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Correlation and Simple Regression
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Day 3:  
Correlation and Regression
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We are often interested in the statistical dependence  

between two variables, aka “correlation”
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Pearson correlation

• Is a measure of linear association
• Pearson correlation coefficient (r) indicates the  

strength of a linear relationship between two  
variables

• Pearson correlation coefficient (r) is defined as 
cov(X,Y)/sd(X)*sd(Y) which corresponds to a 
sort of average value of the product

(X in SUs)*(Y in SUs)

• where SU = standard units

• X in SUs = (X – mean(X))/SD(X)

• Y in SUs = (Y – mean(Y))/SD(Y)
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Pearson correlation
Average of (X in SUs)*(Y in SUs)

• where SU = standard units

• X in SUs = (X – mean(X))/SD(X)

• Y in SUs = (Y – mean(Y))/SD(Y)

• X=(70,60,0,90,20,100,120), mean(Y) = 65.71429, SD(Y) = 
43.14979

• Xin SUs = (0.09932178, -0.13242904, -1.52293392, 0.56282341, 
-1.05943229, 0.79457422,  1.25807585)

• Y= (6,5,1,8,2,10,10), mean(X) = 6, SD(X)= 3.605551

• Y in SUs = (0.0000000 ,-0.2773501, -1.3867505,  0.5547002, -
1.1094004, 1.1094004,  1.1094004)

• Average of (X in SUs)*(Y in SUs) = 5.913401/6 = 0.9855668
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Pearson correlation-Guide for interpretation

Evans, J. D. (1996) (Straightforward statistics for the behavioral 
sciences. ) suggests for the absolute value of r: 

 
.00-.19 “very weak” 
.20-.39 “weak”
.40-.59 “moderate”
.60-.79 “strong”
 .80-1.0 “very strong”



Pearson correlation

-1  r  1

r is a unit-less quantity

the closer r is to –1 or 1, the more tightly the points on the scatterplot are clustered around a line

Image source: Wikipedia
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To recap …
• r is a measure of LINEAR ASSOCIATION

• r does NOT tell us if Y is a function of X

• r does NOT tell us if X causes Y

• r does NOT tell us if Y causes X

• r does NOT tell us the slope of the line 

(except for its sign)

• r does NOT tell us what the scatterplot looks  

like (it is only a summary of the data)
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CORRELATION IS NOT CAUSATION

• You cannot infer that since X and Y are  

highly correlated (r close to –1 or 1), X is  

causing a change in Y

• Y could be causing X

• X and Y could both be varying along with a  

third, possibly unknown variable (either  

causal or not)
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Source: https://www.nejm.org/doi/full/10.1056/NEJMon1211064

http://www.nejm.org/doi/full/10.1056/NEJMon1211064


https://towardsdatascience.com/coronavirus-correlations-5f49e5bb9710



Correlation is not causation
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Assumptions of Pearson correlation

• The only assumption of Pearson correlation is that the data follows  
a bivariate normal distribution

• When this assumption is not met, alternative measures of  
association between two variables should be used
– Spearman rank correlation
– Kendal rank correlation

15
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Spearman (rank) correlation

• A nonparametric measure of rank correlation

• The Spearman correlation coefficient (denoted by the
Greek letter rho) is defined as the Pearson correlation
coefficient between the rank variables
– also a unit-less value varying between -1 and +1

• It tells us how well the relationship between two
variables can be described using a monotonic function
– increase/decrease in one variable is associated with

increase/decrease in the other variable

– Not necessarily linear association!



Spearman correlation
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In R:

>?cor

>?cor.test

>cor(x,y)

>cor.test(x,y)

• Note, however, that if there are missing values (NA), then 

you will get an error message

• Elementary statistical functions in R require no missing  

values, or explicit statement of what to do with NA  

(na.rm=TRUE)
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> cor.test(x,y)

Pearson's product-moment correlation

data: x and y

t = 21.5241, df = 98, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:  

0.8667723 0.9376171

sample estimates:

cor  

0.9085158
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• Correlation describes the association between  
variables, but does not describe it

• Often it is useful to obtain a 
mathematical model that describes the 
association between variables, hence
regression



The equation for a line that can be used to predict y knowing x  
(in slope-intercept form) looks like

y = a + b x

where a is called the intercept and b is the slope.

a
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What is the “best” line that fits this data ? → need a criteria  

Can we use it to summarize the relation between x and y ?

y = 0.9 + 0.6x

y = 0.8 + 0x  

y = 0.9 – 0.3x  

y = 1 – 0.6x

y = 1.1 – 0.9x

y = 0.5 – 1.2x
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2

1

3
4

5

6

y = ax +b

7
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The least-squares procedure finds the straight line with  
the smallest sum of squares of vertical errors.

yi = axi+b+i

i = yi −(axi + b)

Least-squares approach to fit a line

2

3

2

2

2

1

2 =  + + + ...
i

 iFinds a regression line such that is minimum.



Over all possible straight lines,  

y= 1 - 0.6x is the “best” possible line  

according to least-squares criterion

y = 0.9 + 0.6x

y = 0.8 + 0x  

y = 0.9 – 0.3x  

y = 1 – 0.6x

y = 1.1 – 0.9x

y = 0.5 – 1.2x
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What if the association is not linear ?
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Use a polynomial regression

y = b0 + b1 x + b2 x2

What if the data is not linear ?
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What if the association is not linear ?

Consider transforming the data (log)

log(y) = a + b x
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X i1 + 2 X i2 + ! + p−1Xip−1 +iYi = 0 + 1

is equivalent to

Y = Xβ +εor

i1
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Linear models in matrix form



Yi= 0 + 1Xi1 + 2 X i2 + ! + p−1Xip−1 +i

is equivalent to

Y = Xβ +εor

Linear models in matrix form
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Yi= 0 + 1Xi1 + 2 X i2 + … + p−1Xip−1 +

i

is equivalent to

Y = Xβ +εor

Linear models in matrix form
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Yi= 0 + 1Xi1 + 2 X i2 + … + p−1Xip−1 +

i

is equivalent to

Y = Xβ +εor

Linear models in matrix form

Least-square estimation of  

regression coefficients



b = (b 0…b p − 1  )' estimator of β is computed as

follows:

Least-square estimation of regression coefficients
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b = (b 0…b p − 1  )' estimator of β is computed as

follows:

Y = Xβ +ε

b

b

E{ε} =0X'Xβ = X'Y

33

β = (X'X)−1X'Y

Computationally intensive

where

Least-square estimation of regression coefficients
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Y = b0 + b1 x1 + b2 x2 + b3 x3

in R:

yvar ~ xvar1 + xvar2 + xvar3

read “~” as “described (or modeled) by”

By default, an intercept is included in the model  

To leave the intercept out:

yvar ~ -1 + xvar1 + xvar2 + xvar3
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Y = b0 + b1 x1 + b2 x2 + b3 x3

in R:

yvar ~ xvar1 + xvar2 + xvar3

read “~” as “described (or modeled) by”

By default, an intercept is included in the model  

To leave the intercept out:

yvar ~ -1 + xvar1 + xvar2 + xvar3  

yvar ~ 0 + xvar1 + xvar2 + xvar3
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Generic form

response ~ predictors

predictors can be numeric or categorical

R symbols to create formulas

+ to add morevariables

- to leave outvariables

: to introduce interactions between twoterms

* to include both interactions and the terms

(a*b is the same as a + b + a:b)

^n adds all terms including interactions up to order n

I() treats what’s in () as a mathematical expression

More on model formulas
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Let’s walk through an example in R

Inspired by the CLASS dataset, from the program 

SAS (units have been modified from imperial to

metric)
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The CLASS dataset
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The CLASS dataset
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Fitting the linear model in R

Model:

Height = 125.224 + 2.787x Age



> plot( class$Age, class$Height)

> abline(model, col="red", lwd=2)
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> plot(class$Age, class$Height,  

xlim=range(0,Age),  

ylim=range(coef(model)[1], Height))

> abline(model, col="red", lwd=2)

43
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Example of summary results of the lm command in R



Example of summary results of the lm command in R

Function call

45
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Example of summary results of the lm command in R



Distribution of the residuals

Five-number summary of the residuals  

equivalent to

> fivenum( residuals( model ) )

or, graphically, using a
boxplot:
>boxplot( residuals ( model),

horizontal=T)

47
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Example of summary results of the lm command in R
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Coefficients

These statistical tests tell us if the parameters are significantly  
different from 0.

**It is not interesting for the intercept, but usually interesting for  
the slope.

Estimate and Std. Error are used for hypothesis testing

T-value = Estimate / Std. Error

This assumes that the residuals follow a normal distribution!
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Example of summary results of the lm command in R
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RSE (Residual Standard Error) and degrees of freedom

The number of degrees of freedom indicates the number of  

independant pieces of data that are available to estimate the error

While we have 19 residuals here, they are not all independent: for  

example, the last one is constrained because the sum of all residuals  

must be 0.

The number of DF

total observations – number of parameters estimated

Two parameters are estimated (intercept + coefficient), so 19-2 = 17
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RSE (Residual Standard Error) and degrees of freedom

The residual standard error is the standard deviation of the residuals  

(which we would usually like to be small)

It is not exactly equal to what the sd command would return:

> sd(residuals(model))

[1] 2.996486

sqrt(sum(residuals(model)^2)/18)

[1] 2.996486

Here, we must divide by the number of degrees of freedom to get the  

same number:

> sqrt(sum(residuals(model)^2)/17)

[1] 3.083359
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Example of summary results of the lm command in R
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Multiple and adjusted R-squared

R2 is the proportion of the total variance in the response data that is  
explained by the model

if R2=1, the data fits perfectly on a straight line, and the model explains  
all the variance
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Multiple and adjusted R-squared

R2 is the proportion of the total variance in the response data that is  
explained by the model

if R2=1, the data fits perfectly on a straight line, and the model explains  
all the variance

In the case of simple regression, it is equal to the square of the  
correlation coefficient between the two variables:
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Multiple and adjusted R-squared

R2 is the proportion of the total variance in the response data that is  
explained by the model

if R2=1, the data fits perfectly on a straight line, and the model explains  
all the variance

In the case of simple regression, it is equal to the square of the  
correlation coefficient between the two variables:

The Adjusted R-squared is similar to R-squared, but it takes into account 
the number of variables in the model (we will come back to this later).
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Example of summary results of the lm command in R
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F-test for significance of regression

The F-statistic allows us to test if the whole regression (adding all  

variables vs having only the intercept in) is significant.

It calculates the F value which is given by the variation explained 

by our model divided by the variation that remains.

Mathematically : 
SS(mean)−SS(fit)/(pfit−pmean) 

SS(fit)/(n−pfit)

Pfit= number of parameters in the fit (2 parameters)

Pmean = number of parameters in the mean line (1 parameter)

Note: With only one variable, it provides exactly the same result as the  

t-test for the significance of the coefficient of this variable.
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Challenge

Investigate the correlation and the relationship between weight and height  

using R basic commands
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