

SIB Swiss Institute of Bioinformatics

Introduction to statistics

Joao Lourenço, Rachel Marcone February 2023

www.sib.swiss

Visual representation

Dimension

Dimension: the number of coordinates we need to locate a point in a given space.

2-dimension

	Coordinate1	Coordinate2
x1	1	2
x2	1	4
xN	5	2

Two dimensions: latitude and longitude

Longitude

3-dimension

	Coordinate1	Coordinate2	Coordinate3	123
x1	1	2	5	
x2	1	4	7	
хN	5	2	1	

Three dimensions: latitude, longitude and altitude

Longitude

n-dimension

Dimension in biology?

3-dimension

n-dimension

Dimension reduction

Starting point: Big Data

p

clarity of representation

Over-simplification

There are many possibilities and there is not a « better » one than another. It depends on what you want to show.

https://ontheworldmap.com/

https://www.shutterstock.com/fr/imagevector/world-map-pacific-china-asia-centered-1731018682

Principal Component Analysis (PCA)

Pearson (1901) and Hotelling (1933)

-PCA is based on variance -PCA is the best angle to see and evaluate the data

Which and how?

1. Largest variance first

2. Select uncorrelated principal axis (orthogonal)

2. Select uncorrelated principal axis (orthogonal)

Without centroid

The PCA axis

- The PC are linear combination of the original axis.
- The estimated parameters of the linear combination is known and therefore we can know positively or negatively how much it goes into one direction or the other one.
- Indeed as the original axis are g1,g2,g3... and the new axis are a1g1 +a2g2..., one takes the ai that are the highest, positively and negatively and therefore knows which features are mostly representing the axis you see.
- Observation : Scaling is important, if one variable is on a different scale than another, it will dominate the PCA procedure as the largest variance might be observed there, and the low dimension plot will really just be visualizing that dimension.

Mathematically

You calculate the covariance matrix meaning a matrix containing two-by-two covariances

- if positive then : the two variables increase or decrease together (correlated)
- if negative then : One increases when the other decreases (Inversely correlated)
- (Corr(X,Y) = Cov(X,Y)/sd(x)*sd(y))
- Eigenvectors and eigenvalues are the linear algebra concepts that we need to compute from the covariance matrix in order to determine the *principal components* of the data.

Mathematically

- eigenvectors of the Covariance matrix are the directions of the axes where there is the most variance (this is something you can prove mathematically!)
- eigenvalues are the coefficients attached to eigenvectors, which give the *amount of variance* carried in each Principal Component.
- After having the principal components, to compute the percentage of variance (information) accounted for by each component, we divide the eigenvalue of each component by the sum of eigenvalues.

Scree Plot for Genetic Data. (Source.)

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

How many PCs?

- Method 1: We arbitrarily select a number of principal components to include. Suppose I wanted to keep five principal components in my model. In the genetic data case above, these five principal components explains about 66% of the total variability that would be explained by including all 13 principal components.
- Method 2: Suppose I wanted to include **enough principal components to explain 90%** of the total variability explained by all 13 principal components. In the genetic data case above, I would include the first 10 principal components and drop the final three variables from **Z***.
- Method 3: Here, we want to "find the elbow." In the scree plot above, we see there's a big drop in proportion of variability explained between principal component 3 and the following. In this case, we'd likely include the first three features and drop the remaining features. As you can see, this method is a bit subjective as "elbow" doesn't have a mathematically precise definition and, in this case, we'd include a model that explains only about 42% of the total variability.

In R

>pca<-prcomp(data, center = TRUE, scale. = FALSE)
#coordinate of sample on components were identified</pre>

#Importance of components

>summary(pca)

In R

>pca<-prcomp(data, center = TRUE, scale. = FALSE)
#coordinate of sample on components were identified</pre>

#Importance of components

>summary(pca)

>pca\$x >plot(pca\$x)

> pca.iris.cov\$x

	PC1	PC2	PC3	PC4
[1,]	-2.684125626	-0.319397247	0.027914828	0.0022624371
[2,]	-2.714141687	0.177001225	0.210464272	0.0990265503
[3,]	-2.888990569	0.144949426	-0.017900256	0.0199683897
[4,]	-2.745342856	0.318298979	-0.031559374	-0.0755758166
[5,]	-2.728716537	-0.326754513	-0.090079241	-0.0612585926
[6,]	-2.280859633	-0.741330449	-0.168677658	-0.0242008576
[7,]	-2.820537751	0.089461385	-0.257892158	-0.0481431065
[8,]	-2.626144973	-0.163384960	0.021879318	-0.0452978706
[9,]	-2.886382732	0.578311754	-0.020759570	-0.0267447358
[10,]	-2.672755798	0.113774246	0.197632725	-0.0562954013
[11,]	-2.506947091	-0.645068899	0.075318009	-0.0150199245
F12 7	-2 612755221	A A11720030	A 102150260	A 1563702079

Center, Scale

- Why should we center, why should we scale ?
- Will see this through the exercises
- In principal if one considers PCA to be the Eigenvalue of the covariance matrix, then centering yes or no will not change the result.
- In prcomp, however, "PCA" is defined as computing the eigenvalues of the X^TX / (n-1) matrix, which in a centered data is exactly the covariance matrix, otherwise not.

Center, Scale

- Although proven not to be exactly true *, this will result in first PCs capturing the mean of the data as this "explains" most of the variance in the model.
- The scaling will determine if you compute eigenvectors on the covariance matrix (if unscaled) or on the correlation matrix (if scaled).
- This again (mostly) means that what you will capture in the first PCs is mostly what is in a bigger scale.
- *The Effect of Data Centering on PCA Models Neal B.
 Gallagher, Donal O'Sullivan, Manuel Palacios

The perfect human is Puerto Rican...

https://liorpachter.wordpress.com/2014/12/02/the-perfecthuman-is-puerto-rican/

... or an alien ?

What's new ?

PCA	linear	Matrix Factorization		
ICA	linear	Matrix Factorization		
MDS	non-linear	Matrix Factorization		
Sparce NNMF	non-linear	Matrix Factorization	2010	https://pdfs.semanticscholar.org/664d/40258f12ad28ed0b7d4 c272935ad72a150db.pdf
cPCA	non-linear	Matrix Factorization	2018	https://doi.org/10.1038/s41467-018-04608-8
ZIFA	non-linear	Matrix Factorization	2015	https://doi.org/10.1186/s13059-015-0805-z
ZINB-WaVE	non-linear	Matrix Factorization	2018	https://doi.org/10.1038/s41467-017-02554-5

	Diffusion maps	non-linear	graph-based	2005	https://doi.org/10.1073/pnas.0500334102
	lsomap	non-linear	graph-based	2000	10.1126/science.290.5500.2319
\Rightarrow	t-SNE	non-linear	graph-based	2008	https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
	- BH t-SNE	non-linear	graph-based	2014	https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
	- Flt-SNE	non-linear	graph-based	2017	arXiv:1712.09005
	LargeVis	non-linear	graph-based	2018	arXiv:1602.00370
⇒	UMAP	non-linear	graph-based	2018	arXiv:1802.03426
	PHATE	non-linear	graph-based	2017	https://www.biorxiv.org/content/biorxiv/early/2018/06/28/12037 8.full.pdf

scvis	non-linear	Autoencoder (MF)	2018	https://doi.org/10.1038/s41467-018-04368-5
VASC	non-linear	Autoencoder (MF)	2018	https://doi.org/10.1016/j.gpb.2018.08.003

Clustering

Point cloud

Clustering

Clustering

Clustering method are divided into two categories :

Partitioning clustering

Hierarchical clustering

*Handbook of cluster analysis, Hennig C. et al.

Partitioning clustering

Convex partitioning. Example: K-means

Density based approaches. Example: DBSCAN

Model-based approaches. Example: Mclust

Distance

Euclidean

$$X = (2, 0)$$

$$Y = (-2, -2)$$

$$\sqrt{[\Sigma (y - x)^{2}]}$$

$$= \sqrt{([-2 - 2]^{2} + [-2 - 0]^{2})}$$

$$= \sqrt{(4^{2} + 2^{2})}$$

$$= \sqrt{20}$$

$$= 4.47$$

It represents the "multivariate dissimilarity" of X & Y

Squared Euclidean

$$X = (2, 0)$$

$$Y = (-2, -2)$$

$$\sum (y - x)^{2}$$

$$= ([-2 - 2]^{2} + [-2 - 0]^{2}$$

$$= (4^{2} + 2^{2})$$

$$= 20$$

It represents the "multivariate dissimilarity" of X & Y

)

City Block

$$X = (2, 0)$$

$$Y = (-2, -2)$$

$$\sum |y - x|$$

$$= (|-2 - 2| + |-2 - 0|)$$

$$= |-4| + |-2|$$

$$= 6$$

Distance Measures in 2D

- Euclidean $\sqrt{[\Sigma (y x)^2]}$
- Squared Euclidean $\Sigma (y x)^2$
- City-Block $\Sigma | y x |$

Distance Measures in nD

- Euclidean $d = \sqrt{(a_1 b_1)^2 + (a_2 b_2)^2 + ... + (a_n b_n)^2}$
- Squared Euclidean $d = (a_1 b_1)^2 + (a_2 b_2)^2 + ... + (a_n b_n)^2$
- City-Block $d = |a_1 b_1| + |a_2 b_2| + ... + |a_n b_n|$

>?dist
Distance matrix

Distance matrix

Heatmap of distance matrix

In R

```
>?heatmap
>heatmap(distanceMatrix,Colv=NA, Rowv=NA,
scale="none")
```

How to aggregate clusters?

Which clusters to combine?

Single linkage

Distance between closest elements in clusters

Complete Linkage

Distance between furthest elements in clusters

Average Linkage

Average of all pairwise distances

Centroid Condensation (mean)

Distance between centroids (means) of two clusters

Median Condensation

Distance between median distances of two clusters

Clustering methods

Hierarchical Clustering

At the beginning every point is a cluster in it self, then we agglomerate ...

Euclidean distance

Euclidean distance complete Linkage

Determine the Termination Condition (TC)

Euclidean distance complete Linkage

Euclidean distance complete Linkage

#create a random matrix

>mat <- matrix(data = rnorm(300, mean= 100, sd=10), nrow = 150, ncol = 2)

#Euclidian distance

>mat.dist<-as.matrix(dist(mat))</pre>

#show heatmap

>heatmap(mat.dist,Colv=NA, Rowv=NA, scale="none")

#change heatmap's color

```
#create a random matrix
>mat <- matrix(data = rnorm(300, mean= 100,
sd=10), nrow = 150, ncol = 2)</pre>
```

#Euclidian distance
>mat.dist<-as.matrix(dist(mat))</pre>

#show heatmap

>heatmap(mat.dist,Colv=NA, Rowv=NA, scale="none")

#change heatmap's color

#create a random matrix

>mat <- matrix(data = rnorm(300, mean= 100, sd=10), nrow = 150, ncol = 2)

#Euclidian distance

>mat.dist<-as.matrix(dist(mat))</pre>

#show heatmap

>heatmap(mat.dist,Colv=NA, Rowv=NA, scale="none")

#change heatmap's color

#create a random matrix

>mat <- matrix(data = rnorm(300, mean= 100, sd=10), nrow = 150, ncol = 2)

#Euclidian distance

>mat.dist<-as.matrix(dist(mat))</pre>

#show heatmap
>heatmap(mat.dist,Colv=NA, Rowv=NA, scale="none")

#change heatmap's color

#create a random matrix

>mat <- matrix(data = rnorm(300, mean= 100, sd=10), nrow = 150, ncol = 2)

#Euclidian distance

>mat.dist<-as.matrix(dist(mat))</pre>

#show heatmap

>heatmap(mat.dist,Colv=NA, Rowv=NA, scale="none")

>?hclust

#Euclidian distance

>distE<-dist(mat)</pre>

```
>mat.distE<-as.matrix(dist(mat))</pre>
```

```
>heatmap(mat.distE, Colv=NA, Rowv=NA, scale="none")
>hE<-hclust(distE,"complete")
>plot(hE)
```

```
>distC<-dist(mat,method="manhattan"
>mat.distC<-as.matrix(dist(mat,method="manhattan")
>heatmap(mat.distC, Colv=NA, Rowv=NA, scale="none")
>hC<-hclust(distC,"complete")
>plot(hC)
```

>?hclust

#Eucledian distance

>distE<-dist(mat)
>mat.distE<-as.matrix(dist(mat))
>heatmap(mat.distE, Colv=NA, Rowv=NA, scale="none")
>hE<-hclust(distE,"complete")
>plot(hE)

```
>distC<-dist(mat,method="manhattan")
>mat.distC<-as.matrix(dist(mat,method="manhattan"))
>heatmap(mat.distC, Colv=NA, Rowv=NA, scale="none")
>hC<-hclust(distC,"complete")
>plot(hC)
```

>?hclust

#Eucledian distance

>distE<-dist(mat)
>mat.distE<-as.matrix(dist(mat))
>heatmap(mat.distE, Colv=NA, Rowv=NA, scale="none")
>hE<-hclust(distE,"complete")
>plot(hE)

```
>distC<-dist(mat,method="manhattan")
>mat.distC<-as.matrix(dist(mat,method="manhattan")
>heatmap(mat.distC, Colv=NA, Rowv=NA, scale="none")
>hC<-hclust(distC,"complete")
>plot(hC)
```

>?hclust

#Eucledian distance

>distE<-dist(mat)
>mat.distE<-as.matrix(dist(mat))
>heatmap(mat.distE, Colv=NA, Rowv=NA, scale="none")
>hE<-hclust(distE,"complete")
>plot(hE)

```
>distC<-dist(mat,method="manhattan")
>mat.distC<-as.matrix(dist(mat,method="manhattan")
>heatmap(mat.distC, Colv=NA, Rowv=NA, scale="none")
>hC<-hclust(distC,"complete")
>plot(hC)
```

K-means Clustering

b

Number of clusters = 3

Start with 3 initial points

For each point determine to which initial point it is the closest

Move initial points to the centroids of the clusters

Color again each point! Repeat b and c until obtaining stabilisation

K-means Clustering

Number of clusters = 3 b

K-means & C-means

Drawbacks:

- 1. Specify number of clusters
- 2. Non probabilistic methods
- 3. Not stable

Kmeans in R

>kmeans(df,3)

Kmeans in R

```
>kmeans(df,3)
```

>cl.1 <- kmeans(df, 3, iter.max = 1)
>plot(df, col = cl.1\$cluster)
>points(cl.1\$centers, col = 1:5, pch =
8)

Kmeans in R

```
>mat <- matrix(data = rnorm(300, mean= 100, sd=10),</pre>
                nrow = 150,
                ncol = 2)
>df<-data.frame(mat)</pre>
>kmeans(df,3)
>cl.1 <- kmeans(df, 3, iter.max = 1)</pre>
>plot(df, col = cl.1$cluster)
>points(cl.1$centers, col = 1:5, pch = 8)
>cl.10 <- kmeans(df, 3, iter.max = 10)
>plot(df, col = cl.10$cluster)
>points(cl.10\centers, col = 1:5, pch = 8)
>cl.100 <- kmeans(df, 3, iter.max = 100)</pre>
>plot(df, col = cl.100$cluster)
>points(cl.100$centers, col = 1:5, pch = 8)
```

Model-based Clustering

distribution (univariate, spherical, diagonal, elipsoidal)

data volume (equal, variable)

shape (equal, variable)

Volume, Shape, Orientation

Model selection

identifier	Model	HC	EM	Distribution	Volume	Shape	Orientation
E		•	•	(univariate)	equal		
V		•	•	(univariate)	variable		
EII	λI	•	•	Spherical	equal	equal	NA
VII	$\lambda_k I$	•	•	Spherical	variable	equal	NA
EEI	λA		•	Diagonal	equal	equal	coordinate axes
VEI	$\lambda_k A$		•	Diagonal	variable	equal	coordinate axes
EVI	λA_k		•	Diagonal	equal	variable	coordinate axes
VVI	$\lambda_k A_k$		•	Diagonal	variable	variable	coordinate axes
EEE	λDAD^T	•	•	Ellipsoidal	equal	equal	equal
EEV	$\lambda D_k A D_k^T$		•	Ellipsoidal	equal	equal	variable
VEV	$\lambda_k D_k A D_k^T$		•	Ellipsoidal	variable	equal	variable
VVV	$\lambda_k D_k A_k D_k^T$	•	•	Ellipsoidal	variable	variable	variable

BIC= Baysian information criterion

BIC

- the model with **the highest BIC** is preferred
- BIC is a function of the number of parameters of the model
- The goodness of the fit of the model
- The sample size

Number of parameters Best likelihood

Mclust In R

>?mclustBIC >?Mclust

```
>BIC <- mclustBIC(df)
>plot(BIC)
>summary(BIC)
>mod1 <- Mclust(df, x = BIC)
>summary(mod1, parameters = TRUE)
>plot(mod1, what = "classification")
```

Once you have the clusters, what do you do with them ?

Challenge

Points in plates

- 1. Import the data from dataClustering.csv
- 2. What is the dimension of this dataset?
- 3. How many data point do we have?
- 4. Evaluate Euclidean distance of points in a plates
- 5. Classify points to find clusters using hierarchical clustering and the average agglomeration method

Challenge

Points in plates-continuous

6. We expect to have 3 clusters. When you apply k-means algorithm using 1 iteration, does it differ from applying it using 10 or 100 iterations?

7. What is the outcome of the C-means clustering? install.packages("e1071") library(e1071) ?cmeans

Challenge

Points in plates-continuous

Library(mclust)

8. What are the top 3 models *mclustBIC* function suggests based on the BIC criterion?

9. How many clusters did it find using the top model?

10. Plot the outcome

Thank you for your attention