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Day 3:
Correlation and Regression
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We are often interested in the statistical dependence
between two variables, aka “correlation”



Pearson correlation

s @ measure of linear association

Pearson correlation coefficient (r) indicates the
strength of a linear relationship between two
variables

Pearson correlation coefficient (r) is defined as
cov(X,Y)/sd(X)*sd(Y) which corresponds to a
sort of average value of the product

(X in SUs)*(Y in SUs)
where SU = standard units
XinSUs = (X—mean(X))/SD(X)
Yin SUs = (Y- mean(Y))/SD(Y)



Happiness (1-10)
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Pearson correlation
Average of (X in SUs)*(Y in SUs)
where SU = standard units
XinSUs = (X-mean(X))/SD(X)
Y in SUs = (Y — mean(Y))/SD(Y)
X=(70,60,0,90,20,100,120), mean(Y) = 65.71429, SD(Y) =
43.14979

Xin SUs = (0.09932178, -0.13242904, -1.52293392, 0.56282341,
-1.05943229, 0.79457422, 1.25807585)

Y=(6,5,1,8,2,10,10), mean(X) = 6, SD(X)= 3.605551

Y in SUs = (0.0000000,-0.2773501, -1.3867505, 0.5547002, -
1.1094004, 1.1094004, 1.1094004)

Average of (X in SUs)*(Y in SUs) = 5.913401/6 = 0.9855668



Pearson correlation-Guide for interpretation

Evans, J. D. (1996) (Straightforward statistics for the behavioral
sciences. ) suggests for the absolute value of r:

.00-.19 “very weak”
.20-.39 “weak”
40-.59 “moderate”
.60-.79 “strong”
.80-1.0 “very strong”



Pearson correlation

-1<r<1

r is a unit-less quantity

the closer » is to —1 or 1, the more tightly the points on the scatterplot are clustered around a line

1 0.8 0.4 0 -0.4 -0.8 -1

Image source: Wikipedia



To recap ...

r is a measure of LINEAR ASSOCIATION
r does NOT tell us if Yis a function of X
r does NOT tell us if X causes Y

r does NOT tell us if Y causes X

r does NOT tell us the slope of the line
(except for its sign)

r does NOT tell us what the scatterplot looks
like (it is only a summary of the data)



CORRELATION IS NOT CAUSATION

 You cannot infer that since X and Y are
highly correlated (r close to -1 or 1), Xis
causing a change in Y

* Y could be causing X

« X and Y could both be varying along with a
third, possibly unknown variable (either
causal or not)
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http://www.nejm.org/doi/full/10.1056/NEJMon1211064
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Correlation is not causation
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Assumptions of Pearson correlation

 The only assumption of Pearson correlation is that the data follows
a bivariate normal distribution

4 » 7 -4
 When this assumption is not met, alternative measures of
association between two variables should be used

— Spearman rank correlation
— Kendal rank correlation

15



Spearman (rank) correlation

* A nonparametric measure of rank correlation

 The Spearman correlation coefficient (denoted by the

Greek letter rho) is defined as the Pearson correlation
coefficient between the rank variables

— also a unit-less value varying between -1 and +1
* |t tells us how well the relationship between two

variables can be described using a monotonic function

— increase/decrease in one variable is associated with
increase/decrease in the other variable

— Not necessarily linear association!
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In R:

>7?Cor

>?cor.test

>Ccor (x,V)

>cor.test (x,V)

* Note, however, that if there are missing values (NA), then
you will get an error message

« Elementary statistical functions in R require no missing
values, or explicit statement of what to do with NA
(na.rm=TRUE)

18



> cor.test (x,vV)

Pearson's product-moment correlation

data: x and y
t = 21.5241, df = 98, p-value < 2.2e-16
alternative hypothesis: true correlation 1s not equal to O
95 percent confidence interval:
0.8667723 0.9376171
sample estimates:
cCor
0.9085158

19



 Correlation describes the association between
variables, but does not describe it

e Often it is useful to obtain a
mathematical model that describes the
association between variables, hence
regression



The equation for a line that can be used to predict y knowing x
(in slope-intercept form) looks like

y=at+bx

where a is called the intercept and b 1s the slope.

21



What is the “best’ line that fits this data ? - need a criteria
Can we use it to summarize the relation between x and y ?

22



Least-squares approach to fit a line

*

y=ax+b

€7

€6 yi:a'xi+b+gi

&3 &= yi—(ax;+b)

>

The least-squares procedure finds the straight line with
the smallest sum of squares of vertical errors.

. . . 2 2 2 2 . . .
Finds a regression line such that ZE =& T&ETE T i minimum.

23



Over all possible straight lines,
y=1 - 0.6x is the “best” possible line
according to least-squares criterion

24
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What if the data is not linear ?

Use a polynomial regression
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What if the association is not linear ?

Consider transforming the data (log)

c THOOIOH TN
Wm?t o ols v a

\\
"
.
C go 0o

s
.
"~

log(y)=a+bx

o

o

5000

10000

X

15000

I
20000

<
[¢)
°8,
&
[o]
mGS
1%60
"
o0
Qg%ﬁ

"%

1 ] |
2 4 6 8 10
109 ()

27



Linear models in matrix form

Y=L+ B Xy

Is equivalent to

or

<

Y
Y,

I
' e e e p_:

Y,

Y =XP +¢

B

b,

+ &
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Linear models in matrix form

Y=L+ X+ X + &

Is equivalent to

Y ] 1 X, X, 1T Ao ] £ ]
Y, _ 1 X, X, 1 B N €,
T BN
Y, 1 X, X, ﬂp 1 €

or Y =XpP +¢



Linear models in matrix form

Y=B+BX0+0Xn+ ...+ B, X, +
c

l

is equivalent to

Y ] 1 X, X, - le—l- [ fo | & ]
Y, _ Xy Xy o Xgp_l b N £,
. 1 . . . E . .
n 1 an Xn2 an—l ﬂp—l 8”

or Y =XpP +¢



Linear models in matrix form

Y=B+BX0+0Xn+ ...+ B, X, +

E.

l

is equivalent to

or Y =XpP +¢

le—l- [ By ] £ ]
sz—l b N €5

Xﬂp—l ﬂp—l _8}? i

Jd L d

Least-square estimation of
regression coefficients
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Least-square estimation of regression coefficients

b=(by...b, | ) estimator of P is computed as
follows:

Y=Xp+¢
X'Xp=X"Y where Fic}=0
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Least-square estimation of regression coefficients

b = (bo . bp_l )' estimator of [3 is computed as
follows:

Y=Xp+¢
X'XPp=X'Y  where E{s}=0
B=(X'X)"'X'Y

Computationally intensive

33



Y= bo"' b1X1+ b2X2+ b3X3

in R:
yvar ~ xvarl + xvarZ2 + xvar3

read “~” as “described (or modeled) by”

By default, an intercept is included in the model
To leave the intercept out:

yvar ~ -1 + xvarl + xvarZ2 + xvar3



Y= bo"' b1X1+ b2X2+ b3X3

in R:
yvar ~ xvarl + xvarZ2 + xvar3

read “~” as “described (or modeled) by”

By default, an intercept is included in the model
To leave the intercept out:
yvar ~ -1 + xvarl + xvarZ2 + xvar3

yvar ~ 0 + xvarl + xvarZ2 + xvar3
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More on model formulas

Generic form
response ~ predictors

predictors can be numeric or categorical

R symbols to create formulas

+ to add morevariables
— to leave outvariables
to introduce interactions between twoterms
* to include both interactions and the terms
(2*b isthesameasa + b +a:b)
“n adds all terms including interactions up to order n

I () treats what's in () as a mathematical expression

36



Let’s walk through an example InR

Inspired by the CLASS dataset, from the program
SAS (units have been modified from imperial to
metric)

37



> class

The CLAS'S dataset

Name Gender Age Height Weight

JOYCE
THOMAS
JAMES
JANE
JOHN
LOUISE
ROBERT
ALICE
BARBARA
10 JEFFREY
11  CAROL
12  HENRY
13 ALFRED
14 JUDY
15  JANET
16 MARY
17 RONALD
18 WILLIAM
19 PHILIP

Ooco~NOYUT B WN B

F

ZEEZETEETTTOTOEE=E2T=2TTmTmETadadEagoEs

11
11
12
12
12
12
12
13
13
13
14
14
14
14
15
15
15
15
16

151.
157.
157.
159.
159.
156.
164.
156.
165.
162.
162.
163.
169.
164.
162.
166.
167.
166.
172.

3

S UIT O U U WO UTo UTWUTIO WO 0 WU

25.
.50
41.
42.
49.
38.
04.
.00
.00
.00
51.
51.
56.
.00
56.
.00
6.
.00
.00

42

42
49
42

45

56

56
75

25

50
25
75
50
00

25
25
25
25

50
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> summary(class)
Name
Length:19
Class :character
Mode :character

Weight
Min. :25.25
1st Qu.:42.12
Median :49.75
Mean :50.01
3rd Qu.:56.12
Max. :75.00

> pairs(class[,-1])

Gender
Length:19
Class :character
Mode :character

The CLAS'S dataset

Age
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

:11.00

12.00

:13.00
:13.32

14 .50

:16.00

Height

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max .

:151.3

158.2

:162.8
:162.3

165.9

:172.0

39
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Fitting the linear model in R

> Im( Height ~ Age, data=class)

Call:
Ilm(formula = Height ~ Age, data = class)

Coefficients:
(Intercept) Age
125.224 2.787

> model <- 1m( Height ~ Age, data=class)
> model

Call:
Ilm(formula = Height ~ Age, data = class)

Coefficients:
(Intercept) Age
125.224 2.787

Height = 125.224 + 2.787x Age

41



> plot( class$Age,

class$Height)

> abline (model, col="red", 1lwd=2)

class$Height
165 170

160

155

11 12

I |
13 14

class$Age

15

16
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> plot (classS$SAge,

class$Height,

xlim=range (0, Age),
yvlim=range (coef (model) [1], Height))
> abline (model, col="red", lwd=2)

class$Height
150 160 170
| | |

140
|

130
|

0]
o]

o O
@) o]

O 8 o
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Example of summary results of the 1m command in R

> summary(model)

Call:
Lm(formula = Height ~ Age, data = class)

Residuals:
Min 1Q Median 3Q Max
-4.957 -1.407 -0.031 1.374 6.130

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 125.2239 6.5217 19.201 5.82e-13 ***
Age 2.7871 0.4809 5.724 2.48e-05 ***

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 3.083 on 17 degrees of freedom
Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383
F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05
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Example of summary results of the 1m command in R

> summary(model) Function call

Call:
Im(formula = Height ~ Age, data = class)

Residuals:
Min 1Q Median 3Q Max
-4.957 -1.407 -0.031 1.374 6.130

Coefficients:

Estimate Std. Error t value Pr(zltl)
(Intercept) 125.2239 6.5217 19.201 5.82e-13 ***
Age 2.7871 0.48069 5.724 2.48e-05 ***

Signif. codes: @ ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢’ 1

Residual standard error: 3.083 on 17 degrees of freedom
Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383
F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05

45



Example of summary results of the 1m command in R

> summary(model)

Call:
Im(formula = Height ~ Age, data = class)

Residuals:
Min 1Q Median 3Q Max
-4.957 -1.407 -0.031 1.374 6.130

Coefficients:

Estimate Std. Error t value Pr(zltl)
(Intercept) 125.2239 6.5217 19.201 5.82e-13 ***
Age 2.7871 0.48069 5.724 2.48e-05 ***

Signif. codes: @ ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢’ 1

Residual standard error: 3.083 on 17 degrees of freedom
Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383
F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05
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Distribution of the residuals

Five-number summary of the residuals
equivalent to

> fivenum( residuals( model ) )

8 11 17 4 7
-4.95669291 -1.406069291 -0.03097113 1.37401575 6.130446019

or, graphically, using a
boxplot: el |

>boxplot( residuals ( model),
horizontal=T)




Example of summary results of the 1m command in R

> summary(model)

Call:
Im(formula = Height ~ Age, data = class)

Residuals:
Min 1Q Median 3Q Max
-4.957 -1.407 -0.031 1.374 6.130

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 125.2239 6.5217 19.201 5.82e-13 ***
Age 2.7871 0.4809 5.724 2.48e-05 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 3.083 on 17 degrees of freedom

Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383
F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05
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Coefficients

These statistical tests tell us if the parameters are significantly
different from 0.

**It is not interesting for the intercept, but usually interesting for
the slope.

Estimate and Std. Error are used for hypothesis testing

T-value = Estimate / Std. Error

This assumes that the residuals follow a normal distribution!

49



Example of summary results of the 1m command in R

> summary(model)

Call:
Im(formula = Height ~ Age, data = class)

Residuals:
Min 1Q Median 3Q Max
-4.957 -1.407 -0.031 1.374 6.130

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 125.2239 6.5217 19.201 5.82e-13 ***
Age 2.7871 0.4809 5.724 2.48e-05 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 3.083 on 17 degrees of freedom

Multiple R-squared: @.6584, Adjusted R-squared: ©.6383
F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05
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RSE (Residual Standard Error) and degrees of freedom

The number of degrees of freedom indicates the number of
independant pieces of data that are available to estimate the error

While we have 19 residuals here, they are not all independent: for
example, the last one is constrained because the sum of all residuals
must be 0.

The number of DF
total observations — number of parameters estimated

Two parameters are estimated (intercept + coefficient), so 19-2 = 17

51



RSE (Residual Standard Error) and degrees of freedom

The residual standard error is the standard deviation of the residuals
(which we would usually like to be small)

It is not exactly equal to what the sd command would return:
> sd(residuals(model))

(1] 2.996486
sgrt(sum(residuals(model)*2)/18)
[1] 2.996486

Here, we must divide by the number of degrees of freedom to get the
same number:

> sqgrt(sum(residuals(model)*2)/17)
(1] 3.083359
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Example of summary results of the 1m command in R

> summary(model)

Call:
Im(formula = Height ~ Age, data = class)

Residuals:
Min 1Q Median 3Q Max
-4.957 -1.407 -0.031 1.374 6.130

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 125.2239 6.5217 19.201 5.82e-13 ***
Age 2.7871 0.4809 5.724 2.48e-05 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 90.01 ‘*’ 0.05 ‘.’ 9.1 ¢’ 1

Residual standard error: 3 023 on 17 degrees of freedom
Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383

F-statistic: 3Z2.77 on 1 and 17 DF, p-value: Z.48e-05
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Multiple and adjusted R-squared

R2is the proportion of the total variance in the response data that is
explained by the model

if R2=1, the data fits perfectly on a straight line, and the model explains
all the variance
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Multiple and adjusted R-squared

R2is the proportion of the total variance in the response data that is
explained by the model

If R2=1, the data fits perfectly on a straight line, and the model explains
all the variance

In the case of simple regression, it is equal to the square of the
correlation coefficient between the two variables:

> summary(model)$r.squared

[1] 0.6584257

> cor(class$Age,class$Height)A2
[1] 0.6584257
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Multiple and adjusted R-squared

R2is the proportion of the total variance in the response data that is
explained by the model

If R2=1, the data fits perfectly on a straight line, and the model explains
all the variance

In the case of simple regression, it is equal to the square of the
correlation coefficient between the two variables:

> summary(model)$r.squared

[1] 0.6584257

> cor(class$Age,class$Height)A2
[1] @0.6584257

The Adjusted R-squared is similar to R-squared, but it takes into account
the number of variables in the model (we will come back to this later).
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Example of summary results of the 1m command in R

> summary(model)

Call:
Im(formula = Height ~ Age, data = class)

Residuals:
Min 1Q Median 3Q Max
-4.957 -1.407 -0.031 1.374 6.130

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 125.2239 6.5217 19.201 5.82e-13 ***
Age 2.7871 0.4809 5.724 2.48e-05 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 90.01 ‘*’ 0.05 ‘.’ 9.1 ¢’ 1

Residual standard error: 3.083 on 17 degrees of freedom
Multiple R-sguared:. 0 6584 Adjusted R-sguared. 0, 6383

N e

F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05
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F-test for significance of regression

The F-statistic allows us to test if the whole regression (adding all
variables vs having only the intercept in) is significant.

It calculates the F value which is given by the variation explained
by our model divided by the variation that remains.

SS(mean)-SS(fit)/(pfit—-pmean)

Mathematically : SS()/(n—pfi)

Pfit= number of parameters in the fit (2 parameters)

Pmean = number of parameters in the mean line (1 parameter)

Note: With only one variable, it provides exactly the same result as the
t-test for the significance of the coefficient of this variable.



Challenge

Investigate the correlation and the relationship between weight and height
using R basic commands
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