GGAATTGGCATGACGGATGCCOGAATTGGCACATAACAAGTACTGCTCOETCCTTAACCTOTATI:

GAATTGGCACATAACAAGTACTGCCTCGGTCCTTAAGC TGTATTGCACCATATGACGGATHCE
GCCTCOOTCCTTAAGCTGTATTGCACCATATGACGOATGCCOGAATTGOCACATAACAAGATOAS

9 eogogy,

f!ug,’_

GGATGCCGGAATTGGCACATAACAN

FAAGAAGTACTGCCTCOGTCCTTA
GOTECTTAAGCTGTATTGCACCATATG
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Dimension reduction
(with PCA)



Starting point: Big Data
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Starting point: Big Data End result: human readable
P k

A n| X

Reducing the dimension of the variable space is called
Dimensionality Reduction









clarity of

representation Over-simplification




The objective of dimensionality
deduction is to reduce the
number of variables in a dataset
while preserving as much
important information as
possible



Principal Component Analysis
(PCA)

Pearson (1901) and Hotelling (1933)
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New “components” are created by rotating the existing axes (var).
“Principal”: components are ranked according to the proportion of
variability they "capture” - the objective is to drop the least

important ones.



PCA- Principal component analysis

1. Find the 1st principal component (the one with
the largest possible variance)



PCA- Principal component analysis

X2 4




PCA- Principal Component Analysis %

Data is most often scaled (and centered) before
perfoming PCA!

If one variable is on a different scale than another, it will
dominate the PCA procedure as the largest variance might
be observed there, and the low dimension plot will really
just be visualizing that dimension.

If we scale -> all variables have the same weight
If we don’t scale -> some variables will have more weight
than others



PCA- Principal component analysis

X24

L 2X1+1.7X2
(“slope” ~ 1.7 / 2)

X1

el



PCA- Principal Component Analysis %
1. Find the 1st principal component (the one with
the largest possible variance)

2. Select uncorrelated (orthogonal) axes as the
next principal component



PCA- Principal Component Analysis

X2 a




PCA- Principal Component Analysis %
1. Find the 1st principal component (the one with
the largest possible variance)

2. Select uncorrelated (orthogonal) axes as the
next principal component

3. Make the origin coincide with the centroid



X2 a

X1



PC2

PC1



PCA- Principal Component Analysis %
1. Find the 1st principal component (the one with
the largest possible variance)

2. Select uncorrelated (orthogonal) axes as the
next principal component

3. Make the origin coincide with the centroid

4. Rotate
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PC2 5

Transform the original data to align with the
new axes
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PCA- Principal Component Analysis

PC2 ¢

PC1

Without centering
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Mathematically

You calculate the covariance matrix meaning a matrix
containing two-by-two covariances

— if positive then : the two variables increase or decrease
together (correlated)

— if negative then : One increases when the other
decreases (Inversely correlated)

If data was standardized (centered and scaled), then the
correlation matrix is used instead of the covariance, Corr(X,Y)
= Cov(X,Y)/sd(x)*sd(y)

Decompose the Cov matrix in PDP~!, where P is the matrix of
eigenvectors and D is the diagonal matrix with eigenvalues on
the diagonal and values of zero everywhere else.



Mathematically

* Eigenvectors are the directions of the axes
where there is the most variance (this is
something you can prove mathematically!)

* Eigenvalues are the coefficients attached to
eigenvectors, which give the amount of
variance carried in each Principal Component
(the magnitude, or how important each PC is).

* Eigenvectors and eigenvalues define the PCs



PCA — Principal Component Analysis

. Find the 1st principal component (the one with
the largest possible variance)

. Select uncorrelated (orthogonal) axes as the
next principal component

. Make the origin coincide with the centroid
. Rotate

. Determine the proportion of the variation that is
explained by each PC



Mathematically

 To compute the percentage of variance
accounted for by each component, we divide

the eigenvalue of each component by the sum
of eigenvalues.



PCA- Principal Component Analysis

PC2 1%
(25%)

PC1
(75%)




Mouse Mouse Mouse Mouse Mouse Mouse
1 2 3 4 5 6
Gene1| 10 11 8 3 2 1
Gene2| 6 4 5 3 2.8 1
Gene 3| 12 9 10 2.5 1.3 2




Gene 3

Mouse Mouse Mouse Mouse Mouse

Mouse
1 2 3 4 5 6
Gene1| 10 11 8 3 2 1
Gene2| 6 4 5 3 2.8 1
Gene 3| 12 9 10 2.5 1.3 2
original data space
PC1

Gene 2 Gene 1



Gene 3

Mouse Mouse

Mouse Mouse Mouse Mouse
1 2 3 4 5 6
Gene1| 10 11 8 3 2 1
Gene2| 6 4 5 3 2.8 1
Gene 3| 12 9 10 25 1.3 2

original data space

Gene 1

70

52.5

35

17.5

PCA

PC2

PC3



Mouse Mouse Mouse Mouse Mouse Mouse 70
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Scree Plot for Genetic Data. (Source.)
5582fb7e0a9c

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-



How many PCs?

Method 1: We arbitrarily select a number of principal components to
include. Suppose | wanted to keep five principal components in my model.
In the genetic data case above, these five principal components explains
about 66% of the total variability that would be explained by including all
13 principal components.

Method 2: Suppose | wanted to include enough principal components to
explain 90% of the total variability explained by all 13 principal
components. In the genetic data case above, | would include the first 10
principal components and drop the final three variables from Z*.

Method 3: Here, we want to “find the elbow.” In the scree plot above, we
see there’s a big drop in proportion of variability explained between
principal component 3 and the following. In this case, we'd likely include
the first three features and drop the remaining features. As you can see,
this method is a bit subjective as “elbow” doesn’t have a mathematically
precise definition and, in this case, we'd include a model that explains only
about 42% of the total variability.



In R

>

oV B WN PR

data(iris)

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

?prcomp

pca.iris.cov <- prcomp(iris[,1:4], center = TRUE, scale. = FALSE)



Center and Scale

Why should we center, why should we scale ?
Will see this through the exercises

Centering or not centering, it will not change
the result

In prcomp, however, "PCA" is defined as
computing the eigenvalues of the X™X / (n-1)
matrix, which in a centered data is exactly the
covariance matrix, otherwise not.



Center and Scale

Although proven not to be exactly true *, this will
result in first PCs capturing the mean of the data as this
"explains" most of the variance in the model.

The scaling will determine if you compute eigenvectors
on the covariance matrix (if unscaled) or on the
correlation matrix (if scaled).

This again (mostly) means that what you will capture in
the first PCs is mostly what is in a bigger scale.

* The Effect of Data Centering on PCA Models Neal B.
Gallagher, Donal O’Sullivan, Manuel Palacios



In R

> head(pca.iris.cov$x)

PC1 PC2 PC3 PC4
-2.684126 -0.3193972 0.02791483 0.002262437
-2.714142 0.1770012 0.21046427 ©.099026550
-2.888991 0.1449494 -0.01790026 ©0.019968390
-2
-2
-2

-

.745343 ©.3182990 -0.03155937 -0.075575817
. 728717 -0.3267545 -0.09007924 -0.061258593
.280860 -0.7413304 -0.16867766 -0.024200858
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In R

> cols <- c(setosa = "gold", versicolor = "lightgreen", virginica = "lightblue™)
> plot(pca.iris.cov$x, col = cols[iris$Species], pch = 19)

PC2
-0.5 0.5 1.0

-1.0




In R

> plot(pca.iris.cov$x[,c("PC3","PC4")],col = cols[iris$Species], pch = 19)

04

PC4
0.2 0.0
|

-0.4

PC3



In R

> pca.iris.cov$rotation

PC1 PC2 PC3 PC4
Sepal.Length 0.36138659 -0.65658877 ©.58202985 0.3154872
Sepal .Width -0.08452251 -0.73016143 -0.59791083 -0.3197231
Petal.Length 0.85667061 0.17337266 -0.07623608 -0.4798390
Petal .Width ©0.35828920 ©0.07548102 -0.54583143 0.7536574

> biplot(pca.iris.cov, scale = @) 0.5 0.0 0.5

0.5

PC2

® Sepal.Length
' Sepal.Width

I I T I T I I [
3 @ a4 D 1 2 3 4

PC1



In R

> summary(pca.iris.cov)
Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 2.0563 0.49262 0.2797 0.15439
Proportion of Variance 0.9246 0.05307 0.0171 0.00521
Cumulative Proportion 0.9246 0.97769 0.9948 1.00000

' .. w1 e ca.iris.cov
> screeplot(pca.iris.cov, type = "line") P

Variances




Exercise:

Rerun the Iris PCA with
standardized data.
Did the results change?



Clustering



Clustering

o ,o 3% Point cloud
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Clustering

Clustering method are divided into two categories :

Partitioning clustering Hierarchical clustering
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*Handbook of cluster analysis, Hennig C. et al.



Partitioning clustering

Convex partitioning. Example: K-means
Density based approaches. Example: DBSCAN

Model-based approaches. Example: Mclust
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Hierarchical Clustering

o P1
P; P2

P1 P2




Hierarchical Clustering

o P1
P; P2

Loh

P4 Ps P1 P2




Hierarchical Clustering

o P1
P; P2

P4
|J‘| ] Y

P4 Ps P3P1 P2




Hierarchical Clustering

o P1
P; P2

P4
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Distance



Euclidean

X = (2, 0)

Y =(-2,-2)

Vv [Z (y - X)?] ®
= ([2-2F + [2- OP) ./

=\( 42 + 22)

=+ 20

= 4.47

It represents the “multivariate dissimilarity” of X & Y



Squared Euclidean

X = (2, 0)

Y =(-2,-2)

2 (y-Xx)*

= ([-2 - 22 +[-2 — O2 ) ‘/‘
- (42+22)

=20

It represents the “multivariate dissimilarity” of X & Y



City Block (Manhattan)

X = (2, 0)
Y =(-2,-2)

2|y —x|

=(-2-2| + [-2-0])
= |-4] +|-2|

=6




Distance Measures in 2D

» Euclidean V2 (y - X)?]
 Squared Euclidean X (y - x)?
» City-Block >|ly-x]



Distance Measures in nD

’ EUCIIdean g = J(ul — |)|)2 +(ay - I).-,)“' +..+(a, - h“)z
) Squared Euclidean d=a:-b0?+ (a:- 5202 + ... + (an - bo)?

« City-Block d = |ay - by| + |az - by| + ... + |an - by



In R

>?7dist



In R

> 7dist
> distanceMatrix <- as.matrix(dist(iris[, 1:4],

+ method = "euclidean", upper = TRUE, diag = TRUE))

> heatmap(diétanceMﬁtrix:wav = NA, Colv = NA, scale="none")




In R

> #BiocManager: :install("ComplexHeatmap")
> library(ComplexHeatmap)
> Heatmap(distanceMatrix, cluster_rows = F, cluster_columns
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In R

> species_annot <- HeatmapAnnotation(Species = iris$Species,

+ col = list(Species = c(

o+ setosa = "gold",

- versicolor = "lightgreen",

- virginica = "lightblue")),

+ annotation_name_side = "left")

> Heatmap(distanceMatrix,cluster_rows = F, cluster_columns = F,top_annotation = species_annot)

Species

matrix_11 Species

' 6 setosa

4 versicolor
virginica




How to aggregate clusters?



S

P4 Ps P1 P2




Which clusters to combine?



Single linkage

Distance between closest elements in clusters



Complete Linkage

Distance between furthest elements in clusters



Average Linkage

Average of all pairwise distances



Centroid Condensation (mean)

Distance between centroids (means) of two
clusters



Median Condensation

Distance between median distances of two clusters



Hierarchical Clustering

M .

P4 Ps P1 P2

At the beginning every point is a cluster in it
self, then we agglomerate ...



Before Clustering
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After
Clustering
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Determine the Termination Condition (TC)
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Let’s practice In R

ficreate a random matrix
mat <- matrix(data = rnorm(300, mean= 100, sd=10), nrow = 150, ncol

2)

#Euclidian distance
mat.dist<-as.matrix(dist(mat))

#show heatmap
Heatmap(mat.dist,cluster_rows = F, cluster_columns = F)
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Let’s practice In R

#change heatmap’s color

colorScale <- colorRampPalette(c('EiNNE", "[green", yellow", "[Bd" . "Ellndnge ) (1000)

Heatmap(mat.dist,cluster_rows = F, cluster_columns = F, col = colorScale)
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How to do hierarchical
clustering in R?

?hclust

#Euclidian distance Cluster Dendrogram
distE <- dist(mat)

5
OO @R D @rmen COiGal

hE <- hclust(distE,method = "complete") 3 -
plOtChE) o
2
\ w | )
"3 ﬂJ |Iﬂ ‘kLﬂ [ﬁ@ [J{

distE
hclust (*, "complete")



How to do hierarchical
clustering in R?

?hclust

#Euclidian distance
distE <- dist(mat)

hE <- hclust(distE,method = "complete")
plot(ChE)

Heatmap(
mat.dist,
cluster_rows = hE,
cluster_columns = hE,
col = colorScale

)




How to do hierarchical
clustering in R?

#manhattan distance

distM<-dist(mat,method="manhattan") Cluster Dendrogram

hM <- hclust(distM, "complete™)
plot(hM)

Height

distM
hclust (*, "complete")



How to do hierarchical
clustering in R?

#manhattan distance
distM<-dist(mat,method="manhattan")

hM <- hclust(distM, "complete™)
plot(hM)

Heatmap(
mat.dist,
cluster_rows = hM,
cluster_columns = hM,
col = colorScale
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K-means Clustering

Number of clusters =3

Start with
3 initial
points

Move initial
points to the
centroids of
the clusters

° oﬁ.
:J:I.:

For each
point
determine to
which initial
point it is the
closest

Color again
each point!
Repeat b and
¢ until
obtaining

etabhilication



K-means Clustering

Number of clusters =3

R




K-means

Drawbacks:

1. Specify number of clusters
2. Non probabilistic methods
3. Not stable



Kmeans in R

?kmeans

# k=3, 1 iteration
cl.l <- kmeans(mat, 3, iter.max = 1)

# plot the samples and color by cluster

plot(mat, col = cl.1$cluster) o

120
|
o]

# add centroids (stars) o ° o% o o
points(cl.1%centers, col = 1:5, pch = 8)
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Kmeans in R

# k=3, 10 iterations

cl.10 <- kmeans(mat, 3, iter.max = 10)
plot(mat, col = cl.1@%cluster)
points(cl.1@%centers, col = 1:5, pch = 8)
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Kmeans in R

# k=3, 100 iterations

cl.10 <- kmeans(mat, 3, iter.max = 100)
plot(mat, col = cl.1@%cluster)
points(cl.1@%centers, col = 1:5, pch = 8)
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Once you have the clusters, what do
you do with them ?
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Exercise:

Cholera Dataset
(include a PCA with clusters)



Thank you for your attention
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