res)
Df Sum Sg Mean Sg F value Pr (>F)

PlantGrowth$group 2 3.766 1.8832 4.846 0.0159 =
Residuals 27 10.492 0.3886

Signif. codes: Q0 Yxxxr (0.001 ‘**r 0.01 > 0.05 '.” 0.1

\

4

1



ANOVA-In R

> summary (anova.res)
Df Sum Sg Mean Sg F value Pr (>F)

PlantGrowthSgroup 2 3.766 1.8832 4.846 0.0159 ~*
Residuals 27 10.492 0.3886

Signif. codes: Q Yx**r (0.001 ‘**r 0.01 " 0.05 ‘. 0.1 Y " 1

Source of variation Sum of squares Degrees of freedom Mean squares m

Between groups (factor) MSB=SSB/k-1 F=MSB/MSW
Within groups (error) SSW n-k MSW=SSW/n-k
Total SST=SSB+SSW n-1

SSB = an(}?}- — X)? SSW = ZZ(XU — X;)? SST = Z (X — X)?
j=1

j=1i=1 j=1i=1



ANOVA assumptions

* Independence of observations
* Equal variance

>PlantGrowth %>% levene test (weight ~ group)
# A tibble: 1 x 4
dfl df2 statistic P
<int> <int> <dbl> <dbl>
1 2 27 1.12 0.341

k PR L v vk ny . TIN2
n—k E,‘,:l m.(;izjzll?’u—hl—ﬁﬁf=1 Ej=1 |YU_Y1D

- nj —, 1 ol —
k=1 B XL (Yij—Yil—p- 22, 1Yij=YiD?

~ F(k-1,n-1)



ANOVA assumptions

* Normal distribution

>

PlantGrowth

Q Q
5>%

group by (group)

$>% shapiro test(weight)

# A tibble:

l_\

>ggggplot (PlantGrowth,
facet.by =

3 x 4

group variable

<fct> <chr>

ctrl weight
trtl weight
trt2 weight

statistic P
<dbl> <dbl>
0.957 0.747
0.930 0.452
0.941 0.564

"weight",

"group")

ctrl

trt1

trt2

1

0
Theoretical

1'




Post-hoc tests

* Asignificant one-way ANOVA is generally followed up by Tukey post-hoc tests to
perform multiple pairwise comparisons between groups

>tukey.res <- PlantGrowth %>% tukey hsd(weight ~ group)
# A tibble: 3 x 9
term groupl group2 null.value estimate conf.low conf.high p.adj p.adj.signif

* <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 group ctrl trtl 0 -0.371 -1.06 0.320 0.391 ns

2 group ctrl trt2 0 0.494 -0.197 1.19 0.198 ns

3 group trtl trt2 0 0.865 0.174 1.56 0.012 *



ANOVA is parametric
* ANOVA assumptions

* Independence of observations
e Equal variance
* Normal distribution

* if the above assumptions are not met: non-parametric alternative:
Kruskal-Wallis test

> kruskal.res <- PlantGrowth %>% kruskal test(weight ~ group)
> kruskal.res

# A tibble: 1 x 6
Y. n statistic df p method
* <chr> <int> <dbl> <int> <dbl> <chr>
1 weight 30 7.99 2 0.0184 Kruskal-Wallis



Two-way ANOVA

* Example: the combined effect of treatment type and concentration
on the growth (weight) of plants

Treatment type

Low

High

Concentration



ANOVA - Hypothesis testing

e A model formulain R with x factors is written as

vy o~ X1+x2+x3
Response ~ predictors

* Some useful symbols
+ add more variables

- leave out variables
interaction between two terms
* include the terms and the interactions a*b=a+b+a:b
~n addsall terms and all interactions up to order n
T () include a mathematical expression



Two-way ANOVA

* Example: the combined effect of treatment type and concentration
on the growth (weight) of plants

Treatment type

Low

High

Concentration

Plant growth ~ treatment type * concentration



ANOVA-In R

# compute some summary statistics (count, mean and sd) per group
>PlantGrowth new $>% group by (group, concentration) %>%

get summary stats(weight, type = "mean sd")
# A tibble: 6 x 6
group concentration variable n mean sd
<chr> <chr> <chr> <dbl> <dbl> <dbl>
1 ctrl high weight 10 5.16 1.00
2 ctrl low welight 10 5.24 0.755
3 trtl high weight 10 4.51 0.552
4 trtl low weight 10 5.30 0.69
5 trt2 high weight 10 4.77 0.745
6 trt2 low weight 10 4.55 0.775



ANOVA-In R

# visualization

> ggboxplot (PlantGrowth new,

x = "group", y = "weight",

color "concentration")
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ANOVA - in R — check assumptions
* Independence of observations
* Equal variance

>PlantGrowth new %>%
# A tibble: 1 x 4

dfl df2 statistic P

<int> <int> <dbl> <dbl>

1 5 54 0.898 0.489

levene test (welght ~ group*concentration)



ANOVA - in R — check assumptions

e Normal distribution

> PlantGrowth new %>% group by (group, concentration) 3%>% shapiro test(weight)
# A tibble: 6 x 5

group concentration varilable statistic P

<chr> <chr> <chr> <dbl> <dbl>
1 ctrl high weight 0.883 0.143
2 ctrl low weight 0.914 0.313
3 trtl high welght 0.963 0.817
4 trtl low weight 0.941 0.562
5 trt2 high weight 0.943 0.585
6 trt2 low weight 0.867 0.093



ANOVA - in R — check assumptions

e Normal distribution T %

>ggqggplot (PlantGrowth new,
"weight", ggtheme = theme bw()) + . 5 .
facet grid(group ~ concentration) 5
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>anova.res <-

aov (PlantGrowth newSweight

PlantGrowth newSconcentration)

> summary (anova.res)

PlantGrowth newSgroup
PlantGrowth newSconcentration

PlantGrowth new$Sgroup:PlantGrowth newSconcentration

Residuals

Signif.

codes:

0

Vhk k%7

0.001

Nk X/

ANOVA-In R

0.01

~

A\ 4

PlantGrowth newSgroup *

0.05

\

4

Df Sum Sg Mean Sg F value
2 2.980 1.4898 2.548
1 0.700 0.6998 1.197
2  2.734 1.3668 2.338
54 31.575 0.5847

0.1 v 1

Pr (>F)
0.0876
0.2788
0.1063



ANOVA-Iin R

Factor A MSA = SSA/(a-1) MSA/MSE
Factor B SSB b-1 MSB = SSB/(b-1) MSB/MSE
Interaction SSAB (a-1)(b-1) SSAB = MSAB/(a-1)(b-1) MSAB/MSE
Error SSE ab(nij-1) SSE = MSE/(ab(nijj-1))
Total SST n-1

Xiji: value of kth observation of level i of factor A and level j of factor B
n;: number of observations of level i of factor A
n;: number of observations of level j of factor B
n;;: number of observations of level i of factor A and level j of factor B

SSA = ZH(X — X)? SSB = an(}f —¥)? SSAB = Zznq(xu — X +X)?

i=1 j=
a b Ny a

SSE= ) 3" ) (X — XY SST = Zif(}(ﬁk _X)?
i1 j=1 k=1

i=1 j=1k=1



Confidence intervals



Confidence intervals

Confidence interval is related to the p-value.
It is @ measure of the study’s precision.
P-value answers the question:

"Is there a statistically significant difference between the
two treatments ?“

The point estimate and its confidence interval answer the questions:
"What is the size of that treatment difference?"

"How precisely did this trial determine or estimate the
treatment difference?”



Confidence intervals - representation

 Width of a confidence interval:

Lower limit Point estimate Upper limit

Confidence Limits: The upper and lower end points of the confidence interval.

* A narrow Cl implies high precision

* A wide Climplies poor precision (usually due to inadequate sample size)



Confidence intervals — computation

e Cl=(Sample statistic) + [(critical value) x (Sampling variability measure)]
= Sample statistic: observed magnitude of effect or association (e.g., odds ratio, risk ratio,
difference in mean)

= Critical value: reflects on how confident you want to be, related to the statistics and to
your level of confidence (1.0 — a). The latter is usually expressed as a percentage (e.g.
90%, 95% or 99%). At 95 % the t-statistics critical value is 1.96 for example.

= Sampling variability: a measure of how high the sampling variability is. Ex: Standard error
(S.E.) of the estimate is a measure of variability



Confidence intervals — interpretation

* 95% C.l. means that true estimate of effect (ex: difference in mean, risk, rate) lies
within 1.96 "standard errors" of the population mean 95 times out of 100 (given
some assumptions).

Selection of
subjects

Inference



Confidence intervals — interpretation

* If the 95% confidence interval does Null value | 28
:SC-:-aI:eC L\ugse’c;EStlnC:::;/;I;r]ellfrchaenr’l'yve — No statistically significant change
association.

* |f the 95% confidence interval —_— Statistically significantincrease

includes the null value, then the test
result is “not statistically significant.”
— Statistically significantdecrease



Confidence intervals — interpretation

* Interpretation of C.I. for means: does the interval include 0 ?

* Interpretation of C.I. for ratio: does the interval include 1 ?

e Connection between P-values and C.l.s (they are mathematically connected!)

= [f 2 95% Cl includes the null effect, the Pvalue is > 0.05 (and we would fail to
reject the null hypothesis)

= |f the 95% CI excludes the null effect, the Pvalue is < 0.05 (and we would reject
the null hypothesis)



Confidence intervals — interpretation

Exposure: alcohol intake (high versus low)
Outcome: Incidence of breast cancer
Risk Ratio: 1.32 (point estimate)
p-value: 0.14 (not statistically significant)
95% C.1.: 0.87-1.98
95% confidence interval
0.0 0.5 1.0 ® s i.o

(null value)

Women with high alcohol
intake are 1.32 times (or 32%)
more likely to develop breast
cancer compared to women
with low alcohol intake.
However, we are 95% confident
that the true value (risk) of the
population lies between

0.87 and 1.98

=> not significant !
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