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Visual representation



Dimension



Dimension:
the number of coordinates we need to 

locate a point in a given space. 
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Dimension in biology?
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Dimension reduction
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Starting point: Big Data
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Starting point: Big Data End result: human readable







clarity of 

representation
Over-simplification



There are many possibilities and 

there is not a « better » one than

another. It depends on what you want

to show.



https://ontheworldmap.com/



https://www.shutterstock.com/fr/image-

vector/world-map-pacific-china-asia-centered-

1731018682



Principal Component Analysis

(PCA) 

Pearson (1901) and Hotelling (1933)



-PCA is based on variance

-PCA is the best angle to see and 
evaluate the data



Which and how?





PCA- Principal component analysis

1. Largest variance first



PCA- Principal component analysis



PCA- Principal component analysis

2*e1 + 1.7*e2



PCA- Principal Component Analysis

2. Select uncorrelated principal axis
(orthogonal)



PCA- Principal Component Analysis



PCA- Principal Component Analysis

e1-1.2*e2



PCA- Principal Component Analysis

v1
v2



PCA- Principal Component Analysis





2. Select uncorrelated principal axis

(orthogonal) 





centroid
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Without centroid





The PCA axis

• The PC are linear combination of the original axis.
• The estimated parameters of the linear combination is known and therefore

we can know positively or negatively how much it goes into one direction or 
the other one.

• Indeed as the original axis are g1,g2,g3… and the new axis are a1g1 +a2g2…, 
one takes the ai that are the highest, positively and negatively and therefore
knows which features are mostly representing the axis you see.

• Observation : Scaling is important, if one variable is on a different scale than
another, it will dominate the PCA procedure as the largest variance might be
observed there, and the low dimension plot will really just be visualizing that
dimension.



Mathematically

You calculate the covariance matrix meaning a matrix 
containing two-by-two covariances

– if positive then : the two variables increase or decrease
together (correlated)

– if negative then : One increases when the other
decreases (Inversely correlated)

• (Corr(X,Y) = Cov(X,Y)/sd(x)*sd(y))

• Eigenvectors and eigenvalues are the linear algebra
concepts that we need to compute from the 
covariance matrix in order to determine
the principal components of the data.



Mathematically

• eigenvectors of the Covariance matrix 
are the directions of the axes where there is the most
variance (this is something you can prove
mathematically!)

• eigenvalues are the coefficients attached to 
eigenvectors, which give the amount of variance 
carried in each Principal Component.

• After having the principal components, to compute the 
percentage of variance (information) accounted for by 
each component, we divide the eigenvalue of each
component by the sum of eigenvalues.



https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-
5582fb7e0a9c



How many PCs?

• Method 1: We arbitrarily select a number of principal components to 
include. Suppose I wanted to keep five principal components in my model. 
In the genetic data case above, these five principal components explains
about 66% of the total variability that would be explained by including all 
13 principal components.

• Method 2: Suppose I wanted to include enough principal components to 
explain 90% of the total variability explained by all 13 principal 
components. In the genetic data case above, I would include the first 10 
principal components and drop the final three variables from Z*.

• Method 3: Here, we want to “find the elbow.” In the scree plot above, we
see there’s a big drop in proportion of variability explained between
principal component 3 and the following. In this case, we’d likely include
the first three features and drop the remaining features. As you can see, 
this method is a bit subjective as “elbow” doesn’t have a mathematically
precise definition and, in this case, we’d include a model that explains only
about 42% of the total variability.



>pca<-prcomp(data, center = TRUE, scale. = FALSE)

#coordinate of sample on components were identified

#Importance of components

>summary(pca)

In R



>pca<-prcomp(data, center = TRUE, scale. = FALSE)

#coordinate of sample on components were identified

#Importance of components

>summary(pca)

>pca$x

>plot(pca$x)

In R



Center, Scale

• Why should we center, why should we scale ?

• Will see this through the exercises

• In principal if one considers PCA to be the 
Eigenvalue of the covariance matrix, then 
centering yes or no will not change the result.

• In prcomp, however, "PCA" is defined as 
computing the eigenvalues of the XTX / (n-1) 
matrix, which in a centered data is exactly the 
covariance matrix, otherwise not.



Center, Scale

• Although proven not to be exactly true *, this will 
result in first PCs capturing the mean of the data as this 
"explains" most of the variance in the model.

• The scaling will determine if you compute eigenvectors 
on the covariance matrix (if unscaled) or on the 
correlation matrix (if scaled).

• This again (mostly) means that what you will capture in 
the first PCs is mostly what is in a bigger scale.

• *The Effect of Data Centering on PCA Models Neal B. 
Gallagher, Donal O’Sullivan, Manuel Palacios



The perfect human is Puerto Rican…

https://liorpachter.wordpress.com/2014/12/02/the-perfect-

human-is-puerto-rican/



… or an alien ?



What’s new ?



Clustering



Clustering

Point cloud



Clustering



Clustering
Clustering method are divided into two categories : 

Partitioning clustering Hierarchical clustering

*Handbook of cluster analysis, Hennig C. et al. 



Convex partitioning. Example: K-means

Density based approaches. Example: DBSCAN

Model-based approaches. Example: Mclust

Partitioning clustering
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Hierarchical Clustering



Distance



Euclidean

=√( 42 + 22) 

=  20 

= 4.47

It represents the “multivariate dissimilarity” of X & Y

[-2 - 0]2 ([-2 - 2]2 +             ) 

 [ (y - x)² ]

=

X  =  (2,  0)

Y  = (-2, -2)



Squared Euclidean

= ( 42 + 22) 

= 20

It represents the “multivariate dissimilarity” of X & Y

[-2 – 0]2= ([-2 – 2]2 +              ) 

 (y - x)²

X  =  (2,  0)

Y  = (-2, -2)



City Block

=  |-4| + |-2| 

= 6

= (|-2 – 2| + |-2 – 0|) 

 |y – x|

X  =  (2,  0)

Y  = (-2, -2)



Distance Measures in 2D

• Euclidean  [ (y - x)² ] 

• Squared Euclidean       (y - x)²

• City-Block  | y - x |



Distance Measures in nD

• Euclidean

• Squared Euclidean      

• City-Block



>?dist

In R



Distance matrix



Distance matrix
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>?heatmap

>heatmap(distanceMatrix,Colv=NA, Rowv=NA, 

scale="none")

In R



How to aggregate clusters?
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Which clusters to combine?



Single linkage

Distance between closest elements in clusters 



Complete Linkage

Distance between furthest elements in clusters 



Average Linkage

Average of all pairwise distances



Centroid Condensation (mean)

Distance between centroids (means) of two 
clusters 



Median Condensation

Distance between median distances of two clusters 



Clustering methods
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At the beginning every point is a cluster in it 

self, then we agglomerate …

Hierarchical Clustering
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Determine the Termination Condition (TC)
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#create a random matrix

>mat <- matrix(data = rnorm(300, mean= 100, 

sd=10), nrow = 150, ncol = 2)

#Euclidian distance

>mat.dist<-as.matrix(dist(mat))

#show heatmap

>heatmap(mat.dist,Colv=NA, Rowv=NA, scale="none")

#change heatmap’s color

>colorScale <- colorRampPalette(c("blue", 

"green","yellow","red","darkred"))(1000)

>heatmap(mat.dist,Colv=NA, Rowv=NA, scale="none”, 

col=colorScale)

Let’s practice In R
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#create a random matrix

>mat <- matrix(data = rnorm(300, mean= 100, 

sd=10), nrow = 150, ncol = 2)

#Euclidian distance

>mat.dist<-as.matrix(dist(mat))

#show heatmap

>heatmap(mat.dist,Colv=NA, Rowv=NA, scale="none")

#change heatmap’s color
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Let’s practice In R



#Euclidian distance

>distE<-dist(mat)

>mat.distE<-as.matrix(dist(mat))

>heatmap(mat.distE, Colv=NA, Rowv=NA, scale="none”)

>hE<-hclust(distE,”complete")

>plot(hE) 

#manhattan distance

>distC<-dist(mat,method=“manhattan”

>mat.distC<-as.matrix(dist(mat,method=“manhattan”)

>heatmap(mat.distC, Colv=NA, Rowv=NA, scale="none”)

>hC<-hclust(distC,”complete”)

>plot(hC) 

How to do hierarchical 

clustering in R?
>?hclust



#Eucledian distance

>distE<-dist(mat)

>mat.distE<-as.matrix(dist(mat))

>heatmap(mat.distE, Colv=NA, Rowv=NA, scale="none”)

>hE<-hclust(distE,”complete")

>plot(hE) 

#manhattan distance

>distC<-dist(mat,method=“manhattan”)

>mat.distC<-as.matrix(dist(mat,method=“manhattan”))

>heatmap(mat.distC, Colv=NA, Rowv=NA, scale="none”)

>hC<-hclust(distC,”complete”)

>plot(hC) 

>?hclust

How to do hierarchical 

clustering in R?



#Eucledian distance

>distE<-dist(mat)

>mat.distE<-as.matrix(dist(mat))

>heatmap(mat.distE, Colv=NA, Rowv=NA, scale="none”)
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>heatmap(mat.distC, Colv=NA, Rowv=NA, scale="none”)
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#Eucledian distance

>distE<-dist(mat)

>mat.distE<-as.matrix(dist(mat))

>heatmap(mat.distE, Colv=NA, Rowv=NA, scale="none”)

>hE<-hclust(distE,”complete")

>plot(hE) 

#manhattan distance

>distC<-dist(mat,method=“manhattan”)

>mat.distC<-as.matrix(dist(mat,method=“manhattan”)

>heatmap(mat.distC, Colv=NA, Rowv=NA, scale="none”)

>hC<-hclust(distC,”complete”)

>plot(hC) 

>?hclust

How to do hierarchical 

clustering in R?



Number of clusters = 3

K-means Clustering

Start with

3 initial 

points

For each

point 

determine to 

which initial 

point it is the 

closest

Move initial 

points to the 

centroids of 

the clusters

Color again

each point! 

Repeat b and 

c until

obtaining

stabilisation



Number of clusters = 3

K-means Clustering



K-means & C-means

Drawbacks:

1. Specify number of clusters
2. Non probabilistic methods
3. Not stable



>mat <- matrix(data = rnorm(300, mean= 

100, sd=10), 

nrow = 150, 

ncol = 2)

>df<-data.frame(x)

>kmeans(df,3)

Kmeans in R



>mat <- matrix(data = rnorm(300, mean= 100, sd=10), 

nrow = 150, 

ncol = 2)

>df<-data.frame(mat)

>kmeans(df,3)

>cl.1 <- kmeans(df, 3, iter.max = 1)

>plot(df, col = cl.1$cluster)

>points(cl.1$centers, col = 1:5, pch = 

8)

Kmeans in R



>mat <- matrix(data = rnorm(300, mean= 100, sd=10), 

nrow = 150, 

ncol = 2)

>df<-data.frame(mat)

>kmeans(df,3)

>cl.1 <- kmeans(df, 3, iter.max = 1)

>plot(df, col = cl.1$cluster)

>points(cl.1$centers, col = 1:5, pch = 8)

>cl.10 <- kmeans(df, 3, iter.max = 10)

>plot(df, col = cl.10$cluster)

>points(cl.10$centers, col = 1:5, pch = 8)

>cl.100 <- kmeans(df, 3, iter.max = 100)

>plot(df, col = cl.100$cluster)

>points(cl.100$centers, col = 1:5, pch = 8)

Kmeans in R



Model-based Clustering







distribution

(univariate, spherical, diagonal, 

elipsoidal)



data volume  

(equal, variable)



shape

(equal, variable)



Volume, Shape, Orientation



Model selection

BIC= Baysian information criterion



BIC

• the model with the highest BIC is preferred

• BIC is a function of the number of parameters
of the model

• The goodness of the fit of the model

• The sample size



Number of 

parameters
Best likelihood



>?mclustBIC

>?Mclust

>BIC <- mclustBIC(df)

>plot(BIC)

>summary(BIC)

>mod1 <- Mclust(df, x = BIC)

>summary(mod1, parameters = TRUE)

>plot(mod1, what = "classification")

Mclust In R



Once you have the clusters, 

what do you do with them ?



PC1 (20.5%)

PC2 (12.8%)



Points in plates

1. Import the data from dataClustering.csv

2. What is the dimension of this dataset?

3. How many data point do we have?

4. Evaluate Euclidean distance of points in a plates

5. Classify points to find clusters using hierarchical 
clustering and the average agglomeration method

Challenge



Points in plates-continuous

6. We expect to have 3 clusters. When you apply k-means 
algorithm using 1 iteration, does it differ from applying it 
using 10 or 100 iterations?

7. What is the outcome of the C-means clustering?

install.packages("e1071")

library(e1071)

?cmeans

Challenge



Points in plates-continuous

Library(mclust)

8. What are the top 3 models mclustBIC function suggests 
based on the BIC criterion?

9. How many clusters did it find using the top model?

10. Plot the outcome

Challenge



Thank you for your attention


