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PCA and Clustering



Dimension reduction 
(with PCA)
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Starting point: Big Data End result: human readable

Reducing the dimension of the variable space is called 
Dimensionality Reduction







clarity of 

representation
Over-simplification



The objective of dimensionality

deduction is to reduce the 

number of variables in a dataset

while preserving as much

important information as 

possible



Principal Component Analysis

(PCA) 

Pearson (1901) and Hotelling (1933)
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New “components” are created by rotating the existing axes (var).
“Principal”: components are ranked according to the proportion of 
variability they ”capture” - the objective is to drop the least 
important ones.



PCA- Principal component analysis

1. Find the 1st principal component (the one with
the largest possible variance)



PCA- Principal component analysis
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PCA- Principal Component Analysis

Data is most often scaled (and centered) before

perfoming PCA!

If one variable is on a different scale than another, it will

dominate the PCA procedure as the largest variance might

be observed there, and the low dimension plot will really

just be visualizing that dimension.

If we scale -> all variables have the same weight

If we don’t scale -> some variables will have more weight

than others



PCA- Principal component analysis

2*e1 + 1.7*e2
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(“slope” ~ 1.7 / 2) 



PCA- Principal Component Analysis

1. Find the 1st principal component (the one with
the largest possible variance)

2. Select uncorrelated (orthogonal) axes as the 
next principal component



PCA- Principal Component Analysis
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PCA- Principal Component Analysis

1. Find the 1st principal component (the one with
the largest possible variance)

2. Select uncorrelated (orthogonal) axes as the 
next principal component

3. Make the origin coincide with the centroid 
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PCA- Principal Component Analysis
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PCA- Principal Component Analysis

1. Find the 1st principal component (the one with
the largest possible variance)

2. Select uncorrelated (orthogonal) axes as the 
next principal component

3. Make the origin coincide with the centroid

4. Rotate



PCA- Principal Component Analysis

PC1
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Transform the original data to align with the 
new axes



PC1

Without centering

PCA- Principal Component Analysis

PC2





Mathematically

You calculate the covariance matrix meaning a matrix 
containing two-by-two covariances

– if positive then : the two variables increase or decrease
together (correlated)

– if negative then : One increases when the other
decreases (Inversely correlated)

If data was standardized (centered and scaled), then the 
correlation matrix is used instead of the covariance, Corr(X,Y) 
= Cov(X,Y)/sd(x)*sd(y)

Decompose the Cov matrix in PDP⁻¹, where P is the matrix of 
eigenvectors and D is the diagonal matrix with eigenvalues on 
the diagonal and values of zero everywhere else.



Mathematically

• Eigenvectors are the directions of the axes 
where there is the most variance (this is
something you can prove mathematically!)

• Eigenvalues are the coefficients attached to 
eigenvectors, which give the amount of 
variance carried in each Principal Component 
(the magnitude, or how important each PC is).

• Eigenvectors and eigenvalues define the PCs



1. Find the 1st principal component (the one with
the largest possible variance)

2. Select uncorrelated (orthogonal) axes as the 
next principal component

3. Make the origin coincide with the centroid 

4. Rotate

5. Determine the proportion of the variation that is
explained by each PC

PCA – Principal Component Analysis



Mathematically

• To compute the percentage of variance 
accounted for by each component, we divide
the eigenvalue of each component by the sum
of eigenvalues.
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PCA- Principal Component Analysis
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https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-
5582fb7e0a9c



How many PCs?

• Method 1: We arbitrarily select a number of principal components to 
include. Suppose I wanted to keep five principal components in my model. 
In the genetic data case above, these five principal components explains
about 66% of the total variability that would be explained by including all 
13 principal components.

• Method 2: Suppose I wanted to include enough principal components to 
explain 90% of the total variability explained by all 13 principal 
components. In the genetic data case above, I would include the first 10 
principal components and drop the final three variables from Z*.

• Method 3: Here, we want to “find the elbow.” In the scree plot above, we
see there’s a big drop in proportion of variability explained between
principal component 3 and the following. In this case, we’d likely include
the first three features and drop the remaining features. As you can see, 
this method is a bit subjective as “elbow” doesn’t have a mathematically
precise definition and, in this case, we’d include a model that explains only
about 42% of the total variability.



In R



Center and Scale

• Why should we center, why should we scale ?

• Will see this through the exercises

• Centering or not centering,  it will not change 
the result

• In prcomp, however, "PCA" is defined as 
computing the eigenvalues of the XTX / (n-1) 
matrix, which in a centered data is exactly the 
covariance matrix, otherwise not.



Center and Scale

• Although proven not to be exactly true *, this will 
result in first PCs capturing the mean of the data as this 
"explains" most of the variance in the model.

• The scaling will determine if you compute eigenvectors 
on the covariance matrix (if unscaled) or on the 
correlation matrix (if scaled).

• This again (mostly) means that what you will capture in 
the first PCs is mostly what is in a bigger scale.

• * The Effect of Data Centering on PCA Models Neal B. 
Gallagher, Donal O’Sullivan, Manuel Palacios



In R



In R



In R



In R



In R



Exercise:

Rerun the Iris PCA with 
standardized data. 

Did the results change?



Clustering



Clustering

Point cloud



Clustering



Clustering
Clustering method are divided into two categories : 

Partitioning clustering Hierarchical clustering

*Handbook of cluster analysis, Hennig C. et al. 



Convex partitioning. Example: K-means

Density based approaches. Example: DBSCAN

Model-based approaches. Example: Mclust

Partitioning clustering
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Hierarchical Clustering
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Hierarchical Clustering



p2

p1

p2p1

p4

p3

p5

p5p4 p3

Hierarchical Clustering
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Hierarchical Clustering



Distance



Euclidean  

=√( 42 + 22) 

 =  20 

 = 4.47

It represents the “multivariate dissimilarity” of X & Y

[-2 - 0]2 ([-2 - 2]2 +             ) 

 [ (y - x)² ]

= 

X  =  (2,  0)

Y  = (-2, -2)



Squared Euclidean  

= ( 42 + 22) 

= 20

It represents the “multivariate dissimilarity” of X & Y

[-2 – 0]2= ([-2 – 2]2 +              ) 

 (y - x)²

X  =  (2,  0)

Y  = (-2, -2)



City Block (Manhattan) 

=  |-4| + |-2| 

 = 6

= (|-2 – 2|  + |-2 – 0|) 

 |y – x|

X  =  (2,  0)

Y  = (-2, -2)



Distance Measures in 2D

• Euclidean              [ (y - x)² ] 

• Squared Euclidean       (y - x)²  

• City-Block                    | y - x |



Distance Measures in nD

• Euclidean  

• Squared Euclidean       

• City-Block                  



>?dist

In R



In R



In R



In R



How to aggregate clusters?
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Which clusters to combine?



Single linkage

Distance between closest elements in clusters 



Complete Linkage

Distance between furthest elements in clusters 



Average Linkage

Average of all pairwise distances



Centroid Condensation (mean)

Distance between centroids (means) of two 
clusters 



Median Condensation

Distance between median distances of two clusters 
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At the beginning every point is a cluster in it 

self, then we agglomerate …

Hierarchical Clustering
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Clustering



Determine the Termination Condition (TC)
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Let’s practice In R



Let’s practice In R



How to do hierarchical 

clustering in R?



How to do hierarchical 

clustering in R?



How to do hierarchical 

clustering in R?



How to do hierarchical 

clustering in R?



Number of clusters = 3

K-means Clustering

Start with

3 initial 

points

For each

point 

determine to 

which initial 

point it is the 

closest

Move initial 

points to the 

centroids of 

the clusters

Color again

each point! 

Repeat b and 

c until

obtaining

stabilisation



Number of clusters = 3

K-means Clustering



K-means

Drawbacks:

1. Specify number of clusters
2. Non probabilistic methods
3. Not stable



Kmeans in R



Kmeans in R



Kmeans in R



Once you have the clusters, what do 

you do with them ?



PC1 (20.5%)

PC2 (12.8%)



Exercise:

Cholera Dataset 
(include a PCA with clusters)



Thank you for your attention
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