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Day 3:  
Correlation and Regression
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We are often interested in the statistical dependence  

between two variables, aka “correlation”
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Pearson correlation

• Is a measure of linear association
• Pearson correlation coefficient (r) indicates the  

strength of a linear relationship between two  
variables

• Pearson correlation coefficient (r) is defined as 
cov(X,Y)/sd(X)*sd(Y) which corresponds to a 
sort of average value of the product

(X in SUs)*(Y in SUs)

• where SU = standard units

• X in SUs = (X – mean(X))/SD(X)

• Y in SUs = (Y – mean(Y))/SD(Y)
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Pearson correlation
Average of (X in SUs)*(Y in SUs)

• where SU = standard units

• X in SUs = (X – mean(X))/SD(X)

• Y in SUs = (Y – mean(Y))/SD(Y)

• X=(70,60,0,90,20,100,120), mean(Y) = 65.71429, SD(Y) = 
43.14979

• Xin SUs = (0.09932178, -0.13242904, -1.52293392, 0.56282341, 
-1.05943229, 0.79457422,  1.25807585)

• Y= (6,5,1,8,2,10,10), mean(X) = 6, SD(X)= 3.605551

• Y in SUs = (0.0000000 ,-0.2773501, -1.3867505,  0.5547002, -
1.1094004, 1.1094004,  1.1094004)

• Average of (X in SUs)*(Y in SUs) = 5.913401/6 = 0.9855668
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Pearson correlation-Guide for interpretation

Evans, J. D. (1996) (Straightforward statistics for the behavioral 
sciences. ) suggests for the absolute value of r: 

 
.00-.19 “very weak” 
.20-.39 “weak”
.40-.59 “moderate”
.60-.79 “strong”
 .80-1.0 “very strong”



Pearson correlation

-1  r  1

r is a unit-less quantity

the closer r is to –1 or 1, the more tightly the points on the scatterplot are clustered around a line

Image source: Wikipedia
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To recap …
• r is a measure of LINEAR ASSOCIATION

• r does NOT tell us if Y is a function of X

• r does NOT tell us if X causes Y

• r does NOT tell us if Y causes X

• r does NOT tell us the slope of the line 

(except for its sign)

• r does NOT tell us what the scatterplot looks  

like (it is only a summary of the data)
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1

CORRELATION IS NOT CAUSATION

• You cannot infer that since X and Y are  

highly correlated (r close to –1 or 1), X is  

causing a change in Y

• Y could be causing X

• X and Y could both be varying along with a  

third, possibly unknown variable (either  

causal or not)
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Source: https://www.nejm.org/doi/full/10.1056/NEJMon1211064

http://www.nejm.org/doi/full/10.1056/NEJMon1211064


https://towardsdatascience.com/coronavirus-correlations-5f49e5bb9710



CORRELATION IS NOT CAUSATION
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Assumptions of Pearson correlation

• The only assumption of Pearson correlation is that the data follows  
a bivariate normal distribution

• When this assumption is not met, alternative measures of  
association between two variables should be used
– Spearman rank correlation
– Kendal rank correlation

15
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Spearman (rank) correlation

• A nonparametric measure of rank correlation

• The Spearman correlation coefficient (denoted by the
Greek letter rho) is defined as the Pearson correlation
coefficient between the rank variables
– also a unit-less value varying between -1 and +1

• It tells us how well the relationship between two
variables can be described using a monotonic function
– increase/decrease in one variable is associated with

increase/decrease in the other variable

– Not necessarily linear association!



Spearman correlation

17
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In R:

>?cor

>?cor.test

>cor(x,y)

>cor.test(x,y)

• Note, however, that if there are missing values (NA), then 

you will get an error message

• Elementary statistical functions in R require no missing  

values, or explicit statement of what to do with NA  

(na.rm=TRUE)
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> cor.test(x,y)

Pearson's product-moment correlation

data: x and y

t = 21.5241, df = 98, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:  

0.8667723 0.9376171

sample estimates:

cor  

0.9085158
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• Correlation describes the association between  
variables, but does not describe it

• Often it is useful to obtain a 
mathematical model that describes the 
association between variables, hence
regression



The equation for a line that can be used to predict y knowing x  
(in slope-intercept form) looks like

y = a + b x

where a is called the intercept and b is the slope.

a
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What is the “best” line that fits this data ? → need a criteria  

Can we use it to summarize the relation between x and y ?

y = 0.9 + 0.6x

y = 0.8 + 0x  

y = 0.9 – 0.3x  

y = 1 – 0.6x

y = 1.1 – 0.9x

y = 0.5 – 1.2x
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2

1

3
4

5

6

y = ax+b

7
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The least-squares procedure finds the straight line with  
the smallest sum of squares of vertical errors.

yi = axi +b+i

i = yi −(axi + b)

Least-squares approach to fit a line

2

3

2

2

2

1

2 = + + + ...
i

 iFinds a regression line such that is minimum.



Over all possible straight lines,  

y= 1 - 0.6x is the “best” possible line  

according to least-squares criterion

y = 0.9 + 0.6x

y = 0.8 + 0x  

y = 0.9 – 0.3x  

y = 1 – 0.6x

y = 1.1 – 0.9x

y = 0.5 – 1.2x

24



What if the association is not linear ?
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Use a polynomial regression

y = b0 + b1 x + b2 x2

What if the data is not linear ?
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What if the association is not linear ?

Consider transforming the data (log)

log(y) = a + b x
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X i1 + 2X i2 + ! + p−1Xip−1 +iYi = 0 + 1

is equivalent to

Y = Xβ +εor

i1

28

Linear models in matrix form



Yi= 0 + 1Xi1 + 2X i2 + ! + p−1Xip−1 +i

is equivalent to

Y = Xβ +εor

Linear models in matrix form
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Yi= 0 + 1Xi1 + 2X i2 + … + p−1Xip−1 +

i

is equivalent to

Y = Xβ +εor

Linear models in matrix form
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Yi= 0 + 1Xi1 + 2X i2 + … + p−1Xip−1 +

i

is equivalent to

Y = Xβ +εor

Linear models in matrix form

Least-square estimation of  

regression coefficients



b = (b 0…b p − 1  )' estimator of β is computed as

follows:

Least-square estimation of regression coefficients
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b = (b 0…b p − 1  )' estimator of β is computed as

follows:

Y = Xβ +ε

b

b

E{ε} =0X'Xβ = X'Y

33

β = (X'X)−1X'Y

Computationally intensive

where

Least-square estimation of regression coefficients
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Y = b0 + b1 x1 + b2 x2 + b3 x3

in R:

yvar ~ xvar1 + xvar2 + xvar3

read “~” as “described (or modeled) by”

By default, an intercept is included in the model  

To leave the intercept out:

yvar ~ -1 + xvar1 + xvar2 + xvar3



35

Y = b0 + b1 x1 + b2 x2 + b3 x3

in R:

yvar ~ xvar1 + xvar2 + xvar3

read “~” as “described (or modeled) by”

By default, an intercept is included in the model  

To leave the intercept out:

yvar ~ -1 + xvar1 + xvar2 + xvar3  

yvar ~ 0 + xvar1 + xvar2 + xvar3
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Generic form

response ~ predictors

predictors can be numeric or categorical

R symbols to create formulas

+ to add morevariables

- to leave outvariables

: to introduce interactions between twoterms

* to include both interactions and the terms

(a*b is the same as a + b + a:b)

^n adds all terms including interactions up to order n

I() treats what’s in () as a mathematical expression

More on model formulas
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Let’s walk through an example in R

Inspired by the CLASS dataset, from the program 

SAS (units have been modified from imperial to

metric)
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The CLASS dataset
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The CLASS dataset
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Fitting the linear model in R

Model:

Height = 125.224 + 2.787xAge



> plot( class$Age, class$Height)

> abline(model, col="red", lwd=2)
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> plot(class$Age, class$Height,  

xlim=range(0,Age),  

ylim=range(coef(model)[1], Height))

> abline(model, col="red", lwd=2)

43
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Example of summary results of the lm command in R



Example of summary results of the lm command in R

Function call

45
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Example of summary results of the lm command in R



Distribution of the residuals

Five-number summary of the residuals  

equivalent to

> fivenum( residuals( model ) )

or, graphically, using a
boxplot:
>boxplot( residuals ( model),

horizontal=T)

47
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Example of summary results of the lm command in R
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Coefficients

These statistical tests tell us if the parameters are significantly  
different from 0.

**It is not interesting for the intercept, but usually interesting for  
the slope.

Estimate and Std. Error are used for hypothesis testing

T-value = Estimate / Std. Error

This assumes that the residuals follow a normal distribution!
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Example of summary results of the lm command in R
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RSE (Residual Standard Error) and degrees of freedom

The number of degrees of freedom indicates the number of  

independant pieces of data that are available to estimate the error

While we have 19 residuals here, they are not all independent: for  

example, the last one is constrained because the sum of all residuals  

must be 0.

The number of DF

total observations – number of parameters estimated

Two parameters are estimated (intercept + coefficient), so 19-2 = 17
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RSE (Residual Standard Error) and degrees of freedom

The residual standard error is the standard deviation of the residuals  

(which we would usually like to be small)

It is not exactly equal to what the sd command would return:

> sd(residuals(model))

[1] 2.996486

sqrt(sum(residuals(model)^2)/18)

[1] 2.996486

Here, we must divide by the number of degrees of freedom to get the  

same number:

> sqrt(sum(residuals(model)^2)/17)

[1] 3.083359



53

Example of summary results of the lm command in R
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Multiple and adjusted R-squared

R2 is the proportion of the total variance in the response data that is  
explained by the model

if R2=1, the data fits perfectly on a straight line, and the model explains  
all the variance
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Multiple and adjusted R-squared

R2 is the proportion of the total variance in the response data that is  
explained by the model

if R2=1, the data fits perfectly on a straight line, and the model explains  
all the variance

In the case of simple regression, it is equal to the square of the  
correlation coefficient between the two variables:
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Multiple and adjusted R-squared

R2 is the proportion of the total variance in the response data that is  
explained by the model

if R2=1, the data fits perfectly on a straight line, and the model explains  
all the variance

In the case of simple regression, it is equal to the square of the  
correlation coefficient between the two variables:

The Adjusted R-squared is similar to R-squared, but it takes into account 
the number of variables in the model (we will come back to this later).
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Example of summary results of the lm command in R
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F-test for significance of regression

The F-statistic allows us to test if the whole regression (adding all  

variables vs having only the intercept in) is significant.

It calculates the F value which is given by the variation explained 

by our model divided by the variation that remains.

Mathematically : 
SS(mean)−SS(fit)/(pfit−pmean) 

SS(fit)/(n−pfit)

Pfit= number of parameters in the fit (2 parameters)

Pmean = number of parameters in the mean line (1 parameter)

Note: With only one variable, it provides exactly the same result as the  

t-test for the significance of the coefficient of this variable.
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Challenge

Investigate the correlation and the relationship between weight and height  

using R basic commands
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Multiple regression:  

assessing the effect of several variables

together
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What happens if both,  

age and weight variables

were included in the same model ?



One multiple regression with two variables

This model allows us to determine the respective  

contribution of each variable separately.
59



This is similar to the simple regression case.

Each test is conducted assuming that the tested parameter is the last  
one entering the model:

« If weight is already in the model, is the coefficient for age
significantly different from 0 ? »

60



Two single regressions vs one multiple regression

While both age and weight seem significant by themselves, age is much  
less significant when weight is already included (see also the R2).

It is likely that a lot of the information provided by the age is also provided  
by the weight, so that there may be little need to have both terms in the
model.

61



Multiple and adjusted R-squared

Multiple R-squared: 0.828,

66

Adjusted R-squared: 0.8065

As before, R2 is the proportion of the total variance in  
the response data that is explained by the model.

Adding a new variable in the model will always  

increase R2, up to 1 when there the number of degrees  

of freedom is 0 (number of parameters to estimate =  

number of observations).



Multiple and adjusted R-squared

The adjusted R-squared adjusts for the number of  

variables in the model, and does not necessarily  

increase when the number of variables increase; it can  

even be negative.

It is always equal or below R2.

Multiple R-squared: 0.828,

67

Adjusted R-squared: 0.8065



Example

y <- rnorm(10)

x1 <- rnorm(10); x2 <- rnorm(10); … ; x9 <-

rnorm(10)

summary(lm(y ~ x1)); summary(lm(y ~ x1+x2));

…
1: Multiple R-squared: 0.1419, Adjusted R-squared: 0.03464

2: Multiple R-squared: 0.5173, Adjusted R-squared: 0.3794

3: Multiple R-squared: 0.557, Adjusted R-squared: 0.3355

4: Multiple R-squared: 0.5577, Adjusted R-squared: 0.2039

5: Multiple R-squared: 0.7953, Adjusted R-squared: 0.5395

6: Multiple R-squared: 0.8321, Adjusted R-squared: 0.4962

7: Multiple R-squared: 0.984, Adjusted R-squared: 0.9281

8: Multiple R-squared: 0.9851, Adjusted R-squared: 0.866

9: Multiple R-squared: 1, Adjusted R-squared: NaN

68



The last regression from the example

Call:

lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)

Residuals:

ALL 10 residuals are 0: no residual degrees of freedom!

Coefficients:

69

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02693 NA NA NA

x1 0.53886 NA NA NA

x2 -0.52227 NA NA NA

x3 0.51881 NA NA NA

x4 0.74757 NA NA NA

x5 0.14394 NA NA NA

x6 -0.65387 NA NA NA

x7 -0.48271 NA NA NA

x8 -0.62487 NA NA NA

x9 0.23759 NA NA NA

Residual standard error: NaN on 0 degrees of freedom  

Multiple R-squared: 1, Adjusted R-squared: NaN  

F-statistic: NaN on 9 and 0 DF, p-value: NA



F-statistic for significance of regression

Coefficients:

70

Estimate Std. Error t value Pr(>|t|)

(Intercept) 81.77355 12.90896 6.335 9.92e-06 ***

Age 3.11575 1.34668 2.314 0.03431 *

Weight 0.35064 0.08827 3.973 0.00109 **

F-statistic: 38.52 on 2 and 16 DF, p-value: 7.646e-07

Again, the F-statistic allows us to test if the whole regression  
(adding all variables vs having only the intercept in) is significant.

If any of the tests for the individual variables is significant, the F-
test will generally be significant as well.

However, even if no individual variable is significant (e.g. p < 0.05),  
the F-test can still be significant.
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Categorical variables,  

dummy variables and  

contrasts
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Categorical variables

We’d like to use categorical variables in a linear model, as in:

Height = b0 + b1 Age + b2 « Gender » +error

Intuitively, we want to estimate a « Male » and a « Female » effect.



Categorical variables

We’d like to use categorical variables in a linear model, as in:

Height = b0 + b1 Age + b2 « Gender » +error

Intuitively, we want to estimate a « Male » and a « Female » effect.

In practice, categorical variables (factors in R) are turned (by default,  
based on alphabetical order) into dummy variables of the form

Gender =
1 if Female

2 if Male

73
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Example of summary results of the lm command in R



Example of summary results of the lm command in R

75

baseline for  
height among  

Female



Example of summary results of the lm command in R

76

baseline for  
height among  

Female

The factor GenderM corresponds to the difference in 

baseline for Males​ compared to females



Graphical interpretation

The model specifies 2 straight lines, with the same slope but different y-

intercepts:

For women:  

For men:

Height = 124.52 + 2.72 Age (in orange)

Height = 127.3 + 2.72 Age (in red)

2.8362

77
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What if we don’t use a linear model ?

We could also compute the difference in means  
between males and females directly:

This result is slightly different from the 

2.8362 cm difference found with the linear

model.

Where does the difference come from ?



Interactions

So far, we have assumed a difference between the lines, but the  

same slope; that is, for both men and women, the effect of age is  

the same.

If this assumption is incorrect, it means that there is an interaction  

between the factors « age » and « gender », that is, the effect of  

age is different depending on the gender.

Interactions are modeled in R in the following way:

lm(formula = Height ~ Age + Gender +Age:Gender)

which is equivalent to

lm(formula = Height ~ Age * Gender)

79



Coefficients with an interaction

The coefficients can be interpreted as follows:

According to the model, the height is equal to

56.26 (the intercept)

plus 17.13, but only for males  

plus 7.38 times the person’s age

minus 0.75 times the person’s age, but only for males.
80



Different slopes

No interaction

81

With interaction



What if Males were the baseline ?

The two models are  

exactly the same;  

only the way we look  

at the coefficient  

changes.

Gender1 <- relevel(Gender, ref="M")
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Diagnostic tools
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It is always possible to fit a linear model and find a slope and intercept

... but it does not mean that the model is meaningful !

Examination of residuals: (which should show no obvious trend, since any systematic effect in  

the residuals should ideally be captured by the model):

– Normality

– Time effects

– Nonconstant variance – Curvature



Examination of residuals

85



86

High leverage (‘influential’) points are far from the  
center, and have potentially greater influence

One way to assess points is through the hat values
(obtained from the hat matrix H):

ŷ = Xb = X(X’X)-1X’y = Hy
hi  = Σjhij2

Average value of h = number of coefficients/n  
(including the intercept) = p/n

Cutoff typically 2p/n or 3p/n

Hat values



>hat <- lm.influence( model )

>plot( hat$hat )
>abline(h=c(c(2,3)*2/19),lty=c(2,3),col=c("blue","red") )

Hat values Actual fit
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