

Introduction to Statistics

Swiss Institute of Bioinformatics

Joao Lourenço (joao.lourenco@sib.swiss) and Rachel Marcone (rachel.marcone@sib.swiss)

January 2024

Data analysis with R: An introduction

Data analysis workflow

Hadley Wickham

Garrett Grolemund

Prepare: make data available in a specific format

- Database
- Flat file
- Proprietary file

										data.	xls – Lib	oreOffic	e Calc									
File	Edit V	liew .	Insert	Format	Tools	Data	Window	v <u>H</u> elp														
	• 🖻	, 🗖			1 6		RBC A	8		6 ×	2	1.	⇒ •		4 :17	6	1			Ð		
	Arial			-	.0	-	A						% .00	200 f			· E	• 🎥	•	5		
C16	ŝt.		- 3	¥Σ	=	1																
A	в	с	D	E	F	G	н	I.	J	к	L	м	N	0	Р	Q	R	s	т	U	v	N
1	WT	-			0	0		2	3	1	5	6	8	10	12	14	16	17	18	19	21	22
3 0	HED			WB no / IP		10-Nov-05		16-Nov-05		30-Nov-05	7-Dec-05		28-Dec-05	11-Jan-06	25-Jan-06	8-Feb-06	23-Feb-06	2-Mar-06	10-Mar-06	17-Mar-06	30-Mar-06	4-A
4 1	1	WT	HFD	224	23.1		23.6	24.4	25.6	25.3	25.1	25.2	26.2	29.1	29.5	29.8	30.7	30.5	31.2	31.5	31.4	31
5 1	3	WT WT	HFD HFD	223	21.1 20.2		21.3	21.6	22.6	23.2	24 26.2	25.4 26.6	27.6	29.3	30.9 29.9	31.3 29.7	33.3 30.4	31.6	32.1	32.5	30.4	30
7 1	7	WT	HFD	248	18.5	1	24.6	26.7	29.0	30.7	31.8	33.5	35.8	38.6	40.2	41.3	41.9	43	45	46.4	47.4	47
8 1	9	WT	HFD	254	17.6		23	27.1	29.5	30.3	30,8	31.8	33.2	35.1	35.7	36.6	37.9	37.4	39.2	39.3	40	40
9 1	11	WT	HED	247	17.2		21.7	26.2	27.7	28.8	29.6	30.9	32.2	33.1	34.2 35.8	34.4	36.6	37.2	38.8	40.2	39.2	41
0 1	15	WT	HFD	240	16.1		21.8	24.1	26.3	28.1	29.4	29.4	34.0	35.8	39.9	41.9	45.1	44.8	41.8	47.9	49.2	40
2 1	17	WT	HFD	234	15.7		22.8	23.6	25.3	25.6	26.2	26.6	31.0	33.1	34.2	36.5	37.3	36.7	35.8	37.3	38.7	39
3 1	19	WT	HFD	241	15.4	1	21.3	22.0	22.8	23.2	24.8	25.9	29.4	30.9	32.0	33.2	34	33.3	35.4	36.2	36.8	37
4 1	21	WT	HFD	243	15		21.5	23.1	24.6	24.7	26.9	29.2	33.7	36.6	39.1	41	42.4	42.8	41.1	44.4	46.1	47
15 1	23	WT WT	HFD	245	14.3	15.5	20.3	22.1 18.1	23.0	28.1 20.2	25.3 20.5	26.8	30.9 22.3	35.1 24.8	37.6	40.8	43.6	43.3	28.7	46.8	48.4	48
7 1	27	WT	HFD	282		19.8	21.3	22.8	24.5	26.7	20.5	28.2	31.8	24.6	36.3	37.7	39.7	40.9	42.4	43.8	44.8	45
8 1	29	WT	HFD	283		19.6	20.1	20.6	21.2	21.7	23.1	23.4	24.7	27.2	28.4	28.4	30.5	30.6	30.9	32.1	31.1	31
9	WT				0	0	1	2	3	4	5	6	8	10	12	14	16	17	18	19	21	2
20	FEN-HFD			WB no./ IF		10-Nov-05	9-Nov-05		23-Nov-05	30-Nov-05	7-Dec-05		28-Dec-05	11-Jan-06	25-Jan-06	8-Feb-06	23-Feb-06	2-Mar-06	10-Mar-06	17-Mar-06	30-Mar-06	4-A
21 2	3	WT	FEN-HFD	222 250	23.5		22.4	24.3	26.1	27.8	28.4	29.6	30.7	32	32.6 32.2	32.1 33.0	33.9 35	33.4 35.4	33.7 35.2	33.9 36.5	34.5 35.5	34
3 :	5	WT	FEN-HED	227	20.3		22.2	23.4	24.4	24.9	25.4	26.2	27.4	27.3	28.9	29.0	30.3	30.3	30.3	31.2	30.7	31
24 :	7	WT	FEN-HFD	226	19.5	-	21.1	22.6	23	24.1	24.1	24.4	26.8	27.5	29	28.3	28.9	29	27.9	28.5	28.7	27
5 :	9	WT	FEN-HFD	253	17.6	-	23.8	25.2	26.2	27.5	28.6	29.6	30.1	32.2	33.5	33.3	34.3	33.9	33.9	34.8	35	35
	11	WT	FEN-HED	252	17.5		21.9	23.2	25.2	25.9	26.9	28.9	30.1	33.7	34.9	35.2	36.4	37	38.6	39.1 33.8	40.5	39
27 2	13	WT	FEN-HED	251 249	16.5		21.6	22.2	24	25.2	25.7	26.8	28.2	30.5	31.5	32.4	33.5	34.2 33.8	33.4 33.7	33.8	33.4 35.8	33
9	17	WT	FEN-HFD	242	15.9		21.2	22.6	23.9	23.8	23.8	25.2	26.6	28.9	30.5	32	34	34.2	34.9	35	37.3	37
10 =	19	WT	FEN-HFD	244	15.7		20.7	22.3	23.1	24.3	25.4	26.5	28.5	31	31.4	32.3	33.3	32.3	33.5	33.3	33.8	33
1 :	21	WT	FEN-HFD	246	15.2	1	21	23	25.4	26.6	28.1	29.4	33.4	36.9	39.6	41.2	45.2	46.2	48.1	49.7	50.7	53
12 :	23	WT	FEN-HFD	236	14.4	14.5	19.9	21.7	23.8	24	23.9	24.3	26.5	28.6	29.6 30.5	31.2 31.3	33.3 32.7	32.9	34 33.2	34.2 34.3	34.9	34
4 2	23	WT	FEN-HFD	28/		20.2	20.9	21.6	22.2	22.3	23.2	24.7	25.1	25.2	26.8	27	29	29.2	29.4	29.8	30.1	35.
5	29	WT	FEN-HFD	288		16.7	18.6	20.5	22.6	23.7	25.1	25.2	27.8	30.2	31.4	32	32.8	32.4	32.4	33.1	34.1	34
36	KO	(0	0	1	2	3	4	5	6	8	10	12	14	16	17	18	19	21	22
37	HFD		1100	WB no./ Ib		10-Nov-05	9-Nov-05		23-Nov-05	30-Nov-05	7-Dec-05		28-Dec-05	11-Jan-06	25-Jan-06	8-Feb-06	23-Feb-06	2-Mar-06	10-Mar-06	17-Mar-06	30-Mar-06	4-A
38 1	2	KO	HFD	206	22.2		25.8	26.8	28.7	29.9	30.8	31.9	31.6	33.6 38.7	34.2	35.1	36.7	37.1	37.6	38.1	39.8 45.1	40.
40 1	6	KO	HFD	201	21.0		25	26.5	27.6	28.6	29.5	30.2	30.3	35.4	35.8	42.2	39.3	41	45.2	38.2	40.9	41
				2)/juty 14		/ Aug 3 /	aug 11 gro		/ Aug 17	/ Aug22 /		ew groups			hts cohort	contract and an						
Sheet 1	L/30			10 ····	PageSt	yle_new	style BW :	sheet (2)				1	-				Sum=0			-0-1		+

Which tool to use for data analysis ?

- 6	le Ho	ine Insi					View		
Pas	×.		- 11 - U - A' A' D - <u>A</u> -	·····································	部国・	General -	A Styles	Gal Insert - Gal Delete - Delete -	Σ·27·
Clip	poard is	F	ont ra	Alignment	14	Number 1		Cells	Editing
	A1		• (a	f. Sample	ID				
1	A	В	С	D	E	E	G	н	.1
1	Sample I	Mouse	D Genotype	umor siz Bo	19 [dCt]	Axin2 [dC A	xin2 [dC	Axin2 [dCt],	T2
2	\$1	WT1	WT	8.7	23	24.5	28.3	25.1	
3	S2	WT2	WT	8,4	23.4	24.3	28.4	25.6	
4	53	WT3	WT	7.9	23.5	24.6	28.6	25.3	
5	\$4	WT4	WT	7.8	23.5	24.3	27.9	24.9	
б	\$5	WT5	WT	8.2	23.1	24.8	26.3	24.8	
7	S6	WT6	WT	7.4	23.6	24.9	25.4	26.1	
8	\$7	WT7	WT	8.5	22.9	25.1	29.1	25.3	
9	\$8	WT8	WT	2.5	24	24.3	20.1	23.2	
10	\$9	WT9	WT	6.1	23.8	24.7	27.4	27.3	
11	510	WT10	WT	3.8	22.8	26.1	28.4	24.3	
12	S21	WT1	WT	2.1	23.6	25.1	28.5	26.3	
13	522	WT2	WT	3	23.9	23.2	28.5	25.1	
14	523	WT3	WT	7.9	23.5	24.3	28.9	25.3	
15	\$24	WT4	WT	2	23.5	22.9	29.1	25.7	
16	\$25	WT5	WT	7.5	23.7	24.5	28.5	26.1	
17	526	WT6	WT	7.3	23.7	25.7	30.1	24.4	
18	\$27	WT7	WT	3	23.2	25.2	29.1	24.8	
19	528	WT8	WT	8	23.1	24.9	29.8	23.2	
20	\$29	WT9	WT	7.7	23.8	24.1	29.9	24.7	
21	\$30	WT10	WT						
22	S41	WT1	WT						
23	\$42	WT2	WT	7.2	22.9	24.7	29.5	26.3	
24	S43	WT3	WT	8.2	22.8	24.9	29.7	25.9	
25	S44	WT4	WT						
		perimentD	esign_BioinfoV	52013_2	1%	84		8	
Rea	dy 🛅						100%	((-) ()	(+)

m [•

Annoyances with spreadsheets

•Many standard methods in statistics are not available. Other methods only offer basic options (linear regression)

• Different analysis require user to reorganize the data

•Probably ok for simple calculations (basic summary statistics, simple regression)

•Add-ons can be used for missing functions (e.g. StatPlus for Excel)

• Many types of graphics violate standards of good graphics

Default

Annoyances with spreadsheets

Mistaken Identifiers: Gene name errors can be introduced inadvertently when using Excel in bioinformatics

Barry R Zeeberg, Joseph Riss, David W Kane, Kimberly J Bussey, Edward Uchio, W Marston Linehan, J Carl Barrett & John N Weinstein

BMC Bioinformatics 5, Article number: 80 (2004) Cite this article

116k Accesses | 45 Citations | 549 Altmetric | Metrics

26	licrosoft Excel - Bo	ok1			×	
(回)	Eile Edit View	Insert Format Too	ols <u>D</u> ata <u>W</u> indow <u>H</u> elp	- t	7 ×	
	😂 🖬 🖪 🔒 🗐	3 Q 7 12 X	🗈 🔁 • 🦪 🔊 • 🔵	Σ • 21 🛄 🕢 🦉 1	B	
	1 2 2 3 3	015012 B	● Reply with Changes	End Review		
	C8 -	fx				
	A	В	С	D	-	
1		Original name	As converted by Excel	Other possible conversion	-	
2	Gene name	SEP2	sept.02	2-sep		
3	Riken identifier	2310009E13	2.31E+19			
4						
5						
14 4	> H Sheet1 /S	heet2 / Sheet3 /	1)	IL	
Rea	dy				1	

"The date conversions affect at least 30 gene names; the floating-point conversions affect at least 2,000 if Riken identifiers are included. These conversions are irreversible; the original gene names cannot be recovered."

Example of a dataset which is difficult to use with any statistical program

Sample	sample_Init	Study_ID	comments	unique patients	Instant, March	(B)(Holy	Sec.	income, income, set	August 1	And Appendix	Age_OP	gender	AFFY
2248	MD_2	BE-03		1	0	1	1	0	20	0	50	M	1
2467	RB_2	BE-04		1	1	1	1	1	12	0	55	M	1
2468	HB_2	BE-05		1	1	1	1	1	13		88	M	1
2482	WO_2	ZH-01		1	1	1	1	1	7	1	64	M	1
2484	HW_2	ZH-04		1	1	1	1	1	5	1	50	M	1
2485	BD_2	ZH-05		1	1	1	1	1	6	0	53	F	1
2486	BH_2	ZH-06		1	1	1	1	1	9	1	48	F	1
2487	AW_2	ZH-07		1	1	1	1	1	9	0	53	M	1
2488	AJN_2	ZH-08		1	1	1	1	1	5	0	35	M	1
2489	KO 2	ZH-09		1	0	1	1	1	54	0	59	M	1
2490	BS 2	ZH-11		1	0	1	1	1	150	0	59	M	1
2491	KPR 3	ZH-12		1	1	1	1	1	5	0	32	M	1
2492	CB 3	ZH-13		1	0	1	1	0	6	0	37	F	1
2493	RM 3	ZH-14		1	0	1	1	1	63	0	39	M	1
2496	BR 2	ZH-17		1	1	1	1	1	5	0	61	F	1
2497	SP_2_0	2497		1		0	0			1	58	M	1
2498	NA 2 0	2498		1		0	0			0	54	M	1
2499	GK_2_0	2499		1		0	0			1	68	M	1
2500	HiB_2_0	2500		i		0	0				62	M	1
2501	BI 2	2501		1		0	0			0	70	F	1
250.2	WJ 2	2502		1		0	0			4	59	M	1
2503	BP 3	2503	autopsy	1		0	0			0	61	M	1
2504	UA 2 0	2504	anopsy	1		0	0			0	35	F	1
2505	GE_1	2505		0		0	0			14	65	F	1
2506	TS 2	2544		1		0	0			0	50	M	1
2507	HV_2_0	2507	-	i		0	0			0	85	F	1
250.8	TI 3	2508		1		0	0			1	31	F	1
250.9	TI 4 0	2509	Reo 2508	0		0	0				31	F	i
2510	GE 2 0	2510	Res 2505	1		0	0		-	1	67	F	0
2511	SI 2	ZH-18	HILL LOUD	i	1	ĩ	1	1	5	0	24	F	1
2512	BH 3	ZH-06.1	Rec 2486	0		1	0			1	50	F	i
2513	CG 2	2513	1100 2400	1		0	0			0	63	M	i
1152	NCH1152	NCH1152		Xenograft			0		-		00	hXenograft	1
1152	NCH1152	NCH1152	-	Xenograft			0			1		hXenograft	1
1155	NCH1155	NCH1155	-	Xenograft			0			1	-	hXenograft	1
1157	NCH1157	NCH1157		Xenograft	1		1		5	1		hXenograft	1
1159	NCH1159	NCH1159		Xenograft	1		1		5	1		hXenograft	1
1161	NCH1161	NCH1161		Xenograft	i		1		5	1		hXenograft	1
	ol citri BS153	otri BS153		Cell line					0.000	1		hCell line	0

Q Search Wikipedia

ELKI

Comparison of statistical packages

Article Talk Read Edit View history Contents [hide] From Wikipedia, the free encyclopedia (Top) General information The following tables compare general and technical information for a number of statistical analysis packages. Operating system support General information [edit] ANOVA Regression Scripting Open Software \$ ۵ Product \$ Developer 🔶 Latest version Interface ≑ Written in \$ source license languages Time series analysis **ADaMSoft** Marco Scarno 27 April 2015 **GNU GPL** CLI, GUI Java Yes Charts and diagrams GUI, Python C#, C++, Other abilities Alteryx Alteryx Inc. 2019.2 (June 2019) No Proprietary R, Python SDK, js SDK Python, R, js See also C#, C++, Analyse-it Analyse-it No Proprietary GUI Fortran Footnotes ASReml 26 March 2014 CLI **VSN** International No Proprietary References Statistical Further reading BMDP No Proprietary Solutions Public Dataplot Alan Heckert 2013 CLI, GUI Yes Fortran domain Ludwig Maximilian

https://en.wikipedia.org/wiki/Comparison_of_statistical_packages

University of

Munich

0.7.5

(15 February 2019)

AGPL

Yes

CLI, GUI

Java

文A 2 languages ~

Shell (computing)

Regression [edit]

Support for various regression methods.

Product 🗢	OLS 🗢	WLS 🜩	2SLS 🖨	NLLS 🖨	Logistic 🗢	GLM 🗢	LAD \$	Stepwise 🗢	Quantile 🗢	Probit 🔶	Cox 🗢	Poisson 🗢	MLR \$
ADaMSoft	Yes	Yes	No	Yes	Yes	No	No	Yes					
Alteryx	Yes	Yes			Yes	Yes		Yes		Yes			
Analyse-it	Yes				Yes								Yes
BMDP	Yes				Yes			Yes			Yes		
Epi Info	Yes	No	No	No	Yes	No	No	No			Yes		
EViews	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes
GAUSS	Yes	Yes			Yes	Yes	No		Yes			Yes	Yes
GenStat	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
GraphPad Prism	Yes	Yes	No	Yes	Yes	No	No	No	No	No		No	Yes
gretl	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes		Yes	
JMP	Yes	Yes	No	Yes	Yes	Yes	No	Yes	In JMP Pro	Yes	In JMP Pro	Yes	Yes
LIMDEP	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Maple	Yes	Yes	No	Yes ^[18]	No	No	No	No	No	No	No	No	Yes
Mathematica	Yes	Yes		Yes	Yes ^[19]	Yes ^[20]	Yes ^[21]		Yes	Yes ^[22]	Yes ^[23]	Yes	Yes ^[24]
MATLAB+Statistics Toolbox	Yes	Yes	Yes ^[25]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
MaxStat Pro	Yes	Yes		Yes	Yes								Yes
MedCalc	Yes	Yes		Yes	Yes			Yes		Yes	Yes		Yes
Minitab	Yes	Yes	No	Yes	Yes	No	No	Yes	No	Yes		Yes	Yes
NCSS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
NLOGIT	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Orange	Yes	Yes	No	Yes	Yes	No	No	No	No	No	No	No	Yes
Origin	Yes	Yes	No	Yes	No	No	No	No	No	creenshot	Yes	No	Yes

What is R?

- R is an open source complete and flexible software environment for statistical computing and graphics.
- It includes :
 - Tools for data import and manipulation
 - Large set of data analysis tools
 - Graphical tools
 - As a programming language, a simple development environment, with a text editor
- R itself is written primarily in C and Fortran, and is an implementation of the statistical language S

Why R?

- R has become the tool of choice for statistical analysis in several fields, including life sciences
- Two reasons for this success: it is free and many contributed packages are available (can be installed and run directly from R).
- Well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed.
- Many tools implemented for bioinformatics

Advantages of R

- Advantages of R
 - Availability and compatibility
 - State-of-the-art graphics capabilities
 - Can import files from other (statistical) programs
 - New version every x months
 - Interactive development environments (IDEs) available
 - Large users community
- Advantages of *learning* R
 - Learn to program and do reproducible research
 - Speak the common language

Drawbacks of R

- «Expert friendly»
- Learn by example
- Not very (easily) interactive
- Command-based
- Documentation sometimes cryptic
- (Too) large amount of resources
- Constantly evolving
- Memory intensive and slow at times

Downloading and installing R: the R website

[Home]

CRAN

Download

The R Project for Statistical Computing

Getting Started

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To **download R**, please choose your preferred CRAN mirror.

If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

News

- R version 4.2.2 (Innocent and Trusting) has been released on 2022-10-31.
- R version 4.1.3 (One Push-Up) was released on 2022-03-10.
- Thanks to the organisers of useR! 2020 for a successful online conference. Recorded tutorials and talks from the conference are available on the R Consortium YouTube channel.
- · You can support the R Foundation with a renewable subscription as a supporting member

R Project About R Logo Contributors What's New? Reporting Bugs Conferences Search Get Involved: Mailing Lists Get Involved: Contributing Developer Pages R Blog

https://www.r-project.org/

R console

RGui (64-bit) Fichier Edition Voir Misc Packages Fenêtres Aide 🚅 💾 🖶 🖻 🔂 🕌 🎒 R Console R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86 64-w64-mingw32/x64 (64-bit) R est un logiciel libre livré sans AUCUNE GARANTIE. Vous pouvez le redistribuer sous certaines conditions. Tapez 'license()' ou 'licence()' pour plus de détails. R est un projet collaboratif avec de nombreux contributeurs. Tapez 'contributors()' pour plus d'information et 'citation()' pour la façon de le citer dans les publications. Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide en ligne ou 'help.start()' pour obtenir l'aide au format HTML. Tapez 'g()' pour guitter R. >

The prompt ">" indicates that R is waiting for you to type a command

RStudio interface

R scripts and workspace

- R script (.R file)
 - Very useful instead of typing commands on the console.
 - Allows you to keep track of what you are doing and make any modification easier
 - To actually execute some commands, you can select the lines and run the execution
- Workspace (.Rdata file)
 - The internal memory where R will store the objects you created during the session.
 - To list what is in your workspace: ls ()
 - To empty the workspace from all objects: rm (list=ls())
 - To save only specific R objects: save(object_name(s), "name_of_file.RData")
 - To save your entire workspace: save.image("name_of_file.RData")
 - To load your workspace / specific R objects: load ("name_of_file.RData")

R Markdown

- R Markdown provides an authoring framework for data science. You can use a single R Markdown file to both:
 - save and execute code
 - generate high quality reports that can be shared with an audience
- R Markdown documents are fully reproducible and support dozens of static and dynamic output formats

Leaving R

To leave R, use the q()command (or "quit" from the menu in RStudio):
 q()
 Save workspace image? [y/n/c]:

Answers:

y save workspace image n **don't save workspace image** c cancel quitting Functions, operators and variables

Clhigh <- mean(x) + $1.96 \times sd(x) / sqrt(n)$

Variables: objects stored in memory Functions: always followed by parenthesis Operators

R syntax

- Case sensitive: A is not a
- Variable names can include A-Z, a-z, 0-9, but can not start with a number
- Commands can be separated by ; or newline
- > x < 2; x+2
- [1] 4
- # indicates comments:
- > maxvalue <- 2 # Data above two is not relevant</pre>

R help

> ?sum # equivalent to help(sum)

sum {base}

Sum of Vector Elements

Description

sum returns the sum of all the values present in its arguments.

Usage

sum(..., na.rm = FALSE)

Arguments

... numeric or complex or logical vectors.

na.rm logical. Should missing values (including NaN) be removed?

R Documentation

Using R as a calculator

> 2*3
[1] 6
>log(6)/2^2
[1] 0.4479399
>exp(6)-4
[1] 399.4288
> pi-3
[1] 0.1415927

Using R as a programming language

```
> x <- 2.0
> x
[1] 2.0
> y = 3.0 # Equivalent to y <- 3.0
> y; x
[1] 3
[1] 2
>1/x
[1] 0.5
```

Creating vectors using the c() command

```
> x < - c(1.3, 0.32 \ 10.5, 5.9, 6.3)
> x
[1] 1.30 0.32 10.5 5.90 6.30
               \left( \right)
> y < - c(x, 1.4, x, x); y
[1] 1.30 0.32 10.5 5.90 6.30
               0
[6] 1.40 1.30 0.32 10.50 5.90
[11] 6.30 1.30 0.3 10.50 5.90
                2
[16] 6.30
```

Vector operations

Vector operations work element by element:

> x <- c(1.3, 0.32, 10.5, 5.9, 6.3)
> y <- x*2; y
[1] 2.60 0.64 21.00 11.80 12.60
>z <- x*y; z
[1] 3.38 0.21 220.50 69.62 79.38</pre>

Recycling

```
If a vector is too short, R recycles it (reuses it) as needed:
x <- c(1.3, 0.32, 10.5, 5.9)</li>
y <- c(2, 10)</li>
x*y
[1] 2.6 3.2 21.0 59.0
1.3*2 0.32*10 10.5*2 5.9*10
```

• A warning message is displayed if the shortest vector can not be recycled entirely:

```
> x <- c(1.3, 0.32, 10.5, 5.9, 6.3)
> x*y
[1] 2.6 3.2 21.0 59.0 12.6
Warning message:
In x * y :
longer object length is not a multiple of shorter object length
```

Generating sequences of numbers

> 1:10 [1] 1 2 3 4 5 6 7 8 9 10

This is equivalent to:

>c(1,2,3,4,5,6,7,8,9,10)
[1] 1 2 3 4 5 6 7 8 9 10
> 10:1
[1] 10 9 8 7 6 5 4 3 2 1

Beware of operator priority

```
> x <- 2*1:10
# equivalent to x < -2*(1:10)
> x
[1] 2 4 6 8 10 12 14 16 18 20
> n <- 10
> 1:n-1
# equivalent to (1:n)-1
[1] 0 1 2 3 4 5 6 7 8 9
> 1: (n-1)
[1] 1 2 3 4 5 6 7 8 9
```

The seq() function: the same, but more flexible

```
> seq(from=1, to=10)
[1] 1 2 3 4 5 6 7 8 9 10
> seq(from=1, to=5, by=0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
> x <- seq(from=1, to=5, length=17)
> x
[1] 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
[9] 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
[17 5.0]
0
```

Non numeric vectors: boolean (logical) values

```
> x <- seq(from=1, to=5, length=17)
> x
[1] 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
[9] 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
[17] 5.00
> y <- x<5 # help("<") shows list of relational operators
> y
[1] TRUE TRUE TRUE TRUE TRUE TRUE
[7] TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE FALSE
>sum(x<5)
[1] 16
```

Missing values are designated by NA

```
> z <- c(1:3,NA)
> z
[1] 1 2 3 NA
> is.na(z)
[1] FALSE FALSE FALSE TRUE
> mean(z)
[1] NA
> mean(z, na.rm=TRUE)
[1] 2
```

Character strings

```
> char <- c("hello","world","!"); char
[1] "hello" "world" "!"</pre>
```

Vectors can not combine numbers and characters:

> char <- c("hello",3:5,"world"); char
[1] "hello" "3" "4" "5" "world"
> char <- c(char, NA); char
[1] "hello" "3" "4" "5" "world" NA</pre>

Selecting subsets of vectors using []

> x <- 10:30
> x[2]
[1] 11
> x[1:5]
[1] 10 11 12 13 14

Selecting subsets of vectors using [] and boolean vectors

```
> x <- 10:30
> x[x>25]
[1] 26 27 28 29 30
>x <-c(seq(from=5, to=10, by=0.5), NA,
seq(from=11, to=15, by=0.5), NA,
seq(from=16, to=20, by=0.5))
> x[!is.na(x)]
[1] 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
[9] 9.0 9.5 10.0 11.0 11.5 12.0 12.5 13.0
[17] 13.5 14.0 14.5 15.0 16.0 16.5 17.0 17.5
[25] 18.0 18.5 19.0 19.5 20.0
```

Changing parts of vectors using []

- > x[32] <- 200
- > x[c(10,29)] <- c(1,100)
- > x[x>15] <- NA

Finding the length of a vector

```
> x <- 1:5
> length(x)
[1] 5
> y <- 1:16
>len <- length(y) ; len
[1] 16</pre>
```

Data analysis workflow

Adapted from Hadley Wickham

Importing data into R

• R can import flat files using e.g. the commands:

read.table()
read.csv()
read.delim()

(with many options – check the help).

- R can also:
 - Read Excel spreadsheets
 - Read plenty of other formats
 - Directly access databases
 - Access files over the web

	🐢 Go to file fund										Project: (Non
0 Untitled1* × 0 Untitled	2 ×					-0	Environm	ent History			-
Source on Se	ave Q /	• E	i.	→ Run		ource -	C A	Import Dataset+	1 C	1.	📃 Lis
1							🐴 Global	Environment -		Q,	
	Import Datas	et								ariables	
	Name			Input File						artables	
	etubiol			100000000000000000000000000000000000000	1	aight sho	aniza laft	righthanded, smoke	r		
	Instanting			M,183,7	2,42,R,N	\$,17,16.6	,2,170,174	. Bucunuced amove	1		
	Encoding	Automatic	-			S,17,16,1 S.18.5,18	,170,178 ,2,168,181		- 1		
	Heading	● Yes ◯ No		M,175,6 M,158,4	6,41,L,N 2,41,R,N	S,17,17,2 S,14,14,2	,156,178 ,156,178		- 1	ewer	-
	Row names	Automatic	-			,16,16,1, 5 ,15.3,1	150,190	6		More	
		Participante:		M,185,6	9,44,R,N	\$,16.5,15	,1,172,167				• participants
	Separator	Comma	-			,17,16.3, S,15,15,3	1,161,169			Size	_participants Modified
	Decimal	Period	•				7,1,176,17	3		5120	Houned
	0	Dauble suchs (II)	17753				2 7 168 1	77	-	33.7	Mar 31, 201
	Quote	Double quote (")	•							MB	9:53 PM
	Comment	None	-	Data Fra						df 17.4 MB	Jan 27, 2015 3:40 PM
1:1 (Top Level) :	na.strings	NA		gender M	height 183	weight	shoesize 42	leftrighthanded R	Smol	30.3	May 23, 201
1.1 (10) Level) +	Strings a			м	183	68	43	R	NS NS	MB	7:25 PM
Console ~/Documents/do	() strings e	is fuctors		м	182	73	44	K L	NS		
<pre>(is a collaborative (ype 'contributors()')</pre>				м	158	42	41	R	NS		
citation()' on how to				M	179	70	47	R	S NS		
creacion() on now c				P M	172 185	61 69	38 44	R	NS W		
Type 'demo()' for some				м	177	75	43	R	s		
'help.start()' for an				F	165	50	37	R	NS		
Type 'q()' to quit R.				м	186	93	45	R	S		
				F	165	53 48	39 37	R	NS		
etubiol <- read.csv					126	- A.M.	* C	H	-NS		

Data frames

- Data frames are made of columns having all the same number of elements
- They look like matrices, except that the columns can hold different variables types
- They are typically used to store data, with
 - Each row being an experimental unit
 - Each column being a measurement
- > data[,1] # access first column
- > data[, "data1"] # access column "data1"
- > data\$data1 # ... same

Creating data frames

- > x <- 1:10
- > y <- seq(from=5,to=10,length=10)</pre>
- > df <- data.frame(d1=x, d2=y, fact=z)</pre>
- > df
- d1 d2 fact 1 1 5.000000 A 2 2 5.555556 B ...
- > names(df)
- [1] "d1" "d2" "fact"
- >dim(df)
- [1] 10 3

Adding new columns

- > df\$d3 <- 10:1
- > df
- d1 d2 fact d3
- 1 1 5.000000 A 10
- 2 2 5.555556 B 9
- •••
- > summary(df)

d1	d2	fact	d3
Min. : 1.00	Min. : 5.00	Length:10	Min. : 1.00
1st Qu.: 3.25	1st Qu.: 6.25	Class :character	1st Qu.: 3.25
Median : 5.50	Median : 7.50	Mode :character	Median : 5.50
Mean : 5.50	Mean : 7.50		Mean : 5.50
3rd Qu.: 7.75	3rd Qu.: 8.75		3rd Qu.: 7.75
Max. :10.00	Max. :10.00		Max. :10.00

Select data from a data frame

• Select all values of "d2" for which "fact" is "B"

```
> df[ df$fact == "B", "d2" ]
```

[1] 5.555556 6.111111 8.333333 9.444444 10.000000

Select all values of "d1" for which "fact" is "B" and "d2" > 7
> df[(df\$fact == "B" & df\$d2 > 7), "d1"]
[1] 7 9 10

Select all values of "d3" for which "fact" is "A" or "d2" < 6
>df[(df\$fact == "B" | df\$d2 < 6), "d3"]
[1] 10 9 8 4 2 1

>	df			
	d1	d2	fact	d3
1	1	5.000000	A	10
2	2	5.555556	В	9
3	3	6.111111	В	8
4	4	6.666667	A	7
5	5	7.222222	A	6
6	6	7.77778	A	5
7	7	8.333333	В	4
8	8	8.888889	A	3
9	9	9.444444	В	2
10	10	10.000000	В	1

<u>Exercise</u>

- Import students.csv into a variable (call it data)
- Extract the weight of women only in a new variable
- Extract the weights of the people who weight more than 80 kilos
- Extract the entries of men who weight more than 80 kg (you can use the "&" operator to include two conditions)

If you do not know what to do:

1.Extract the weight of women only in a new variable **2.Extract the weights of the people** who weight more than 80 kilos 3.Extract the entries of men who weight more than 80 kg [you can use the "&" operator to include two conditions]