




# Introduction to Statistics and Data Visualisation with R

## Lausanne, January 2026

Joao Lourenço and Rachel Marcone

# Introduction to R



## Prepare: make data available in a specific format

- Database
- Flat file
- Proprietary file

data.xls – LibreOffice Calc

The screenshot shows a LibreOffice Calc spreadsheet with the following details:

- File Menu:** File, Edit, View, Insert, Format, Tools, Data, Window, Help.
- Toolbar:** Standard toolbar with icons for file operations, cell selection, and data processing.
- Cells:** The spreadsheet contains data in cells A1 to V22. Row 1 contains column headers for dates from Nov-05 to Apr-06. Row 2 contains data for 'WT' and 'HFD' groups. Row 3 contains data for 'WT' and 'HFD' groups. Row 4 contains data for 'WT' and 'HFD' groups. Row 5 contains data for 'WT' and 'HFD' groups. Row 6 contains data for 'WT' and 'HFD' groups. Row 7 contains data for 'WT' and 'HFD' groups. Row 8 contains data for 'WT' and 'HFD' groups. Row 9 contains data for 'WT' and 'HFD' groups. Row 10 contains data for 'WT' and 'HFD' groups. Row 11 contains data for 'WT' and 'HFD' groups. Row 12 contains data for 'WT' and 'HFD' groups. Row 13 contains data for 'WT' and 'HFD' groups. Row 14 contains data for 'WT' and 'HFD' groups. Row 15 contains data for 'WT' and 'HFD' groups. Row 16 contains data for 'WT' and 'HFD' groups. Row 17 contains data for 'WT' and 'HFD' groups. Row 18 contains data for 'WT' and 'HFD' groups. Row 19 contains data for 'WT' and 'FEN-HFD' groups. Row 20 contains data for 'WT' and 'FEN-HFD' groups. Row 21 contains data for 'WT' and 'FEN-HFD' groups. Row 22 contains data for 'WT' and 'FEN-HFD' groups. Row 23 contains data for 'WT' and 'FEN-HFD' groups. Row 24 contains data for 'WT' and 'FEN-HFD' groups. Row 25 contains data for 'WT' and 'FEN-HFD' groups. Row 26 contains data for 'WT' and 'FEN-HFD' groups. Row 27 contains data for 'WT' and 'FEN-HFD' groups. Row 28 contains data for 'WT' and 'FEN-HFD' groups. Row 29 contains data for 'WT' and 'FEN-HFD' groups. Row 30 contains data for 'WT' and 'FEN-HFD' groups. Row 31 contains data for 'WT' and 'FEN-HFD' groups. Row 32 contains data for 'WT' and 'FEN-HFD' groups. Row 33 contains data for 'WT' and 'FEN-HFD' groups. Row 34 contains data for 'WT' and 'FEN-HFD' groups. Row 35 contains data for 'WT' and 'FEN-HFD' groups. Row 36 contains data for 'WT' and 'FEN-HFD' groups. Row 37 contains data for 'WT' and 'HFD' groups. Row 38 contains data for 'WT' and 'HFD' groups. Row 39 contains data for 'WT' and 'HFD' groups. Row 40 contains data for 'WT' and 'HFD' groups.
- Bottom Status Bar:** Shows 'Sheet 1 / 30', 'PageStyle\_new style BW sheet (2)', 'Sum=0', and '75%'.

*Which tool to use for data analysis ?*

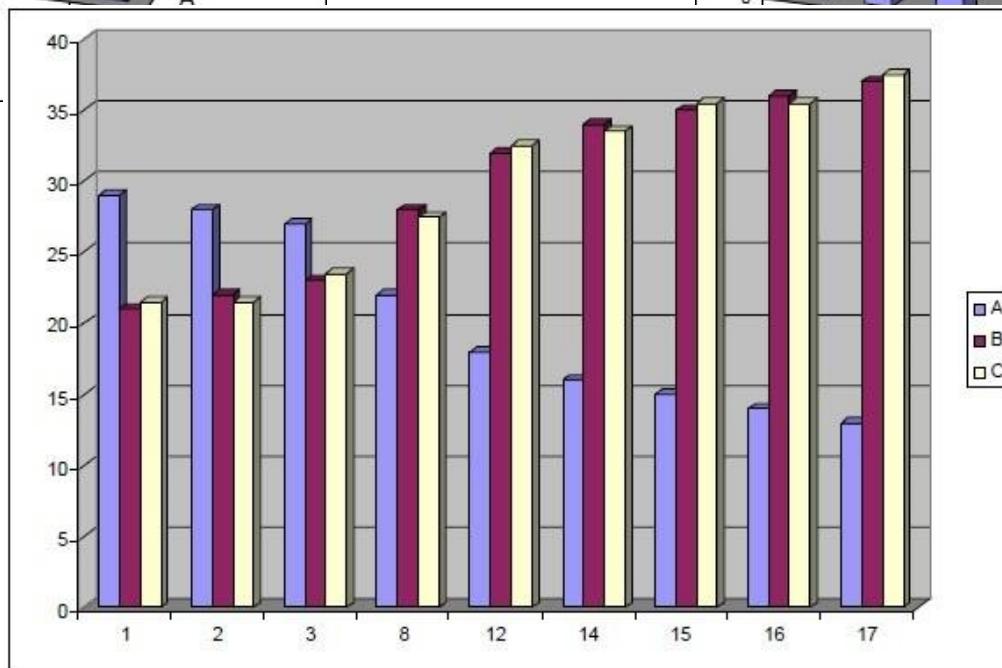
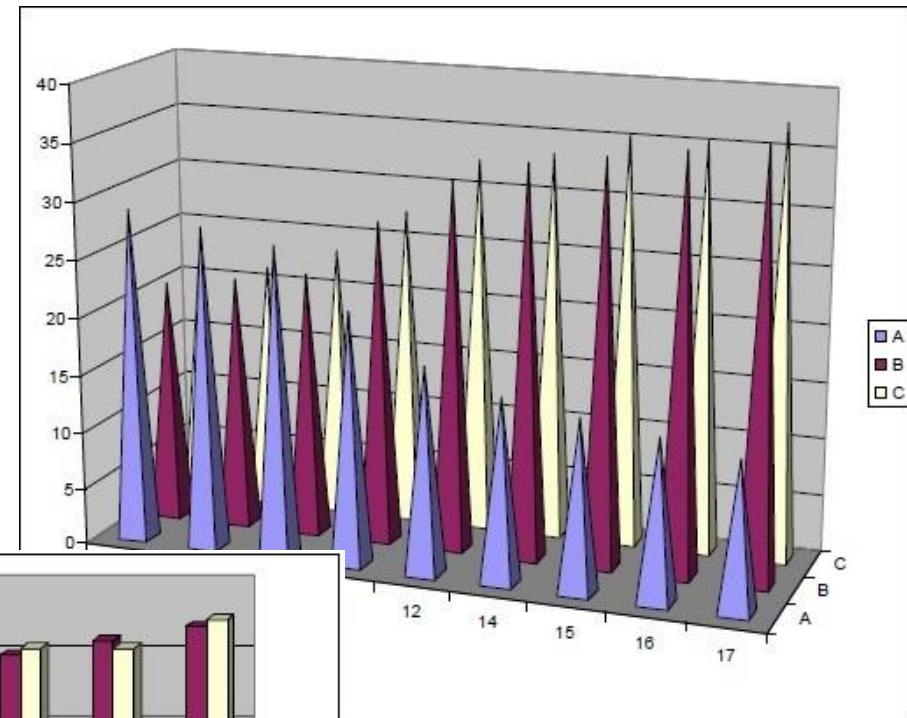
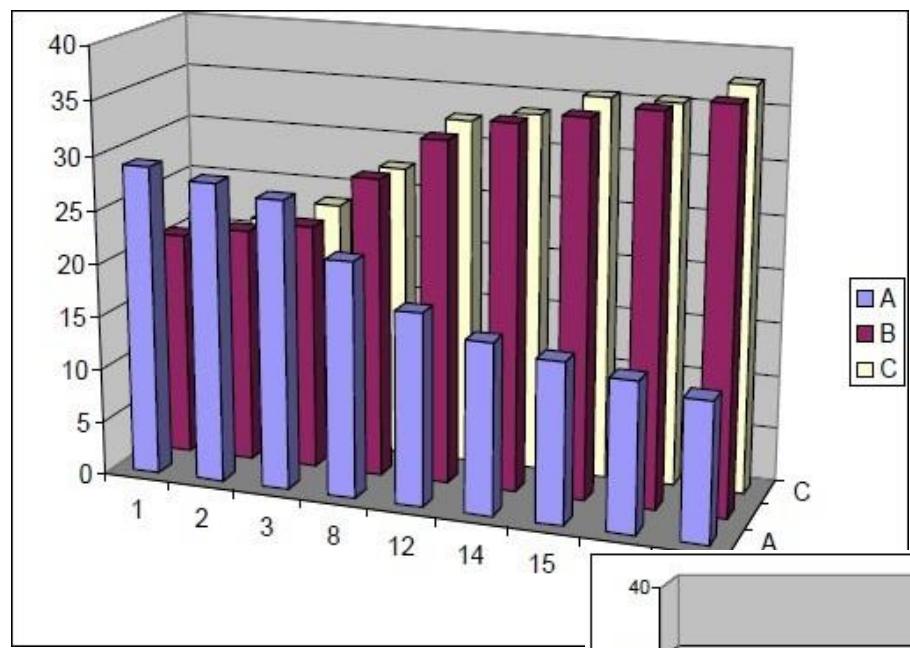
### Spreadsheets



### Programming languages



### Statistical packages

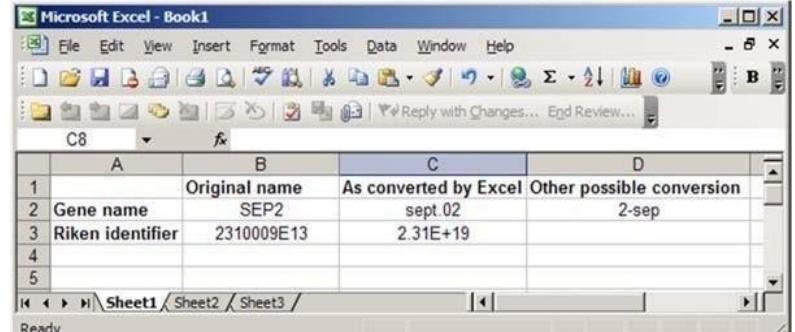

| Sample ID | Mouse ID | Genotype | Tumor size [mm] | Bcl9 [dCT], T0 | Axin2 [dCT], T0 | Axin2 [dCT], T1 | Axin2 [dCT], T2 |
|-----------|----------|----------|-----------------|----------------|-----------------|-----------------|-----------------|
| 2_S1      | WT1      | WT       | 8.7             | 23             | 24.5            | 28.3            | 25.1            |
| 3_S2      | WT2      | WT       | 8.4             | 23.4           | 24.3            | 28.4            | 25.6            |
| 4_S3      | WT3      | WT       | 7.9             | 23.5           | 24.6            | 28.6            | 25.3            |
| 5_S4      | WT4      | WT       | 7.8             | 23.5           | 24.3            | 27.9            | 24.9            |
| 6_S5      | WT5      | WT       | 8.2             | 23.1           | 24.8            | 26.3            | 24.8            |
| 7_S6      | WT6      | WT       | 7.4             | 23.6           | 24.9            | 25.4            | 26.1            |
| 8_S7      | WT7      | WT       | 8.5             | 22.9           | 25.1            | 29.1            | 25.3            |
| 9_S8      | WT8      | WT       | 2.5             | 24             | 24.3            | 20.1            | 23.2            |
| 10_S9     | WT9      | WT       | 6.1             | 23.8           | 24.7            | 27.4            | 27.3            |
| 11_S10    | WT10     | WT       | 3.8             | 22.8           | 26.1            | 28.4            | 24.3            |
| 12_S21    | WT1      | WT       | 2.1             | 23.6           | 25.1            | 28.5            | 26.3            |
| 13_S22    | WT2      | WT       | 3               | 23.9           | 23.2            | 28.5            | 25.1            |
| 14_S23    | WT3      | WT       | 7.9             | 23.5           | 24.3            | 28.9            | 25.3            |
| 15_S24    | WT4      | WT       | 2               | 23.5           | 22.9            | 29.1            | 25.7            |
| 16_S25    | WT5      | WT       | 7.5             | 23.7           | 24.5            | 28.5            | 26.1            |
| 17_S26    | WT6      | WT       | 7.3             | 23.7           | 25.7            | 30.1            | 24.4            |
| 18_S27    | WT7      | WT       | 3               | 23.2           | 25.2            | 29.1            | 24.8            |
| 19_S28    | WT8      | WT       | 8               | 23.1           | 24.9            | 29.8            | 23.2            |
| 20_S29    | WT9      | WT       | 7.7             | 23.8           | 24.1            | 29.9            | 24.7            |
| 21_S30    | WT10     | WT       |                 |                |                 |                 |                 |
| 22_S41    | WT1      | WT       |                 |                |                 |                 |                 |
| 23_S42    | WT2      | WT       | 7.2             | 22.9           | 24.7            | 29.5            | 26.3            |
| 24_S43    | WT3      | WT       | 8.2             | 22.8           | 24.9            | 29.7            | 25.9            |
| 25_S44    | WT4      | WT       |                 |                |                 |                 |                 |

| Sample ID | Mouse ID | Genotype | Tumor size [mm] | Bcl9 [dCT] | Axin2 [dCT], T0 | Axin2 [dCT], T1 | Axin2 [dCT], T2 |
|-----------|----------|----------|-----------------|------------|-----------------|-----------------|-----------------|
| 2_S1      | WT1      | WT       | 8.7             | 23         | 24.5            | 29.3            | 25.1            |
| 3_S2      | WT2      | WT       | 8.4             | 23.4       | 24.3            | 29.4            | 25.6            |
| 4_S3      | WT3      | WT       | 7.9             | 23.5       | 24.6            | 29.6            | 25.3            |
| 5_S4      | WT4      | WT       | 7.8             | 23.5       | 24.3            | 27.9            | 24.9            |
| 6_S5      | WT5      | WT       | 8.2             | 23.1       | 24.8            | 26.3            | 24.8            |
| 7_S6      | WT6      | WT       | 7.4             | 23.6       | 24.9            | 25.4            | 26.1            |
| 8_S7      | WT7      | WT       | 8.5             | 22.9       | 25              | 23.1            | 25              |
| 9_S8      | WT8      | WT       | 2.5             | 24         | 24.3            | 20.1            | 23.2            |
| 10_S9     | WT9      | WT       | 6.1             | 23.8       | 24.7            | 27.4            | 27.3            |
| 11_S10    | WT10     | WT       | 3.8             | 22.8       | 26.1            | 28.4            | 24.3            |
| 12_S21    | WT1      | WT       | 2.1             | 23.6       | 25.1            | 28.5            | 26.3            |
| 13_S22    | WT2      | WT       | 3               | 23.9       | 23.2            | 27.9            | 25.1            |
| 14_S23    | WT3      | WT       | 7.9             | 23.5       | 24.3            | 28.9            | 25.3            |
| 15_S24    | WT4      | WT       | 2               | 23.5       | 22.9            | 29.1            | 25.7            |
| 16_S25    | WT5      | WT       | 7.5             | 23.7       | 24.5            | 28.5            | 26.1            |
| 17_S26    | WT6      | WT       | 7.3             | 23.7       | 25              | 30.1            | 24              |
| 18_S27    | WT7      | WT       | 3               | 23.2       | 25.2            | 29.1            | 24.8            |
| 19_S28    | WT8      | WT       | 8               | 23.1       | 24.9            | 29.8            | 23.2            |
| 20_S29    | WT9      | WT       | 7.7             | 23.8       | 24.1            | 29.9            | 24.7            |
| 21_S30    | WT10     | WT       |                 |            |                 |                 |                 |
| 22_S41    | WT1      | WT       |                 |            |                 |                 |                 |
| 23_S42    | WT2      | WT       | 7.2             | 22.9       | 24.7            | 29.5            | 26.3            |
| 24_S43    | WT3      | WT       | 8.2             | 22.8       | 24.9            | 29.7            | 25.9            |
| 25_S44    | WT4      | WT       |                 |            |                 |                 |                 |
| 26_S45    | WT5      | WT       | 8.8             | 23.4       | 26.1            | 29.5            | 26.1            |
| 27_S46    | WT6      | WT       | 8.9             | 23.7       | 26.1            | 29.9            | 24.3            |
| 28_S47    | WT7      | WT       | 3               | 23.8       | 23.1            | 28.8            | 26.1            |
| 29_S48    | WT8      | WT       |                 |            |                 |                 |                 |
| 30_S49    | WT9      | WT       |                 |            |                 |                 |                 |
| 31_S50    | WT10     | WT       |                 |            |                 |                 |                 |
| 32_S11    | KO1      | KO       | 8.4             | 30.9       | 26.4            | 27.6            | 29.5            |
| 33_S12    | KO2      | KO       | 8.1             | 30.5       | 25.6            | 29.5            | 28.4            |
| 34_S13    | KO3      | KO       | 7.9             | 32         | 27.5            | 29.6            | 27.5            |
| 35_S14    | KO4      | KO       | 8.3             | 33.4       | 26.5            | 27.5            | 29.1            |
| 36_S15    | KO5      | KO       | 6.4             | 31.2       | 26.1            | 27.4            | 26.6            |
| 37_S16    | KO6      | KO       | 7.6             | 34.2       | 25.4            | 28.4            | 29.1            |
| 38_S17    | KO7      | KO       | 8.7             | 33.2       | 26.7            | 29.1            | 30.5            |

## Annoyances with spreadsheets

- Many standard methods in statistics are not available. Other methods only offer basic options (linear regression)
- Different analysis require user to reorganize the data
- Probably ok for simple calculations (basic summary statistics, simple regression)
- Add-ons can be used for missing functions (e.g. StatPlus for Excel)
- Many types of graphics violate standards of good graphics




## *Annoyances with spreadsheets*

### **Mistaken Identifiers: Gene name errors can be introduced inadvertently when using Excel in bioinformatics**

[Barry R Zeeberg](#), [Joseph Riss](#), [David W Kane](#), [Kimberly J Bussey](#), [Edward Uchio](#), [W Marston Linehan](#), [J Carl Barrett](#) & [John N Weinstein](#) 

[BMC Bioinformatics](#) 5, Article number: 80 (2004) | [Cite this article](#)

116k Accesses | 45 Citations | 549 Altmetric | [Metrics](#)



|   | A                | B             | C                     | D                         |
|---|------------------|---------------|-----------------------|---------------------------|
| 1 |                  | Original name | As converted by Excel | Other possible conversion |
| 2 | Gene name        | SEP2          | sept.02               | 2-sep                     |
| 3 | Riken identifier | 2310009E13    | 2.31E+19              |                           |
| 4 |                  |               |                       |                           |
| 5 |                  |               |                       |                           |

“The date conversions affect at least 30 gene names; the floating-point conversions affect at least 2,000 if Riken identifiers are included. These conversions are irreversible; the original gene names cannot be recovered.”

*Example of a dataset which is difficult to use with any statistical program*

| Sample | sample\_Init | Study\_ID | comments | unique patients | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 8010 | 8011 | 8012 | 8013 | 8014 | 8015 | 8016 | 8017 | 8018 | 8019 | 8020 | 8021 | 8022 | 8023 | 8024 | 8025 | 8026 | 8027 | 8028 | 8029 | 8030 | 8031 | 8032 | 8033 | 8034 | 8035 | 8036 | 8037 | 8038 | 8039 | 8040 | 8041 | 8042 | 8043 | 8044 | 8045 | 8046 | 8047 | 8048 | 8049 | 8050 | 8051 | 8052 | 8053 | 8054 | 8055 | 8056 | 8057 | 8058 | 8059 | 8060 | 8061 | 8062 | 8063 | 8064 | 8065 | 8066 | 8067 | 8068 | 8069 | 8070 | 8071 | 8072 | 8073 | 8074 | 8075 | 8076 | 8077 | 8078 | 8079 | 8080 | 8081 | 8082 | 8083 | 8084 | 8085 | 8086 | 8087 | 8088 | 8089 | 8090 | 8091 | 8092 | 8093 | 8094 | 8095 | 8096 | 8097 | 8098 | 8099 | 80100 | 80101 | 80102 | 80103 | 80104 | 80105 | 80106 | 80107 | 80108 | 80109 | 80110 | 80111 | 80112 | 80113 | 80114 | 80115 | 80116 | 80117 | 80118 | 80119 | 80120 | 80121 | 80122 | 80123 | 80124 | 80125 | 80126 | 80127 | 80128 | 80129 | 80130 | 80131 | 80132 | 80133 | 80134 | 80135 | 80136 | 80137 | 80138 | 80139 | 80140 | 80141 | 80142 | 80143 | 80144 | 80145 | 80146 | 80147 | 80148 | 80149 | 80150 | 80151 | 80152 | 80153 | 80154 | 80155 | 80156 | 80157 | 80158 | 80159 | 80160 | 80161 | 80162 | 80163 | 80164 | 80165 | 80166 | 80167 | 80168 | 80169 | 80170 | 80171 | 80172 | 80173 | 80174 | 80175 | 80176 | 80177 | 80178 | 80179 | 80180 | 80181 | 80182 | 80183 | 80184 | 80185 | 80186 | 80187 | 80188 | 80189 | 80190 | 80191 | 80192 | 80193 | 80194 | 80195 | 80196 | 80197 | 80198 | 80199 | 80200 | 80201 | 80202 | 80203 | 80204 | 80205 | 80206 | 80207 | 80208 | 80209 | 80210 | 80211 | 80212 | 80213 | 80214 | 80215 | 80216 | 80217 | 80218 | 80219 | 80220 | 80221 | 80222 | 80223 | 80224 | 80225 | 80226 | 80227 | 80228 | 80229 | 80230 | 80231 | 80232 | 80233 | 80234 | 80235 | 80236 | 80237 | 80238 | 80239 | 80240 | 80241 | 80242 | 80243 | 80244 | 80245 | 80246 | 80247 | 80248 | 80249 | 80250 | 80251 | 80252 | 80253 | 80254 | 80255 | 80256 | 80257 | 80258 | 80259 | 80260 | 80261 | 80262 | 80263 | 80264 | 80265 | 80266 | 80267 | 80268 | 80269 | 80270 | 80271 | 80272 | 80273 | 80274 | 80275 | 80276 | 80277 | 80278 | 80279 | 80280 | 80281 | 80282 | 80283 | 80284 | 80285 | 80286 | 80287 | 80288 | 80289 | 80290 | 80291 | 80292 | 80293 | 80294 | 80295 | 80296 | 80297 | 80298 | 80299 | 80300 | 80301 | 80302 | 80303 | 80304 | 80305 | 80306 | 80307 | 80308 | 80309 | 80310 | 80311 | 80312 | 80313 | 80314 | 80315 | 80316 | 80317 | 80318 | 80319 | 80320 | 80321 | 80322 | 80323 | 80324 | 80325 | 80326 | 80327 | 80328 | 80329 | 80330 | 80331 | 80332 | 80333 | 80334 | 80335 | 80336 | 80337 | 80338 | 80339 | 80340 | 80341 | 80342 | 80343 | 80344 | 80345 | 80346 | 80347 | 80348 | 80349 | 80350 | 80351 | 80352 | 80353 | 80354 | 80355 | 80356 | 80357 | 80358 | 80359 | 80360 | 80361 | 80362 | 80363 | 80364 | 80365 | 80366 | 80367 | 80368 | 80369 | 80370 | 80371 | 80372 | 80373 | 80374 | 80375 | 80376 | 80377 | 80378 | 80379 | 80380 | 80381 | 80382 | 80383 | 80384 | 80385 | 80386 | 80387 | 80388 | 80389 | 80390 | 80391 | 80392 | 80393 | 80394 | 80395 | 80396 | 80397 | 80398 | 80399 | 80400 | 80401 | 80402 | 80403 | 80404 | 80405 | 80406 | 80407 | 80408 | 80409 | 80410 | 80411 | 80412 | 80413 | 80414 | 80415 | 80416 | 80417 | 80418 | 80419 | 80420 | 80421 | 80422 | 80423 | 80424 | 80425 | 80426 | 80427 | 80428 | 80429 | 80430 | 80431 | 80432 | 80433 | 80434 | 80435 | 80436 | 80437 | 80438 | 80439 | 80440 | 80441 | 80442 | 80443 | 80444 | 80445 | 80446 | 80447 | 80448 | 80449 | 80450 | 80451 | 80452 | 80453 | 80454 | 80455 | 80456 | 80457 | 80458 | 80459 | 80460 | 80461 | 80462 | 80463 | 80464 | 80465 | 80466 | 80467 | 80468 | 80469 | 80470 | 80471 | 80472 | 80473 | 80474 | 80475 | 80476 | 80477 | 80478 | 80479 | 80480 | 80481 | 80482 | 80483 | 80484 | 80485 | 80486 | 80487 | 80488 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |



# Comparison of statistical packages

[文](#) [2 languages](#) [▼](#)
[Contents](#) [\[hide\]](#)
[Article](#) [Talk](#)
[Read](#) [Edit](#) [View history](#)
[\(Top\)](#)
[General information](#)
[Operating system support](#)
[ANOVA](#)
[Regression](#)
[Time series analysis](#)
[Charts and diagrams](#)
[Other abilities](#)
[See also](#)
[Footnotes](#)
[References](#)
[Further reading](#)

From Wikipedia, the free encyclopedia

 The following tables compare general and technical information for a number of [statistical analysis packages](#).

## General information [\[edit\]](#)

| Product                    | Developer                              | Latest version              | Open source | Software license | Interface               | Written in             | Scripting languages |
|----------------------------|----------------------------------------|-----------------------------|-------------|------------------|-------------------------|------------------------|---------------------|
| <a href="#">ADaMSoft</a>   | Marco Scarno                           | 27 April 2015               | Yes         | GNU GPL          | CLI, GUI                | Java                   |                     |
| <a href="#">Alteryx</a>    | Alteryx Inc.                           | 2019.2 (June 2019)          | No          | Proprietary      | GUI, Python SDK, js SDK | C#, C++, Python, R, js | R, Python           |
| <a href="#">Analyse-it</a> | Analyse-it                             |                             | No          | Proprietary      | GUI                     | C#, C++, Fortran       |                     |
| <a href="#">ASReml</a>     | VSN International                      | 26 March 2014               | No          | Proprietary      | CLI                     |                        |                     |
| <a href="#">BMDP</a>       | Statistical Solutions                  |                             | No          | Proprietary      |                         |                        |                     |
| <a href="#">Dataplot</a>   | Alan Heckert                           | 2013                        | Yes         | Public domain    | CLI, GUI                | Fortran                |                     |
| <a href="#">ELKI</a>       | Ludwig Maximilian University of Munich | 0.7.5<br>(15 February 2019) | Yes         | AGPL             | CLI, GUI                | Java                   | Shell (computing)   |

[https://en.wikipedia.org/wiki/Comparison\\_of\\_statistical\\_packages](https://en.wikipedia.org/wiki/Comparison_of_statistical_packages)

# Regression [\[edit\]](#)

Support for various [regression](#) methods.

| Product                                   | OLS | WLS | 2SLS                | NLLS                | Logistic            | GLM                 | LAD                 | Stepwise | Quantile   | Probit              | Cox                 | Poisson | MLR                 |
|-------------------------------------------|-----|-----|---------------------|---------------------|---------------------|---------------------|---------------------|----------|------------|---------------------|---------------------|---------|---------------------|
| <a href="#">ADaMSoft</a>                  | Yes | Yes | No                  | Yes                 | Yes                 | No                  | No                  | Yes      |            |                     |                     |         |                     |
| <a href="#">Alteryx</a>                   | Yes | Yes |                     |                     | Yes                 | Yes                 |                     | Yes      |            | Yes                 |                     |         |                     |
| <a href="#">Analyse-it</a>                | Yes |     |                     |                     | Yes                 |                     |                     |          |            |                     |                     |         | Yes                 |
| <a href="#">BMDP</a>                      | Yes |     |                     |                     | Yes                 |                     |                     | Yes      |            |                     | Yes                 |         |                     |
| <a href="#">Epi Info</a>                  | Yes | No  | No                  | No                  | Yes                 | No                  | No                  | No       |            |                     | Yes                 |         |                     |
| <a href="#">EViews</a>                    | Yes | Yes | Yes                 | Yes                 | Yes                 | Yes                 | Yes                 | Yes      | Yes        | Yes                 |                     | Yes     | Yes                 |
| <a href="#">GAUSS</a>                     | Yes | Yes |                     |                     | Yes                 | Yes                 | No                  |          | Yes        |                     |                     | Yes     | Yes                 |
| <a href="#">GenStat</a>                   | Yes | Yes | Yes                 | Yes                 | Yes                 | Yes                 | Yes                 | Yes      | Yes        | Yes                 | Yes                 | Yes     | Yes                 |
| <a href="#">GraphPad Prism</a>            | Yes | Yes | No                  | Yes                 | Yes                 | No                  | No                  | No       | No         | No                  |                     | No      | Yes                 |
| <a href="#">gretl</a>                     | Yes | Yes | Yes                 | Yes                 | Yes                 | No                  | Yes                 | Yes      | Yes        | Yes                 |                     | Yes     |                     |
| <a href="#">JMP</a>                       | Yes | Yes | No                  | Yes                 | Yes                 | Yes                 | No                  | Yes      | In JMP Pro | Yes                 | In JMP Pro          | Yes     | Yes                 |
| <a href="#">LIMDEP</a>                    | Yes | Yes | Yes                 | Yes                 | Yes                 | Yes                 | Yes                 | Yes      | Yes        | Yes                 | Yes                 | Yes     | Yes                 |
| <a href="#">Maple</a>                     | Yes | Yes | No                  | Yes <sup>[18]</sup> | No                  | No                  | No                  | No       | No         | No                  | No                  | No      | Yes                 |
| <a href="#">Mathematica</a>               | Yes | Yes |                     | Yes                 | Yes <sup>[19]</sup> | Yes <sup>[20]</sup> | Yes <sup>[21]</sup> |          | Yes        | Yes <sup>[22]</sup> | Yes <sup>[23]</sup> | Yes     | Yes <sup>[24]</sup> |
| <a href="#">MATLAB+Statistics Toolbox</a> | Yes | Yes | Yes <sup>[25]</sup> | Yes                 | Yes                 | Yes                 | Yes                 | Yes      | Yes        | Yes                 | Yes                 | Yes     | Yes                 |
| <a href="#">MaxStat Pro</a>               | Yes | Yes |                     | Yes                 | Yes                 |                     |                     |          |            |                     |                     |         | Yes                 |
| <a href="#">MedCalc</a>                   | Yes | Yes |                     | Yes                 | Yes                 |                     |                     | Yes      |            | Yes                 | Yes                 |         | Yes                 |
| <a href="#">Minitab</a>                   | Yes | Yes | No                  | Yes                 | Yes                 | No                  | No                  | Yes      | No         | Yes                 |                     | Yes     | Yes                 |
| <a href="#">NCSS</a>                      | Yes | Yes | Yes                 | Yes                 | Yes                 | Yes                 | Yes                 | Yes      | Yes        | Yes                 | Yes                 | Yes     | Yes                 |
| <a href="#">NLOGIT</a>                    | Yes | Yes | Yes                 | Yes                 | Yes                 | Yes                 | Yes                 | Yes      | Yes        | Yes                 | Yes                 | Yes     | Yes                 |
| <a href="#">Orange</a>                    | Yes | Yes | No                  | Yes                 | Yes                 | No                  | No                  | No       | No         | No                  | No                  | No      | Yes                 |
| <a href="#">Origin</a>                    | Yes | Yes | No                  | Yes                 | No                  | No                  | No                  | No       | No         | Screenshot          | Yes                 | No      | Yes                 |

## *What is R ?*

- R is an open source complete and flexible software environment for statistical computing and graphics.
- It includes :
  - Tools for data import and manipulation
  - Large set of data analysis tools
  - Graphical tools
  - As a programming language, a simple development environment, with a text editor
- R itself is written primarily in C and Fortran, and is an implementation of the statistical language S

## *Advantages of R*

- Advantages of R
  - Free
  - Availability and compatibility
  - Well-designed publication-quality plots
  - Tons of graphic possibilities
  - Can import files from other (statistical) programs
  - New version every x months
  - Interactive development environments (IDEs) available
  - Large users community
- Advantages of *learning R*
  - Learn to program and do reproducible research
  - Speak the common language

## *Drawbacks of R*

- «Expert friendly»
- Learn by example
- Not very (easily) interactive
- Command-based
- Documentation sometimes cryptic
- (Too) large amount of resources
- Constantly evolving
- Memory intensive and slow at times

## *Now we open R*

Go to website

Day 1 (<https://sib-swiss.github.io/Introduction-to-statistics-with-R/day1/>)

Click on the Download full data for the week button

Open the file easy\_R\_script.R file, which we will now look at together !

## *Downloading and installing R: the R website*



[\[Home\]](#)

### **Download**

[CRAN](#)

### **R Project**

[About R](#)

[Logo](#)

[Contributors](#)

[What's New?](#)

[Reporting Bugs](#)

[Conferences](#)

[Search](#)

[Get Involved: Mailing Lists](#)

[Get Involved: Contributing](#)

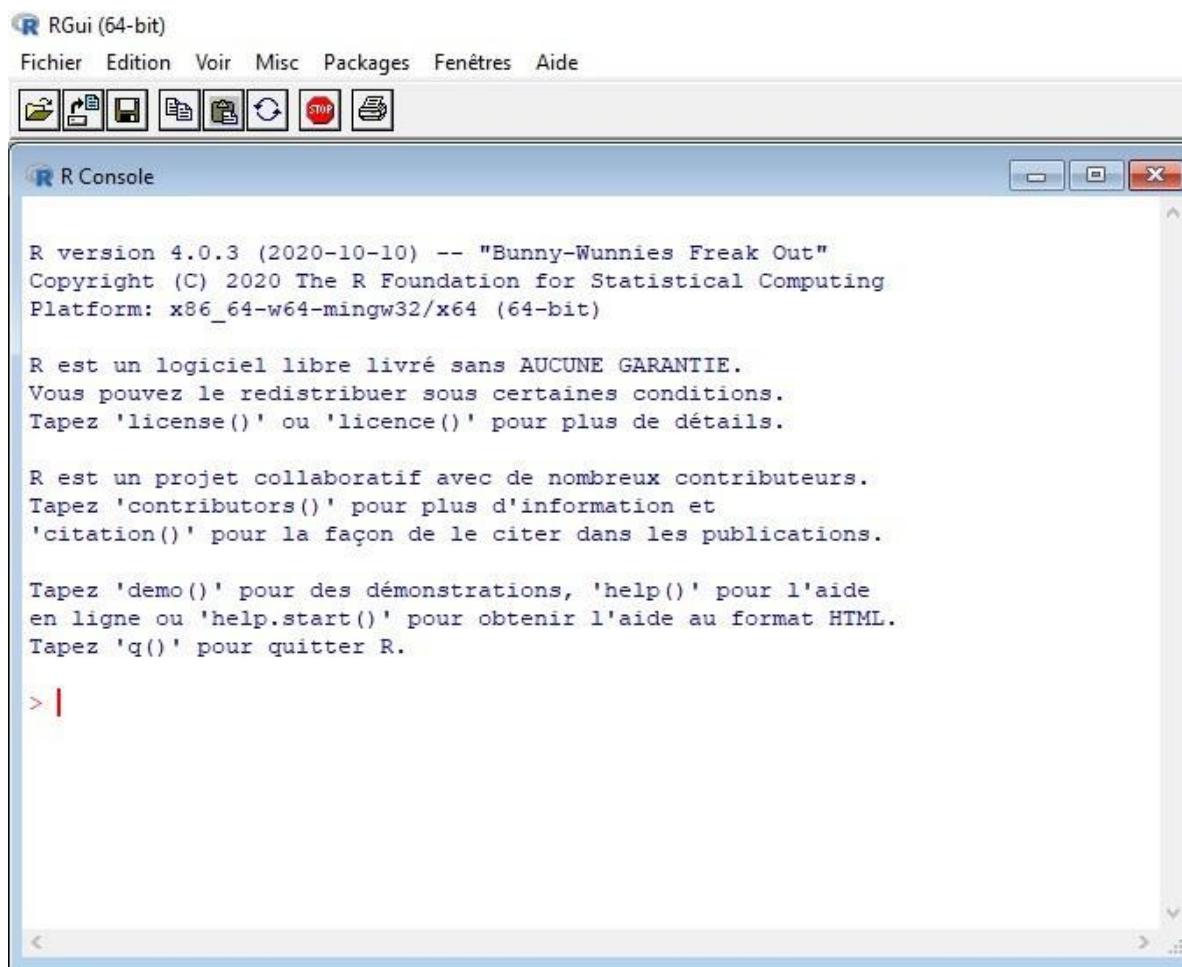
[Developer Pages](#)

[R Blog](#)

# **The R Project for Statistical Computing**

## **Getting Started**

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To [download R](#), please choose your preferred [CRAN mirror](#).


If you have questions about R like how to download and install the software, or what the license terms are, please read our [answers to frequently asked questions](#) before you send an email.

## **News**

- [R version 4.2.2 \(Innocent and Trusting\)](#) has been released on 2022-10-31.
- [R version 4.1.3 \(One Push-Up\)](#) was released on 2022-03-10.
- Thanks to the organisers of useR! 2020 for a successful online conference. Recorded tutorials and talks from the conference are available on the [R Consortium YouTube channel](#).
- You can support the R Foundation with a renewable subscription as a [supporting member](#)

<https://www.r-project.org/>

## *R console*



The prompt “>” indicates that R is waiting for you to type a command

# RStudio interface

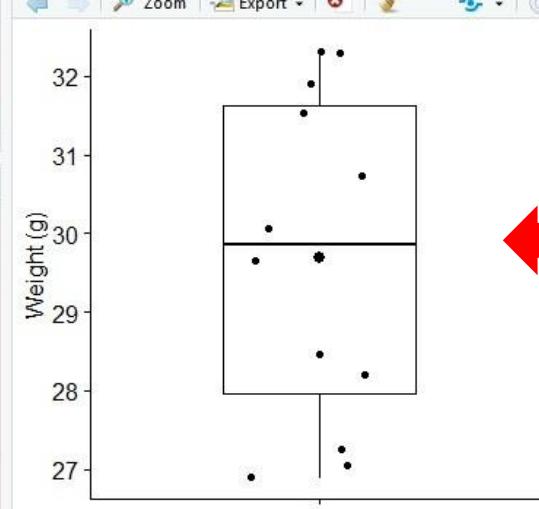
Editor 

```
13
14
15 # -----
16 # one sample t-test
17 # -----
18
19 # weight <- runif(12, min=26, max=33)
20 weight <- c(31.89381, 28.45898, 28.18985, 30.06679, 27.04369, 32.30934,
21           31.52805, 32.28462, 27.25366, 29.64034, 30.74083, 26.88916)
22 weight <- as.data.frame(weight)
23
24 mean_weight <- mean(weight$weight)
25 sd_weight <- sd(weight$weight)
26
27 hist(weight$weight, main="Mice weight at 18 weeks", xlab="")
28
29 ggboxplot(weight$weight, width = 0.5, add = c("mean", "jitter"), ylab =
30
31 identify_outliers(weight)
32
33 < [1:19] # (Untitled) R Script
```

Console, terminal 

```
> sd_weight <- sd(weight$weight)
>
> hist(weight$weight, main="Mice weight at 18 weeks", xlab="")
>
> ggboxplot(weight$weight, width = 0.5, add = c("mean", "jitter"), ylab = "weight (g)", xlab = F)
warning messages:
1: 'fun.y' is deprecated. Use 'fun' instead.
2: 'fun.ymin' is deprecated. Use 'fun.min' instead.
3: 'fun.ymax' is deprecated. Use 'fun.max' instead.
>
> identify_outliers(weight)
[1] weight is.outlier is.extreme
<0 lignes> (ou 'row.names' de longueur nulle)
> |
```

Workspace, history 


Environment History Connections

Global Environment

Data

|             |                       |
|-------------|-----------------------|
| weight      | 12 obs. of 1 variable |
| mean_weight | 29.6915933333333      |
| sd_weight   | 2.08078056863429      |

File explorer, plots, packages, help 



## *R scripts and workspace*

- R script (.R file)
  - Very useful instead of typing commands on the console.
  - Allows you to keep track of what you are doing and make any modification easier
  - To actually execute some commands, you can select the lines and run the execution
- Workspace (.Rdata file)
  - The internal memory where R will store the objects you created during the session.
  - To list what is in your workspace: `ls()`
  - To empty the workspace from all objects: `rm(list=ls())`
  - To save only specific R objects: `save(object_name(s), "name_of_file.RData")`
  - To save your entire workspace: `save.image("name_of_file.RData")`
  - To load your workspace / specific R objects: `load("name_of_file.RData")`

# R Markdown

- R Markdown provides an authoring framework for data science. You can use a single R Markdown file to both:
  - save and execute code
  - generate high quality reports that can be shared with an audience
- R Markdown documents are fully reproducible and support dozens of static and dynamic output formats



<https://rmarkdown.rstudio.com/lesson-1.html>

### A .Rmd file

YAML metadata

```
title: "Topographic Data in R"
author: "Eric Poncet, Benoit Simon-Bouhet and Jean-Olivier Irisson"
output: html_document
params:
  dataset: "florida"
```

Text

Code chunks

```
## r setup
library(mrmap, warn = FALSE)
library(ggplot2, warn = FALSE)
library(viridis, warn = FALSE)

data(list = params$data)
df <- fortify(get(params$data))

p <- ggplot(df, aes(x=x, y=y)) +
  geom_raster(aes(fill=z)) +
  geom_contour(aes(z=z), colour="white", size=0.1,
              breaks=c(-100, -200, -500, -1000, -2000, -4000)) +
  geom_contour(aes(z=z), colour="white", size=0.3, breaks=0)
  ...
  ...
  ...

## Using Topographic Colors
```

## *Leaving R*

- To leave R, use the `q()` command (or "quit" from the menu in RStudio):

```
> q()
```

Save workspace image? [y/n/c] :

Answers:

y save workspace image

**n don't save workspace image**

c cancel quitting

## *Functions, operators and variables*

```
CIhigh <- mean(x) + 1.96*sd(x)/sqrt(n)
```

**Variables**: objects stored in memory

**Functions**: always followed by parenthesis

**Operators**

## *R syntax*

- Case sensitive: A is not a
- Variable names can include A-Z, a-z, 0-9, .... but can not start with a number
- Commands can be separated by ; or newline

```
> x <- 2; x+2
```

```
[1] 4
```

- # indicates comments:

```
> maxvalue <- 2 # Data above two is not relevant
```

# *R help*

```
> ?sum # equivalent to help(sum)
```

sum {base}

R Documentation

## Sum of Vector Elements

### Description

`sum` returns the sum of all the values present in its arguments.

### Usage

```
sum(..., na.rm = FALSE)
```

### Arguments

... numeric or complex or logical vectors.

na.rm logical. Should missing values (including `NaN`) be removed?

## *Using R as a calculator*

```
> 2*3  
[1] 6  
>log(6)/2^2  
[1] 0.4479399  
>exp(6)-4  
[1] 399.4288  
> pi-3  
[1] 0.1415927
```

## *Using R as a programming language*

```
> x <- 2.0
> x
[1] 2.0
> y = 3.0 # Equivalent to y <- 3.0
> y; x
[1] 3
[1] 2
> 1/x
[1] 0.5
```

## *Creating vectors using the `c()` command*

```
> x <- c(1.3, 0.32, 10.5, 5.9, 6.3)
      ,
> x
[1] 1.30 0.32 10.5  5.90 6.30
      0
> y <- c(x, 1.4, x, x); y
[1] 1.30 0.32 10.5  5.90 6.30
      0
[6] 1.40 1.30 0.32 10.50 5.90
[11] 6.30 1.30 0.3  10.50 5.90
      2
[16] 6.30
```

## *Vector operations*

Vector operations work element by element:

```
> x <- c(1.3, 0.32, 10.5, 5.9, 6.3)
> y <- x^2; y
[1] 2.60 0.64 21.00 11.80 12.60
>z <- x*y; z
[1] 3.38 0.21 220.50 69.62 79.38
```

## *Recycling*

- If a vector is too short, R recycles it (reuses it) as needed:

```
> x <- c(1.3, 0.32, 10.5, 5.9)
```

```
> y <- c(2, 10)
```

```
> x*y
```

```
[1] 2.6 3.2 21.0 59.0
```

```
1.3*2 0.32*10 10.5*2 5.9*10
```

- A warning message is displayed if the shortest vector can not be recycled entirely:

```
> x <- c(1.3, 0.32, 10.5, 5.9, 6.3)
```

```
> x*y
```

```
[1] 2.6 3.2 21.0 59.0 12.6
```

**Warning message:**

**In x \* y :**

**longer object length is not a multiple of shorter object length**

## *Generating sequences of numbers*

```
> 1:10
```

```
[1] 1 2 3 4 5 6 7 8 9 10
```

This is equivalent to:

```
>c(1,2,3,4,5,6,7,8,9,10)
```

```
[1] 1 2 3 4 5 6 7 8 9 10
```

```
> 10:1
```

```
[1] 10 9 8 7 6 5 4 3 2 1
```

## *Beware of operator priority*

```
> x <- 2*1:10
# equivalent to x <- 2*(1:10)
> x
[1] 2 4 6 8 10 12 14 16 18 20
> n <- 10
> 1:n-1
# equivalent to (1:n)-1
[1] 0 1 2 3 4 5 6 7 8 9
> 1:(n-1)
[1] 1 2 3 4 5 6 7 8 9
```

## *The seq() function: the same, but more flexible*

```
> seq(from=1, to=10)
[1] 1 2 3 4 5 6 7 8 9 10
> seq(from=1, to=5, by=0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
> x <- seq(from=1, to=5, length=17)
> x
[1] 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
[9] 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
[17] 5.0
] 0
```

## *Non numeric vectors: boolean (logical) values*

```
> x <- seq(from=1, to=5, length=17)
> x
[1] 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
[9] 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
[17] 5.00
> y <- x<5 # help("<") shows list of relational operators
> y
[1] TRUE TRUE TRUE TRUE TRUE TRUE
[7] TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE FALSE
>sum(x<5)
[1] 16
```

*Missing values are designated by NA*

```
> z <- c(1:3, NA)  
> z  
[1] 1 2 3 NA  
> is.na(z)  
[1] FALSE FALSE FALSE TRUE  
> mean(z)  
[1] NA  
> mean(z, na.rm=TRUE)  
[1] 2
```

## *Character strings*

```
> char <- c("hello", "world", "!"); char  
[1] "hello" "world" "!"
```

Vectors can not combine numbers and characters:

```
> char <- c("hello", 3:5, "world"); char  
[1] "hello" "3" "4" "5" "world"  
  
> char <- c(char, NA); char  
[1] "hello" "3" "4" "5" "world" NA
```

## *Selecting subsets of vectors using [ ]*

```
> x <- 10:30
> x[2]
[1] 11
> x[1:5]
[1] 10 11 12 13 14
```

## *Selecting subsets of vectors using [ ] and boolean vectors*

```
> x <- 10:30
> x[x>25]
[1] 26 27 28 29 30
>x <-c(seq(from=5, to=10,by=0.5),NA,
seq(from=11,to=15,by=0.5),NA,
seq(from=16,to=20,by=0.5))
> x[!is.na(x)]
[1] 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
[9] 9.0 9.5 10.0 11.0 11.5 12.0 12.5 13.0
[17] 13.5 14.0 14.5 15.0 16.0 16.5 17.0 17.5
[25] 18.0 18.5 19.0 19.5 20.0
```

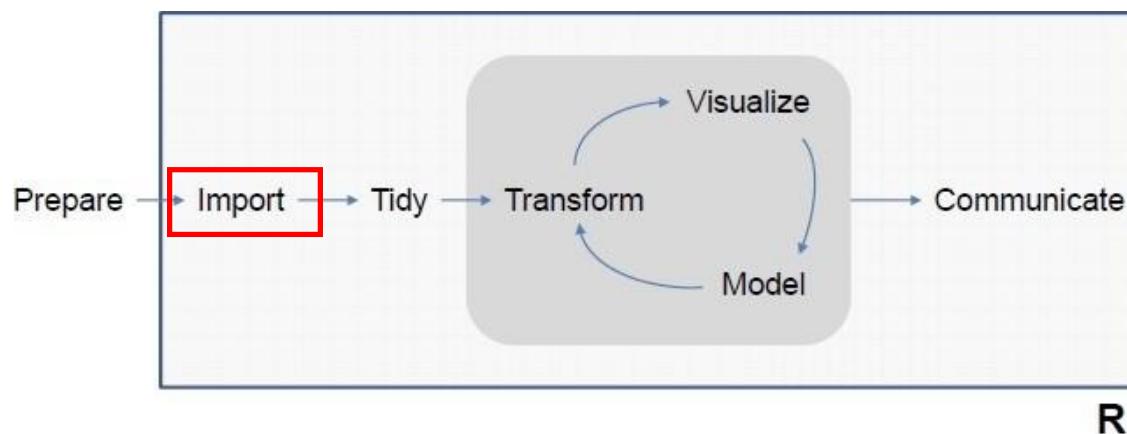
## *Changing parts of vectors using [ ]*

```
> x[32] <- 200  
> x[c(10,29)] <- c(1,100)  
> x[x>15] <- NA
```

## *Finding the length of a vector*

```
> x <- 1:5
```

```
> length(x)
```


```
[1] 5
```

```
> y <- 1:16
```

```
> len <- length(y) ; len
```

```
[1] 16
```

# *Data analysis workflow*

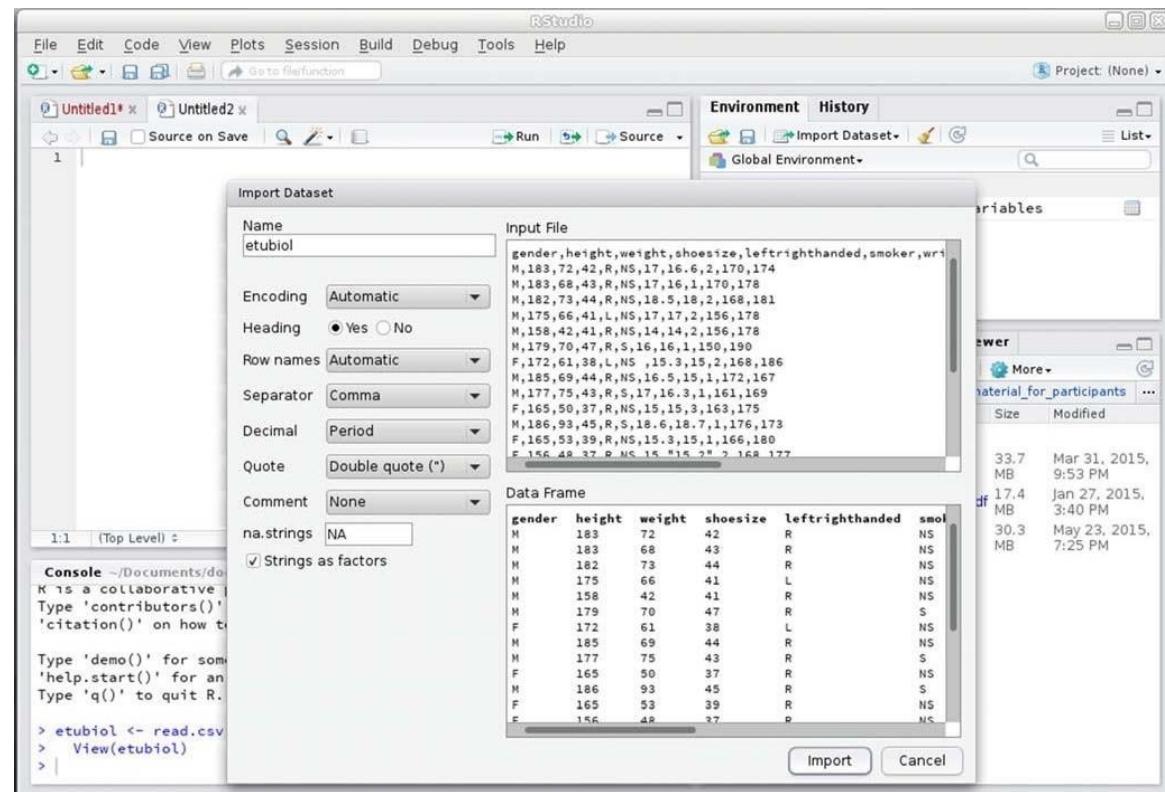


Adapted from Hadley Wickham

## *Importing data into R*

- R can import flat files using e.g. the commands:

`read.table()`


`read.csv()`

`read.delim()`

(with many options – check the help).

- R can also:

- Read Excel spreadsheets
- Read plenty of other formats
- Directly access databases
- Access files over the web



## *Data frames*

- Data frames are made of columns having all the same number of elements
- They look like matrices, except that the columns can hold different variables types
- They are typically used to store data, with
  - Each row being an experimental unit
  - Each column being a measurement

```
> data[,1] # access first column  
> data[, "data1"] # access column "data1"  
> data$data1 # ... same
```

## *Creating data frames*

```
> x <- 1:10
> y <- seq(from=5,to=10,length=10)
> z <- c("A","B","B","A","A","A","B","A","B","B")
> df <- data.frame(d1=x, d2=y, fact=z)
> df
  d1      d2 fact
1  1 5.000000    A
2  2 5.555556    B
..
> names(df)
[1] "d1" "d2" "fact"
> dim(df)
[1] 10   3
```

## *Adding new columns*

```
> df$d3 <- 10:1
> df
  d1      d2 fact d3
1 1 5.000000 A 10
2 2 5.555556 B  9
...
> summary(df)
    d1          d2          fact          d3
Min. : 1.00  Min. : 5.00  Length:10  Min. : 1.00
1st Qu.: 3.25 1st Qu.: 6.25  Class :character 1st Qu.: 3.25
Median : 5.50 Median : 7.50  Mode  :character Median : 5.50
Mean   : 5.50 Mean   : 7.50
3rd Qu.: 7.75 3rd Qu.: 8.75
Max.   :10.00  Max.   :10.00
```

## *Select data from a data frame*

- Select all values of "d2" for which "fact" is "B"

```
> df[ df$fact == "B", "d2" ]
```

```
[1] 5.555556 6.111111 8.333333 9.444444 10.000000
```

- Select all values of "d1" for which "fact" is "B" and "d2" > 7

```
> df[ (df$fact == "B" & df$d2 > 7), "d1" ]
```

```
[1] 7 9 10
```

- Select all values of "d3" for which "fact" is "A" or "d2" < 6

```
> df[ (df$fact == "B" | df$d2 < 6), "d3" ]
```

```
[1] 10 9 8 4 2 1
```

|    | d1 | d2        | fact | d3 |
|----|----|-----------|------|----|
| 1  | 1  | 5.000000  | A    | 10 |
| 2  | 2  | 5.555556  | B    | 9  |
| 3  | 3  | 6.111111  | B    | 8  |
| 4  | 4  | 6.666667  | A    | 7  |
| 5  | 5  | 7.222222  | A    | 6  |
| 6  | 6  | 7.777778  | A    | 5  |
| 7  | 7  | 8.333333  | B    | 4  |
| 8  | 8  | 8.888889  | A    | 3  |
| 9  | 9  | 9.444444  | B    | 2  |
| 10 | 10 | 10.000000 | B    | 1  |

# Exercise

- Import `students.csv` into a variable (call it `data`)
- Extract the weight of women only in a new variable
- Extract the weights of the people who weight more than 80 kilos
- Extract the entries of men who weight more than 80 kg (you can use the "&" operator to include two conditions)

**If you do not know what to do:**

- 1.Extract the weight of women only in a new variable**
- 2.Extract the weights of the people who weight more than 80 kilos**
- 3.Extract the entries of men who weight more than 80 kg**  
**[you can use the "&" operator to include two conditions]**