

Introduction to Statistics and Data Visualisation with R

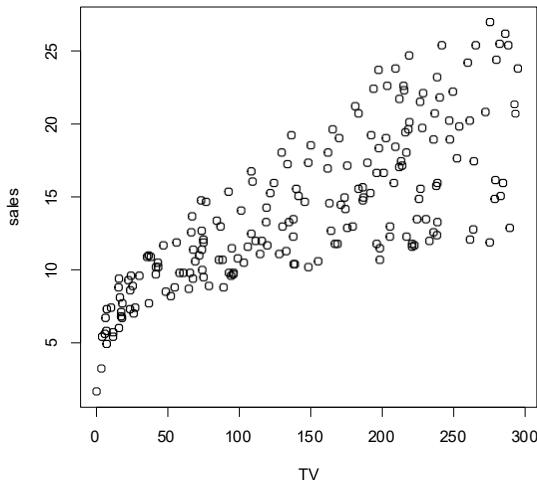
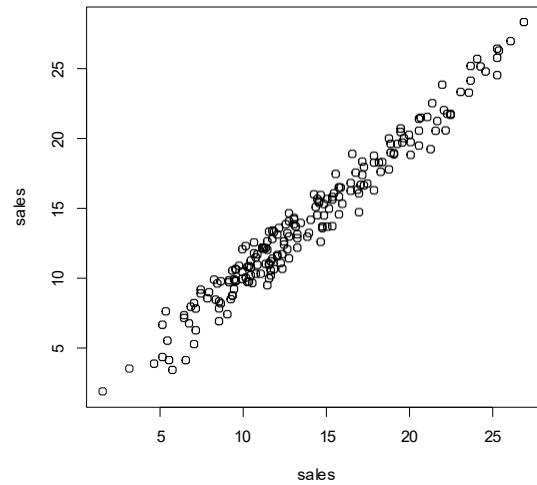
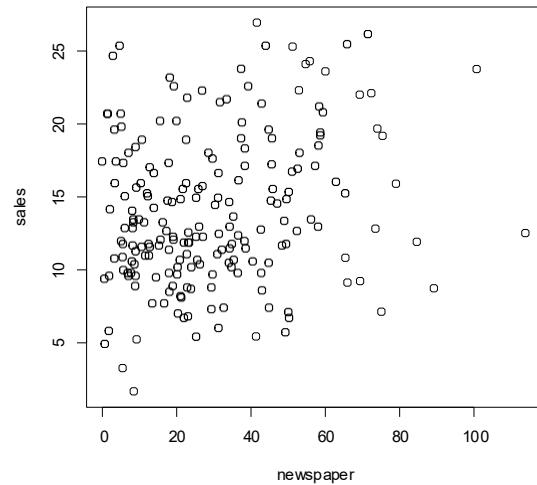
Lausanne, January 2026

Joao Lourenço and Rachel Marcone

Correlation and Simple Regression

Day 3: Correlation and Regression

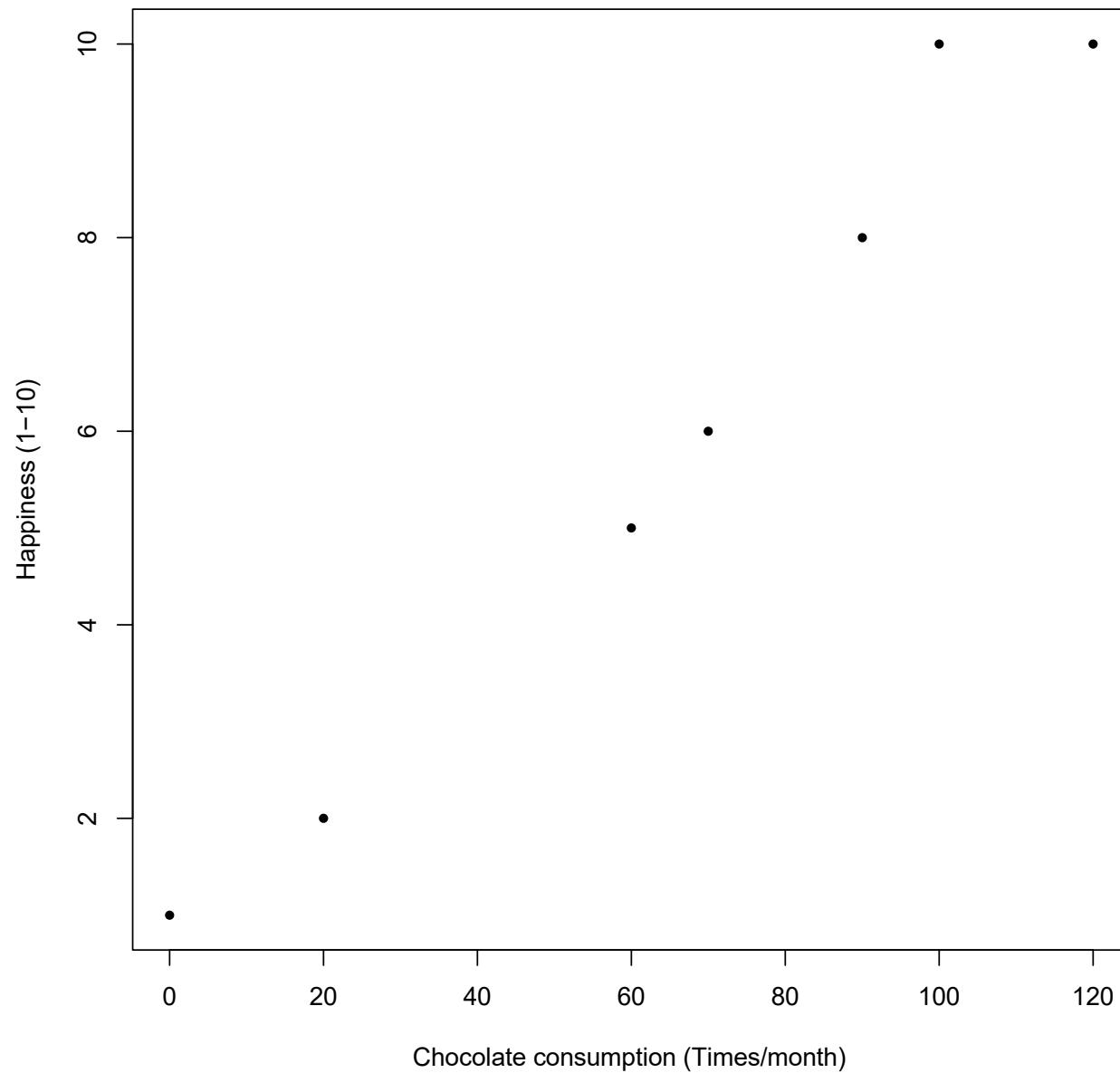
Scatterplot

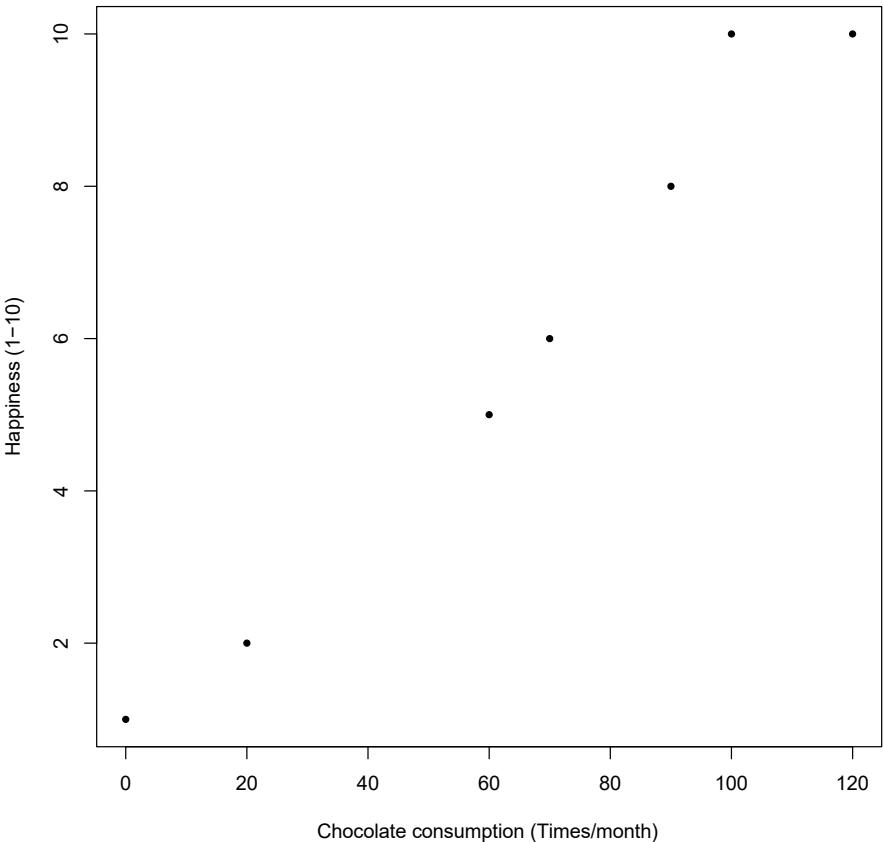


We are often interested in the statistical dependence
between two variables, aka “correlation”

Pearson correlation

- Is a measure of linear association
- Pearson correlation coefficient (r) indicates the strength of a linear relationship between two variables
- Pearson correlation coefficient (r) is defined as $\text{cov}(X,Y)/\text{sd}(X)*\text{sd}(Y)$ which corresponds to a sort of average value of the product
$$(\textcolor{red}{X} \text{ in SUs}) * (\textcolor{red}{Y} \text{ in SUs})$$
- where SU = standard units
- $\textcolor{red}{X}$ in SUs = $(X - \text{mean}(X))/\text{SD}(X)$
- $\textcolor{red}{Y}$ in SUs = $(Y - \text{mean}(Y))/\text{SD}(Y)$





Chocolate consumption	Happiness
70	6
60	5
0	1
90	8
20	2
100	10
120	10

Pearson correlation

Average of $(X \text{ in SUs}) * (Y \text{ in SUs})$

- where SU = standard units
- $X \text{ in SUs} = (X - \text{mean}(X)) / \text{SD}(X)$
- $Y \text{ in SUs} = (Y - \text{mean}(Y)) / \text{SD}(Y)$
- $X = (70, 60, 0, 90, 20, 100, 120)$, $\text{mean}(Y) = 65.71429$, $\text{SD}(Y) = 43.14979$
- $X \text{ in SUs} = (0.09932178, -0.13242904, -1.52293392, 0.56282341, -1.05943229, 0.79457422, 1.25807585)$
- $Y = (6, 5, 1, 8, 2, 10, 10)$, $\text{mean}(X) = 6$, $\text{SD}(X) = 3.605551$
- $Y \text{ in SUs} = (0.0000000, -0.2773501, -1.3867505, 0.5547002, -1.1094004, 1.1094004, 1.1094004)$
- Average of $(X \text{ in SUs}) * (Y \text{ in SUs}) = 5.913401 / 6 = 0.9855668$

Pearson correlation-Guide for interpretation

Evans, J. D. (1996) (Straightforward statistics for the behavioral sciences.) suggests for the absolute value of r:

- .00-.19 “very weak”
- .20-.39 “weak”
- .40-.59 “moderate”
- .60-.79 “strong”
- .80-1.0 “very strong”

Pearson correlation

$$-1 \leq r \leq 1$$

r is a *unit-less quantity*

the closer r is to -1 or 1 , the more tightly the points on the scatterplot are clustered around a line

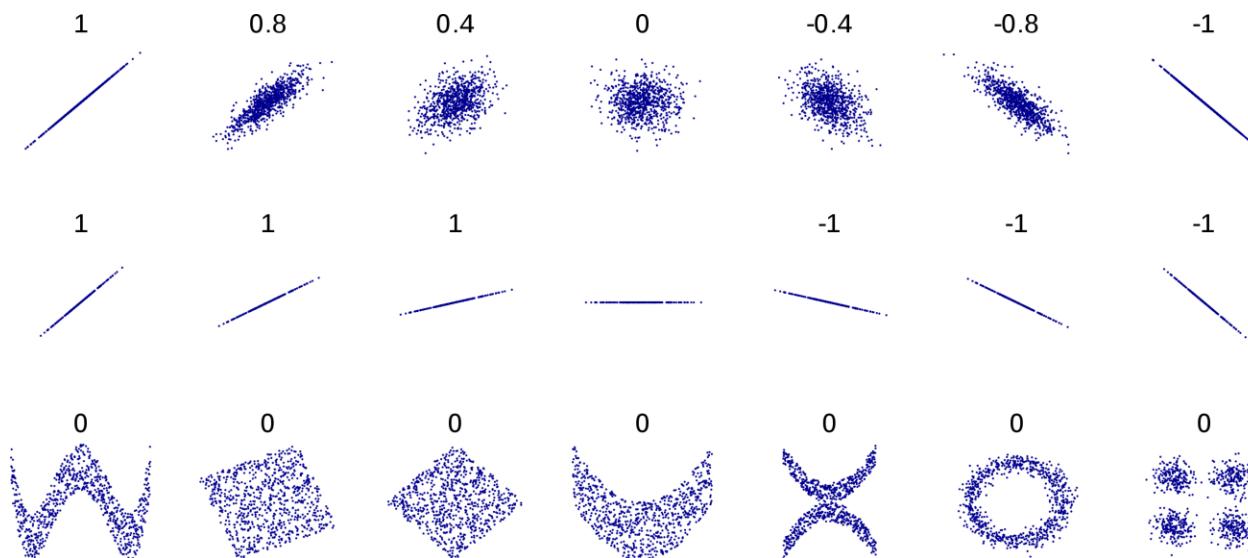


Image source: Wikipedia

To recap ...

- r is a measure of **LINEAR ASSOCIATION**
- r does **NOT** tell us if Y is a function of X
- r does **NOT** tell us if X causes Y
- r does **NOT** tell us if Y causes X
- r does **NOT** tell us the **slope of the line**
(except for its sign)
- r does **NOT** tell us what the **scatterplot looks like** (it is only a summary of the data)

CORRELATION IS NOT CAUSATION

- You *cannot* infer that since X and Y are highly correlated (r close to -1 or 1), X is *causing* a change in Y
- Y could be causing X
- X and Y could both be varying along with a third, possibly unknown variable (either causal or not)

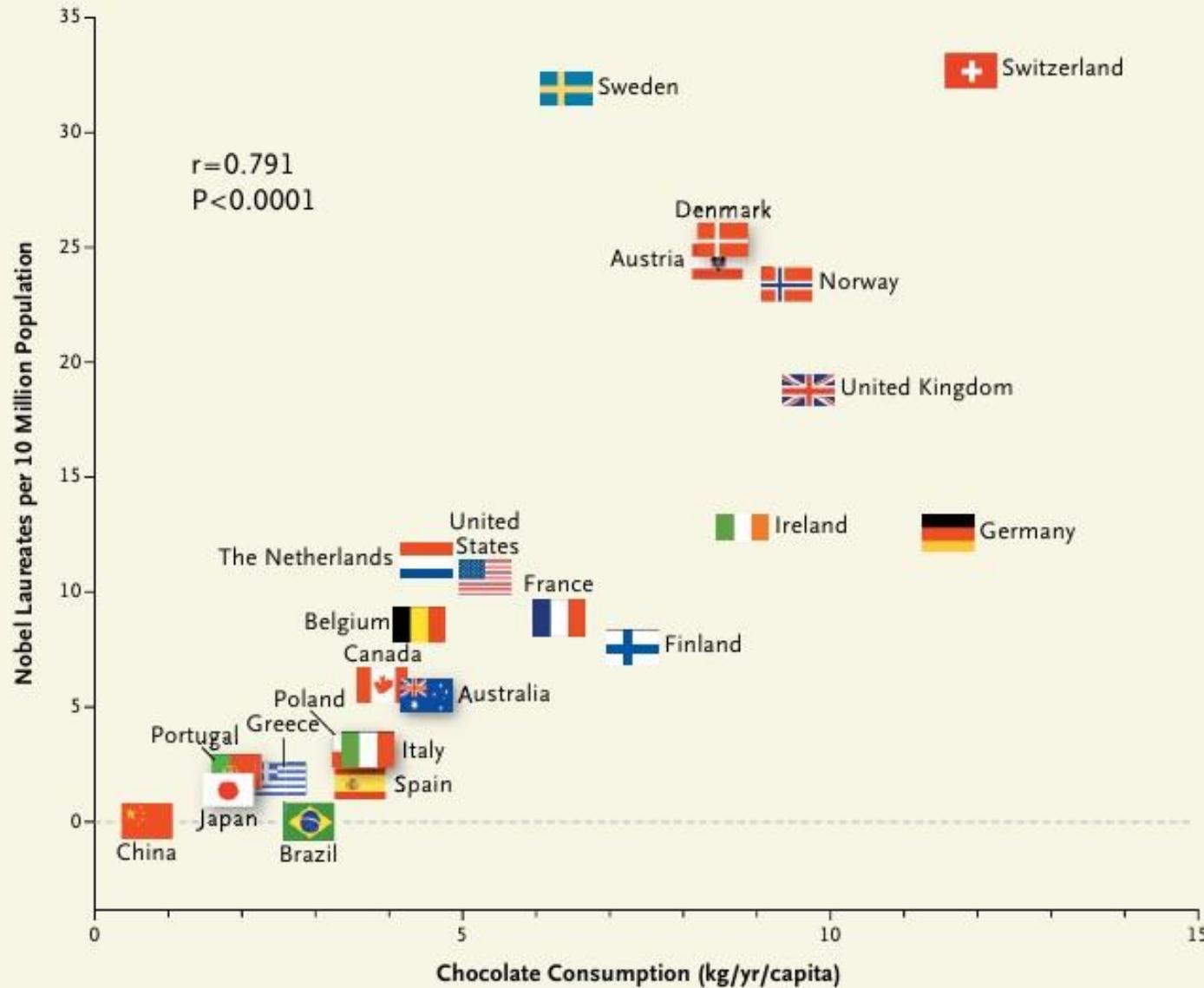
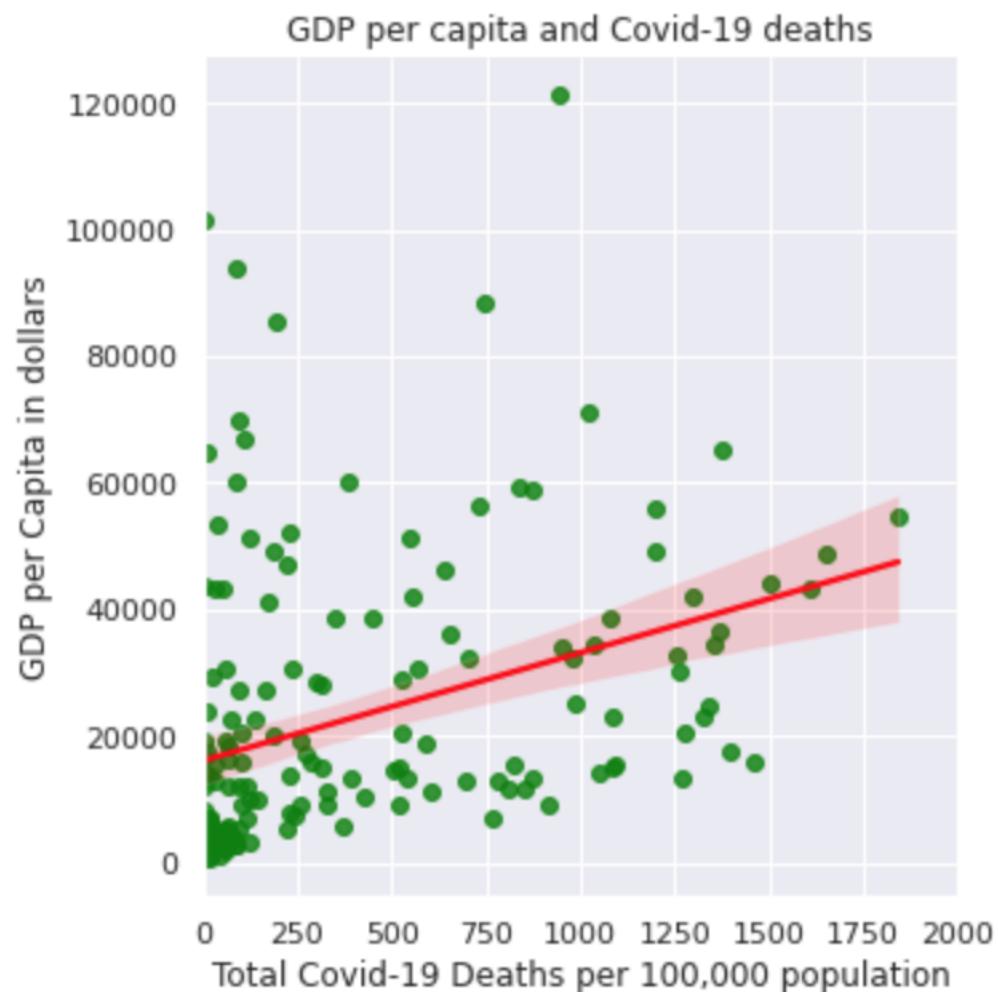


Figure 1. Correlation between Countries' Annual Per Capita Chocolate Consumption and the Number of Nobel Laureates per 10 Million Population.



Correlation is not causation

tylervigen.com

[about](#) | [twitter](#) | [email](#) | [subscribe](#)

Spurious correlations

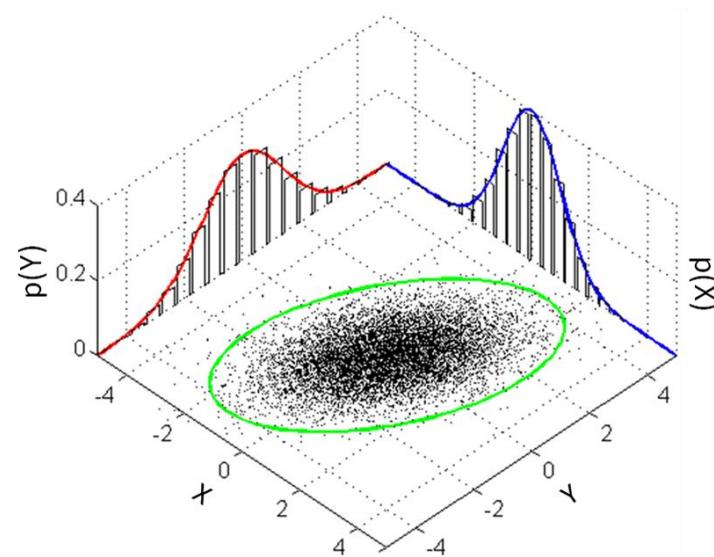
Now a ridiculous book!

- Spurious charts
- Fascinating factoids
- Commentary in the footnotes

[Amazon](#) | [Barnes & Noble](#) | [Indie Bound](#)

Assumptions of Pearson correlation

- The only assumption of Pearson correlation is that the data follows a bivariate normal distribution

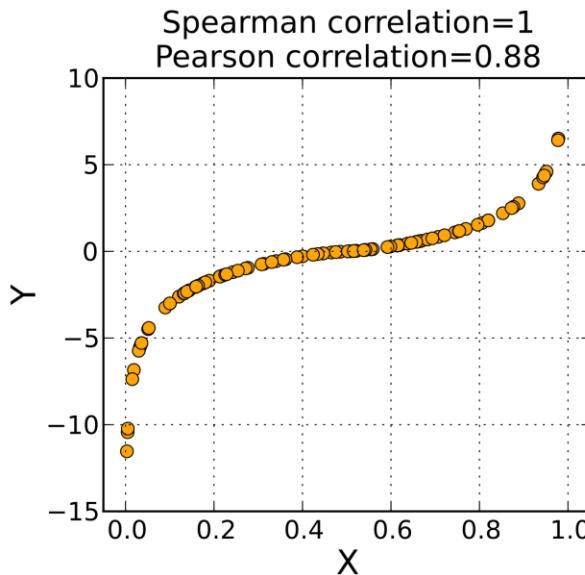
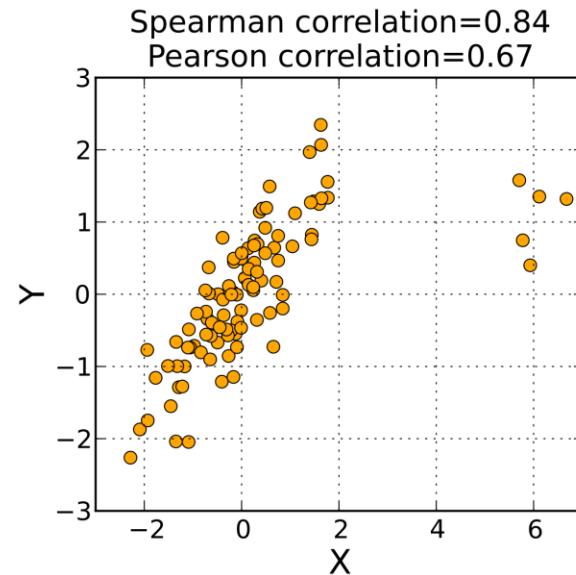
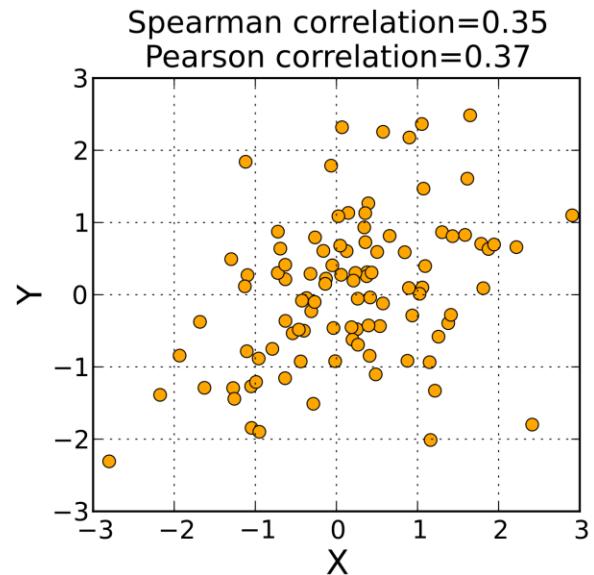
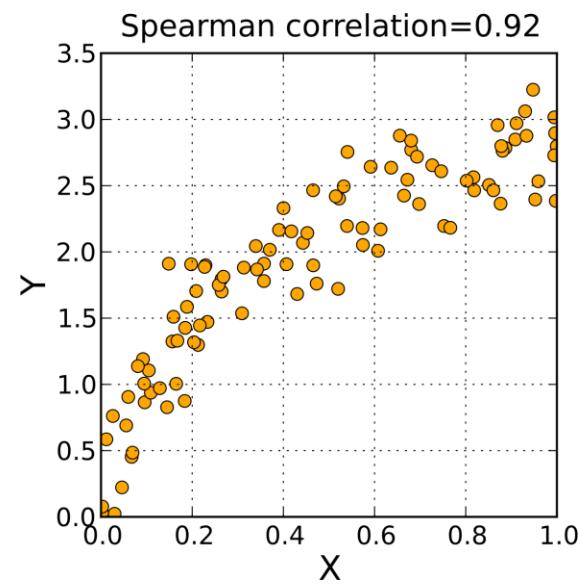
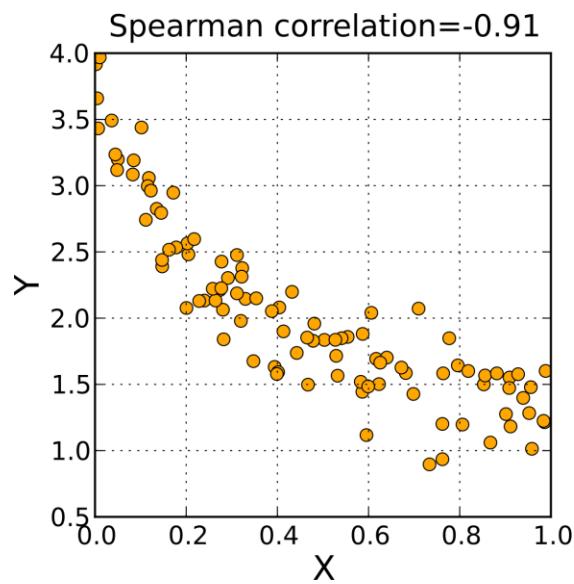


- When this assumption is not met, alternative measures of association between two variables should be used
 - Spearman rank correlation
 - Kendal rank correlation

Spearman (rank) correlation

- A nonparametric measure of rank correlation
- The Spearman correlation coefficient (denoted by the Greek letter rho) is defined as the Pearson correlation coefficient between the rank variables
 - also a unit-less value varying between -1 and +1
- It tells us how well the relationship between two variables can be described using a monotonic function
 - increase/decrease in one variable is associated with increase/decrease in the other variable
 - Not necessarily linear association!

Spearman correlation



In R:

```
>?cor
```

```
>?cor.test
```

```
>cor(x, y)
```

```
>cor.test(x, y)
```

- Note, however, that if there are *missing values (NA)*, then you will get an *error message*
- Elementary statistical functions in R require *no* missing values, or explicit statement of what to do with *NA* (*na.rm=TRUE*)

```
> cor.test(x, y)
```

Pearson's product-moment correlation

data: x and y

t = 21.5241, df = 98, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.8667723 0.9376171

sample estimates:

cor

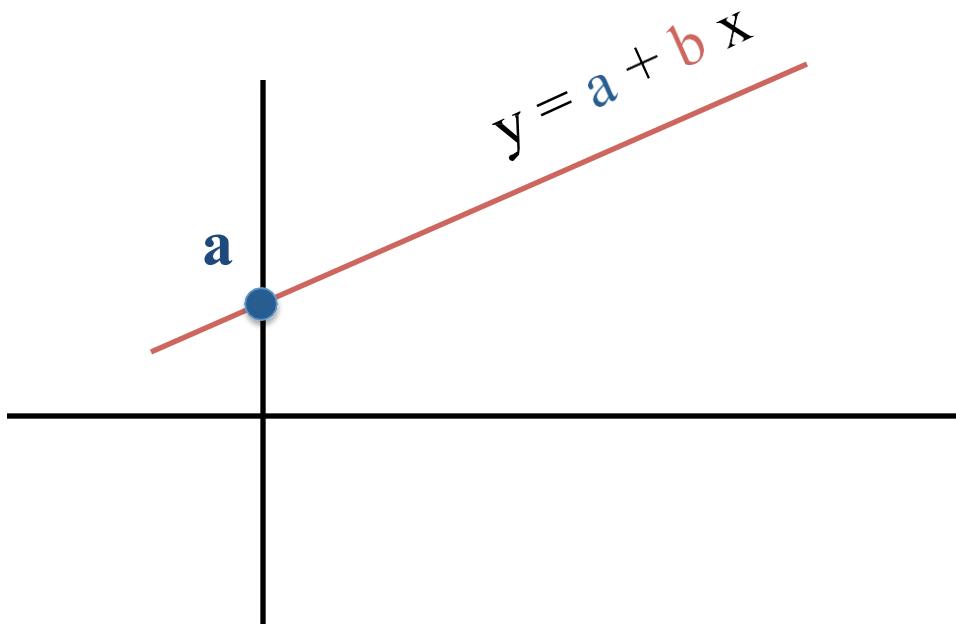
0.9085158

- **Correlation** describes the association between variables, but does not describe it
- Often it is useful to obtain a mathematical model that describes the association between variables, hence **regression**

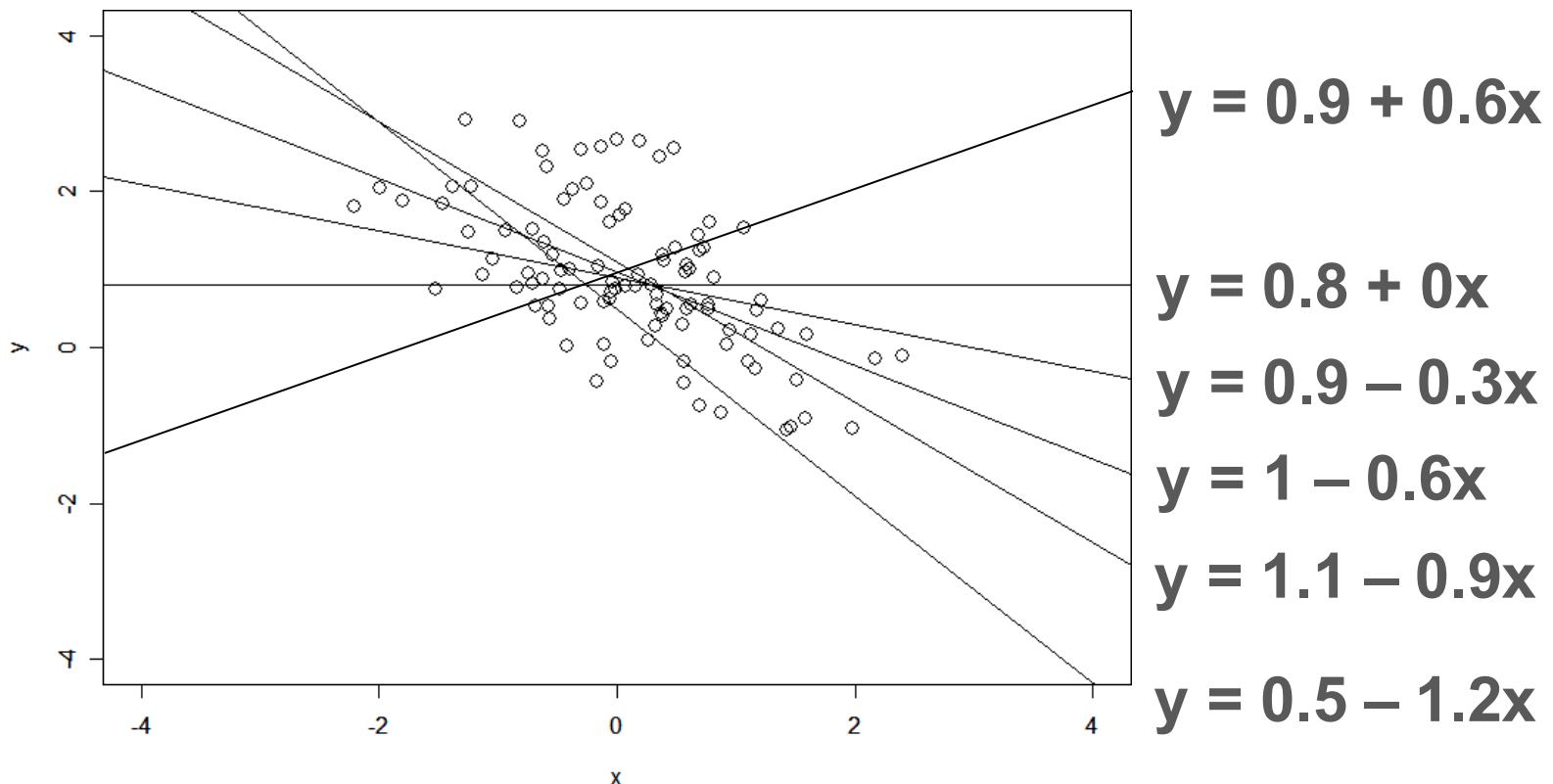
The equation for a line that can be used to predict y knowing x (in slope-intercept form) looks like

$$y = a + b x$$

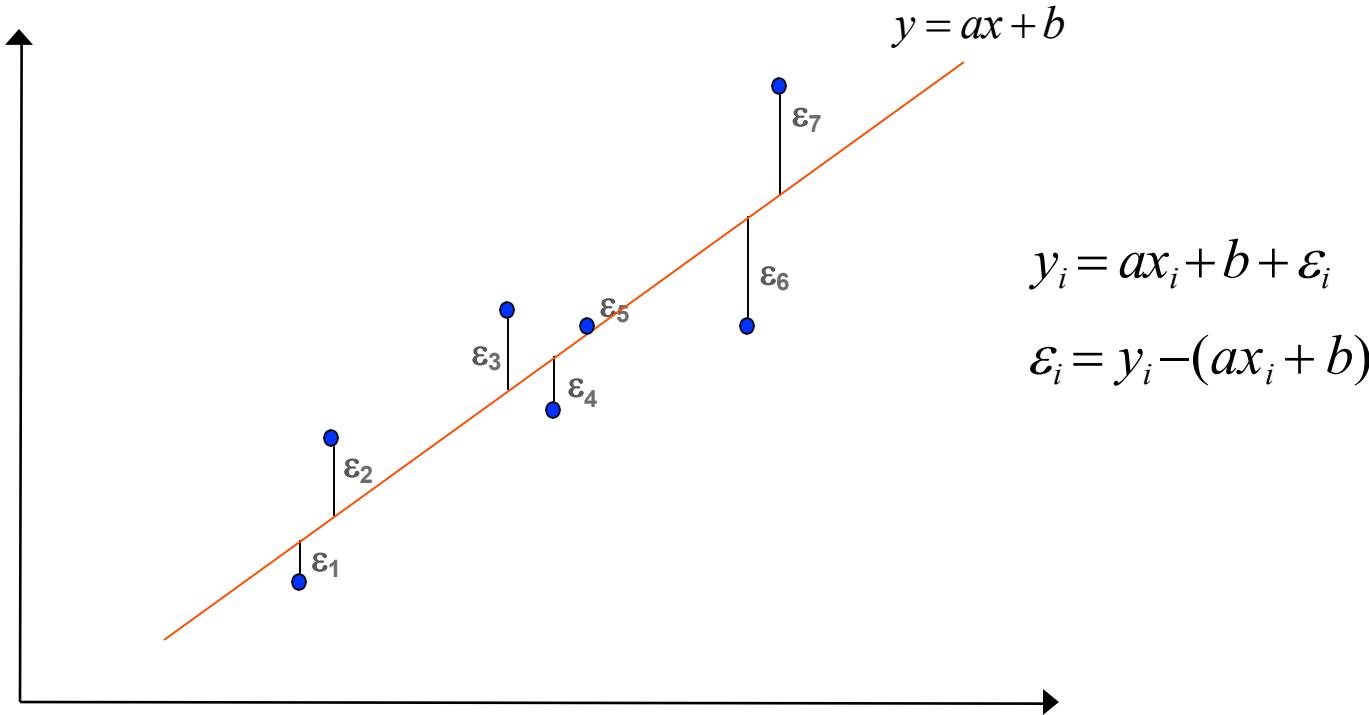
where a is called the *intercept* and b is the *slope*.



What is the “best” line that fits this data ? → need a criteria
Can we use it to summarize the relation between x and y ?



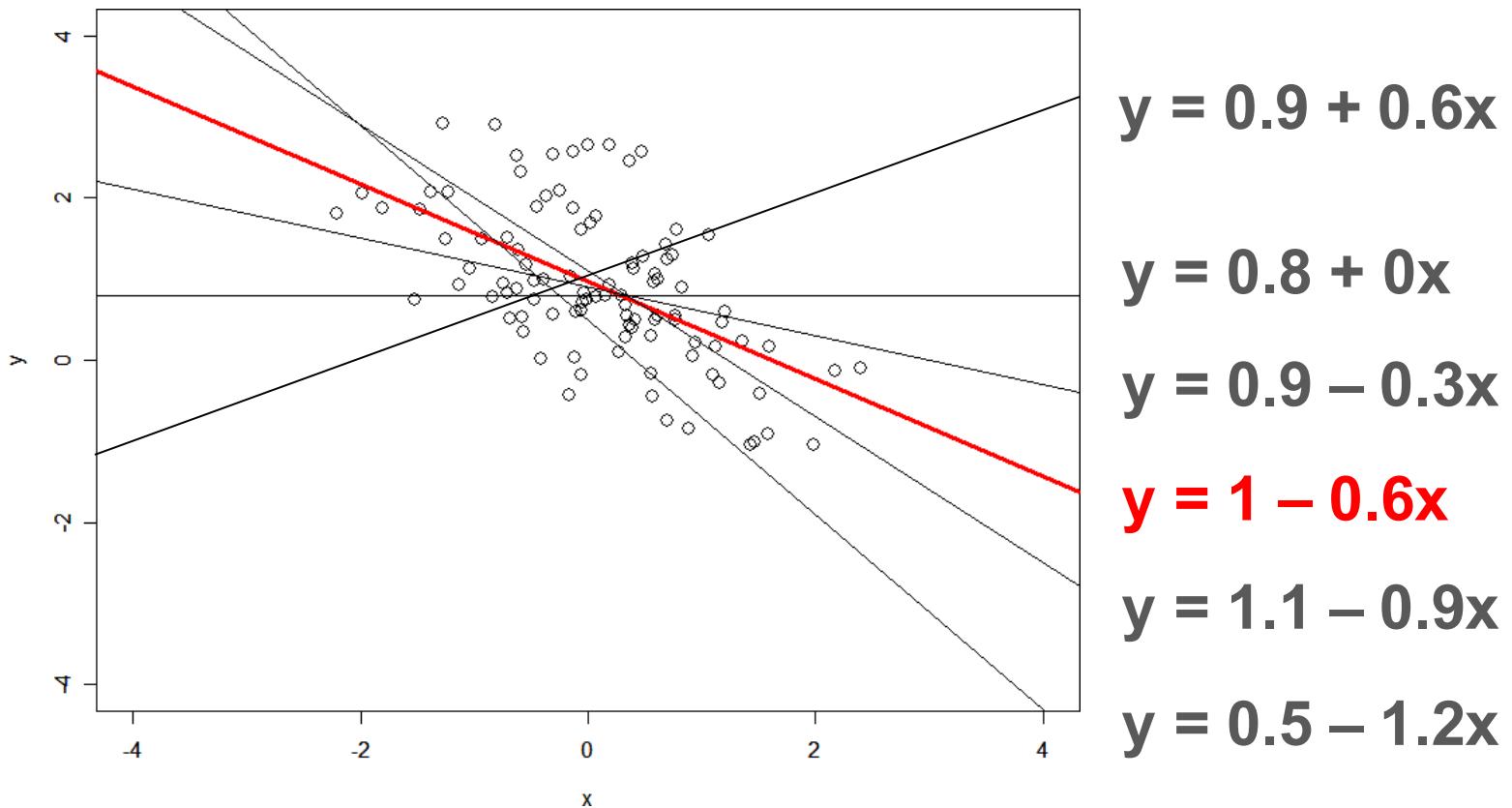
Least-squares approach to fit a line



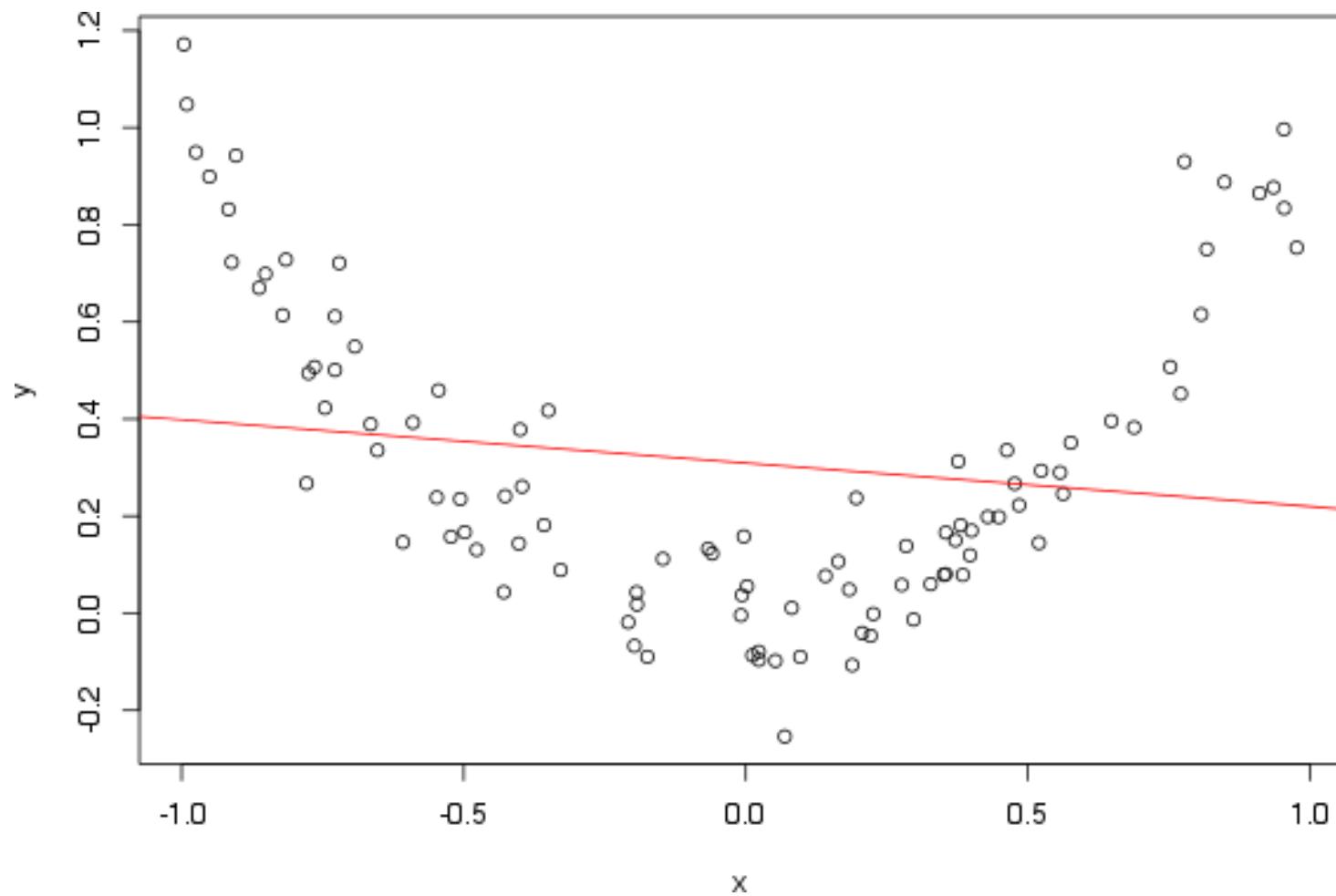
The least-squares procedure finds the straight line with the smallest sum of squares of vertical errors.

Finds a regression line such that $\sum_i \varepsilon_i^2 = \varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \dots$ is minimum.

Over all possible straight lines,
 $y = 1 - 0.6x$ is the “best” possible line
according to least-squares criterion



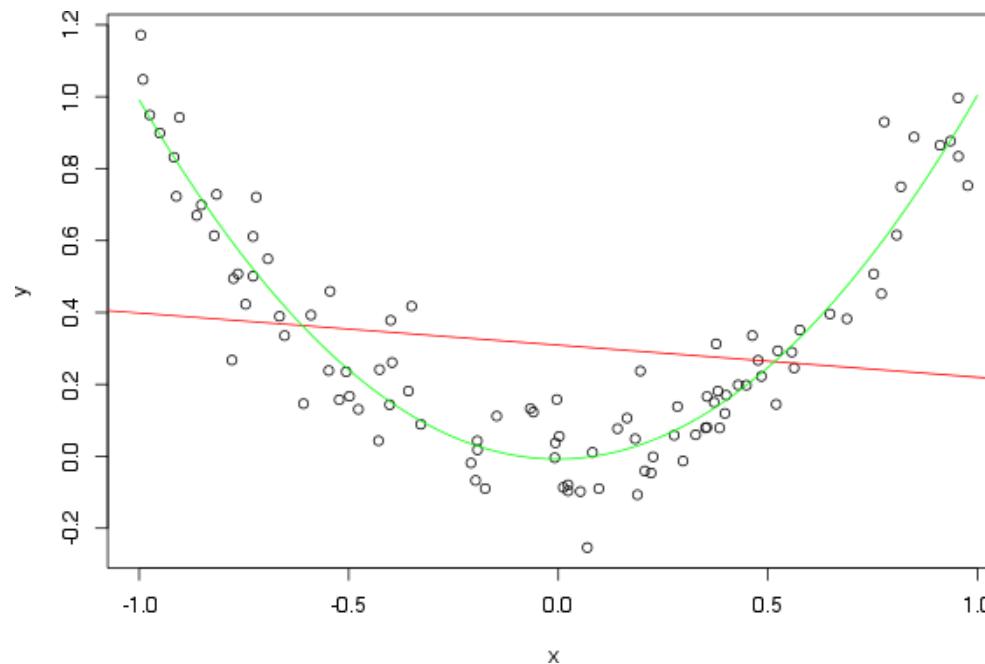
What if the association is not linear ?



What if the data is not linear ?

Use a polynomial regression

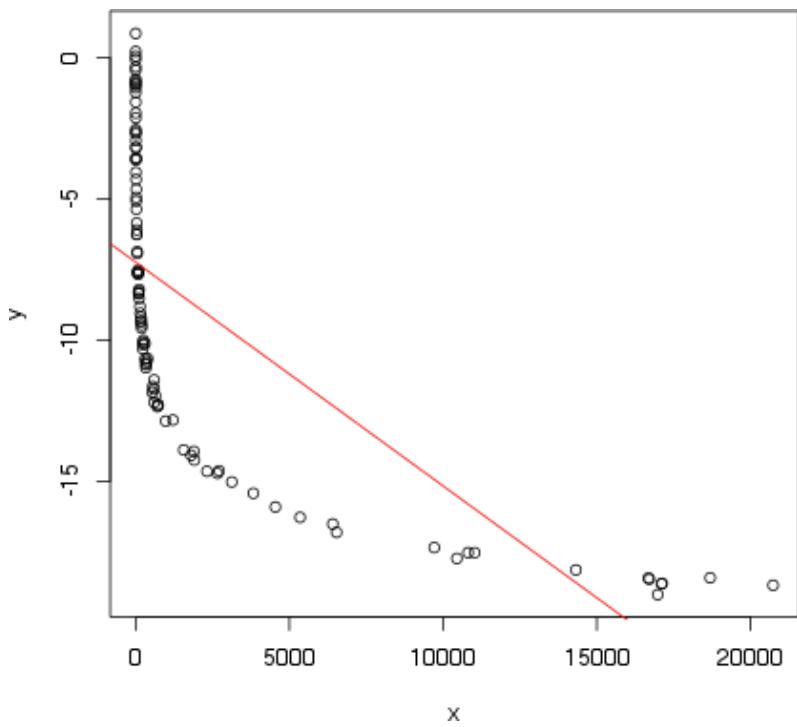
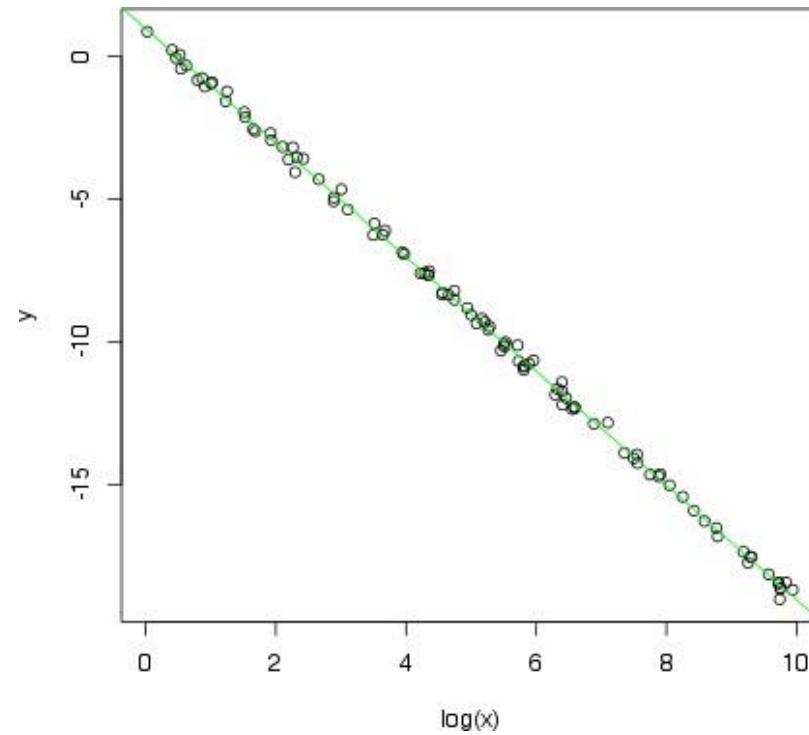
$$y = b_0 + b_1 x + b_2 x^2$$



What if the association is not linear ?

Consider transforming the data (log)

$$\log(y) = a + b x$$



Linear models in matrix form

$$Y_i = \beta_0 + \beta_1 X_{i1} + \varepsilon_i$$

is equivalent to

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ 1 & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

or $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

Linear models in matrix form

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

is equivalent to

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} \\ 1 & X_{21} & X_{22} \\ 1 & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

or $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

Linear models in matrix form

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{ip-1} + \varepsilon_i$$

is equivalent to

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2p-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{np-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

or $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

Linear models in matrix form

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{ip-1} + \varepsilon_i$$

is equivalent to

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2p-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{np-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

or $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

Least-square estimation of
regression coefficients

Least-square estimation of regression coefficients

$\mathbf{b} = (b_0 \dots b_{p-1})'$ estimator of β is computed as follows:

$$\mathbf{Y} = \mathbf{X}\beta + \varepsilon$$

$$\mathbf{X}'\mathbf{X}\beta = \mathbf{X}'\mathbf{Y} \quad \text{where } E\{\varepsilon\} = \mathbf{0}$$

Least-square estimation of regression coefficients

$\mathbf{b} = (b_0 \dots b_{p-1})'$ estimator of β is computed as follows:

$$\mathbf{Y} = \mathbf{X}\beta + \boldsymbol{\varepsilon}$$

$$\mathbf{X}'\mathbf{X}\beta = \mathbf{X}'\mathbf{Y} \quad \text{where} \quad E\{\boldsymbol{\varepsilon}\} = \mathbf{0}$$

$$\beta = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Computationally intensive

$$Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

in R:

`yvar ~ xvar1 + xvar2 + xvar3`

read “~” as “described (or modeled) by”

By default, an intercept is included in the model

To leave the intercept out:

`yvar ~ -1 + xvar1 + xvar2 + xvar3`

$$Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

in R:

`yvar ~ xvar1 + xvar2 + xvar3`

read “~” as “described (or modeled) by”

By default, an intercept is included in the model

To leave the intercept out:

`yvar ~ -1 + xvar1 + xvar2 + xvar3`

`yvar ~ 0 + xvar1 + xvar2 + xvar3`

Generic form

response ~ predictors

predictors can be numeric or categorical

R symbols to create formulas

- + to *add* more variables
- to *leave out* variables
- :
- to introduce *interactions* between two terms
- *
- to include *both interactions and the terms*

($a * b$ is the same as $a + b + a : b$)

n adds all terms including interactions up to order n

I () treats what's in () as a *mathematical expression*

Let's walk through an example in R

**Inspired by the CLASS dataset, from the program
SAS (units have been modified from imperial to
metric)**

The CLASS dataset

> `class`

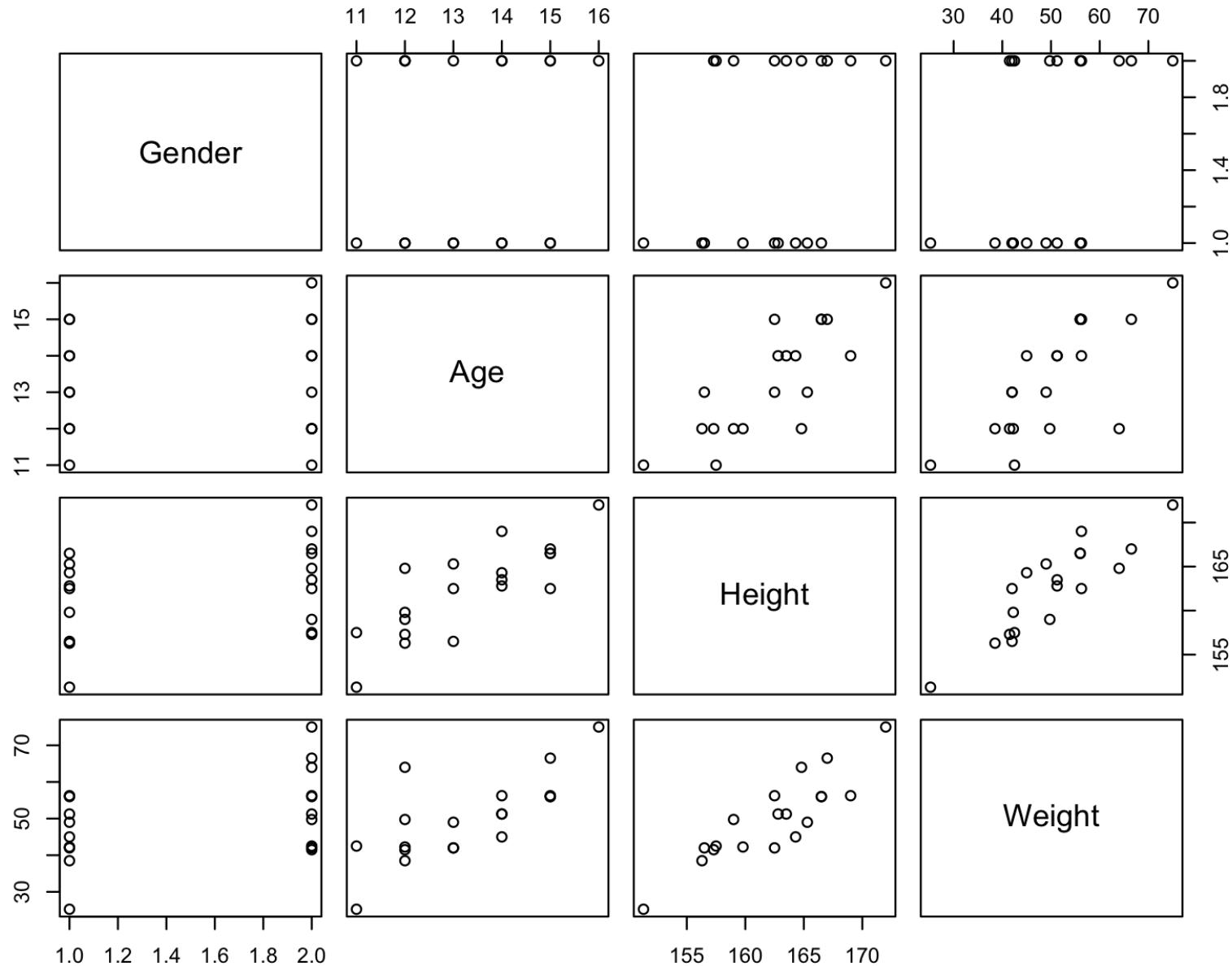
		Name	Gender	Age	Height	Weight
1		JOYCE	F	11	151.3	25.25
2		THOMAS	M	11	157.5	42.50
3		JAMES	M	12	157.3	41.50
4		JANE	F	12	159.8	42.25
5		JOHN	M	12	159.0	49.75
6		LOUISE	F	12	156.3	38.50
7		ROBERT	M	12	164.8	64.00
8		ALICE	F	13	156.5	42.00
9		BARBARA	F	13	165.3	49.00
10		JEFFREY	M	13	162.5	42.00
11		CAROL	F	14	162.8	51.25
12		HENRY	M	14	163.5	51.25
13		ALFRED	M	14	169.0	56.25
14		JUDY	F	14	164.3	45.00
15		JANET	F	15	162.5	56.25
16		MARY	F	15	166.5	56.00
17		RONALD	M	15	167.0	66.50
18		WILLIAM	M	15	166.5	56.00
19		PHILIP	M	16	172.0	75.00

The CLASS dataset

```
> summary(class)
```

Name	Gender	Age	Height
Length:19	Length:19	Min. :11.00	Min. :151.3
Class :character	Class :character	1st Qu.:12.00	1st Qu.:158.2
Mode :character	Mode :character	Median :13.00	Median :162.8
		Mean :13.32	Mean :162.3
		3rd Qu.:14.50	3rd Qu.:165.9
		Max. :16.00	Max. :172.0
Weight			
Min. :25.25			
1st Qu.:42.12			
Median :49.75			
Mean :50.01			
3rd Qu.:56.12			
Max. :75.00			

```
> pairs(class[,-1])
```



Fitting the linear model in R

```
> lm( Height ~ Age, data=class)
```

Call:

```
lm(formula = Height ~ Age, data = class)
```

Coefficients:

(Intercept)	Age
125.224	2.787

```
> model <- lm( Height ~ Age, data=class)
```

```
> model
```

Call:

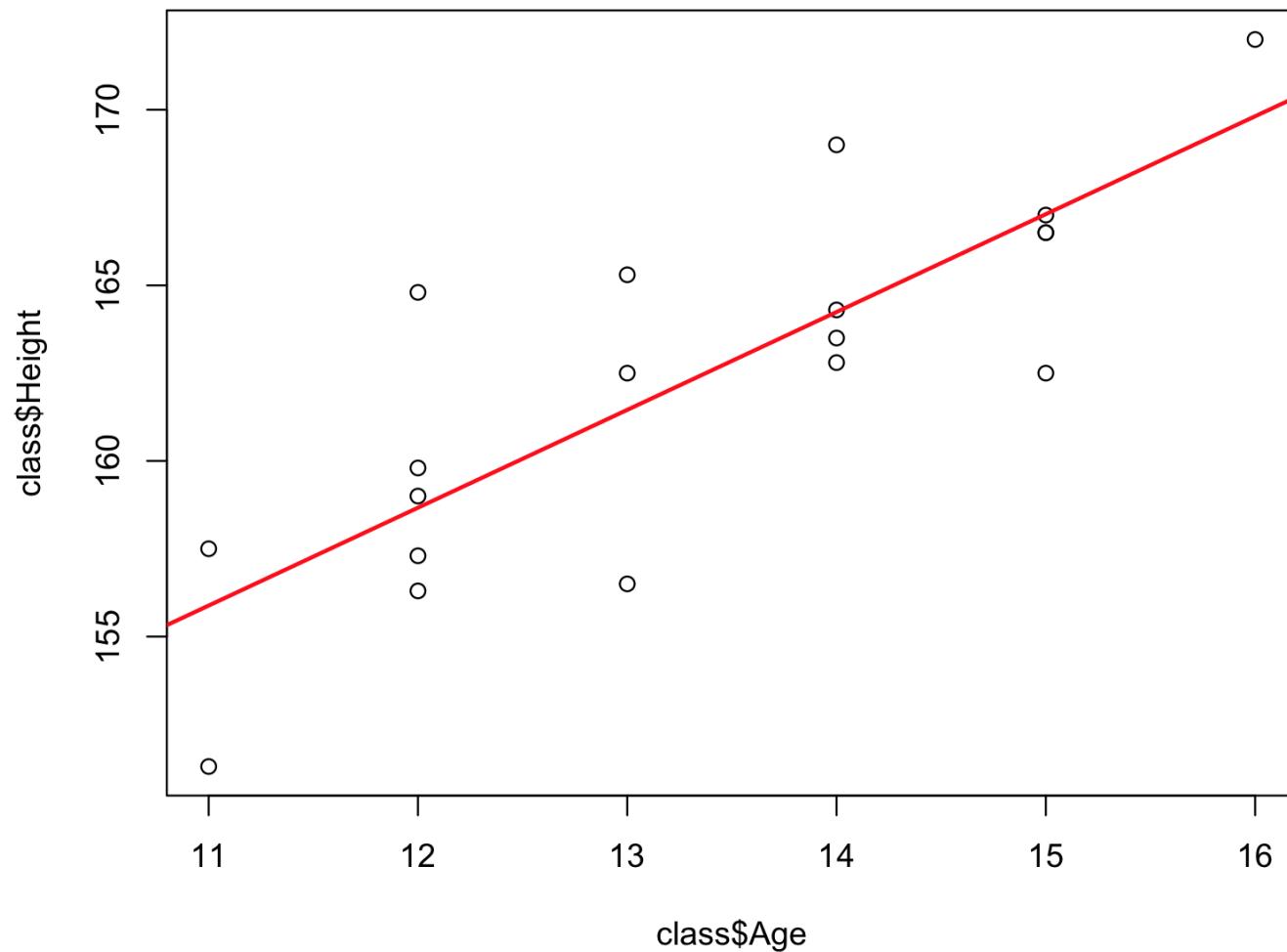
```
lm(formula = Height ~ Age, data = class)
```

Coefficients:

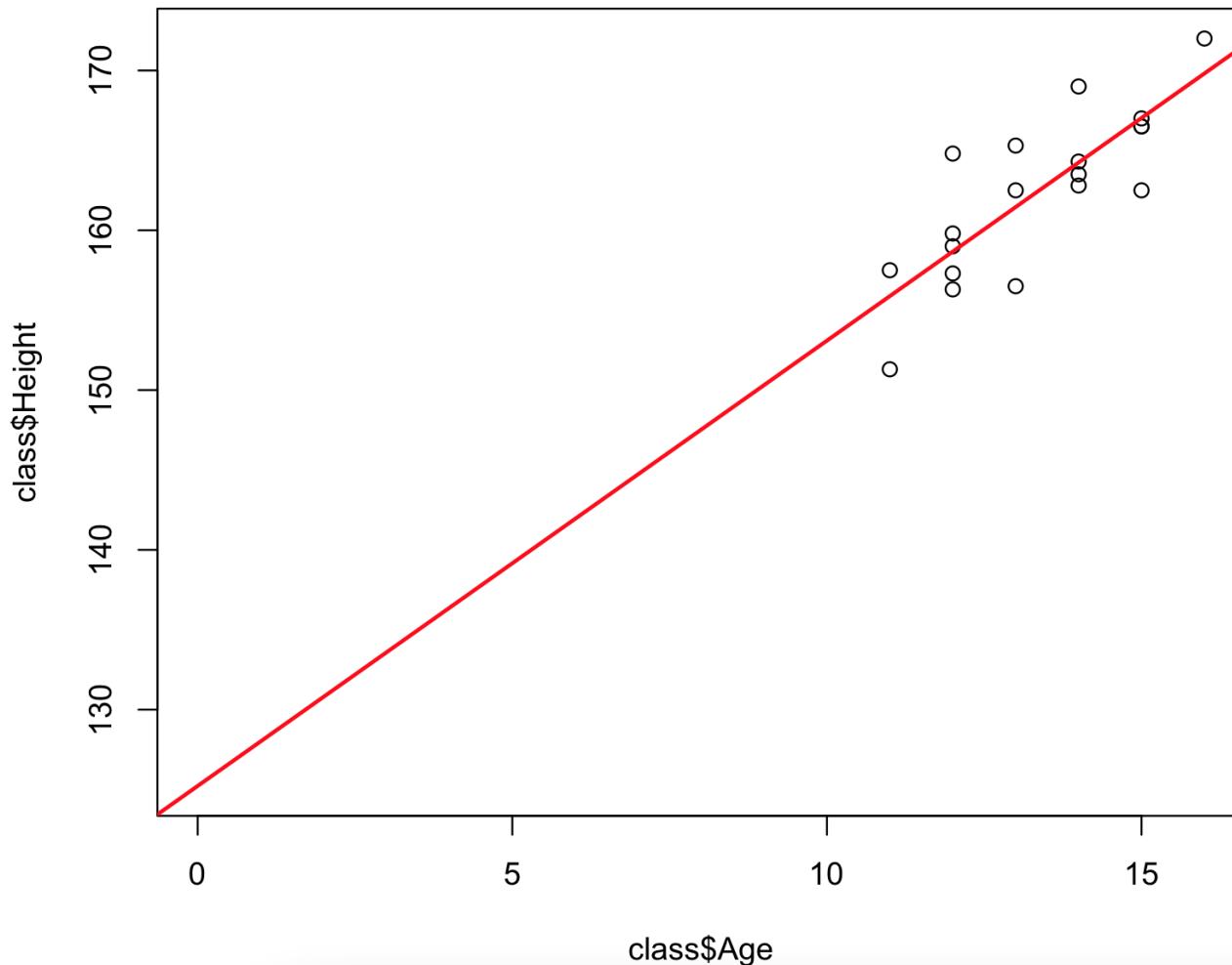
(Intercept)	Age
125.224	2.787

$$\text{Height} = 125.224 + 2.787 \times \text{Age}$$

```
> plot( class$Age, class$Height)
> abline(model, col="red", lwd=2)
```



```
> plot(class$Age, class$Height,  
+       xlim=range(0, Age),  
+       ylim=range(coef(model)[1], Height))  
> abline(model, col="red", lwd=2)
```



Example of summary results of the lm command in R

```
> summary(model)
```

Call:

```
lm(formula = Height ~ Age, data = class)
```

Residuals:

Min	1Q	Median	3Q	Max
-4.957	-1.407	-0.031	1.374	6.130

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	125.2239	6.5217	19.201	5.82e-13 ***		
Age	2.7871	0.4869	5.724	2.48e-05 ***		

Signif. codes:	0 ‘***’	0.001 ‘**’	0.01 ‘*’	0.05 ‘.’	0.1 ‘ ’	1

Residual standard error: 3.083 on 17 degrees of freedom

Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383

F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05

Example of summary results of the `lm` command in R

> `summary(model)`

Function call

Call:

`lm(formula = Height ~ Age, data = class)`

Residuals:

Min	1Q	Median	3Q	Max
-4.957	-1.407	-0.031	1.374	6.130

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	125.2239	6.5217	19.201	5.82e-13 ***
Age	2.7871	0.4869	5.724	2.48e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.083 on 17 degrees of freedom

Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383

F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05

Example of summary results of the lm command in R

```
> summary(model)
```

Call:

```
lm(formula = Height ~ Age, data = class)
```

Residuals:

Min	1Q	Median	3Q	Max
-4.957	-1.407	-0.031	1.374	6.130

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	125.2239	6.5217	19.201	5.82e-13 ***		
Age	2.7871	0.4869	5.724	2.48e-05 ***		

Signif. codes:	0 ‘***’	0.001 ‘**’	0.01 ‘*’	0.05 ‘.’	0.1 ‘ ’	1

Residual standard error: 3.083 on 17 degrees of freedom

Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383

F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05

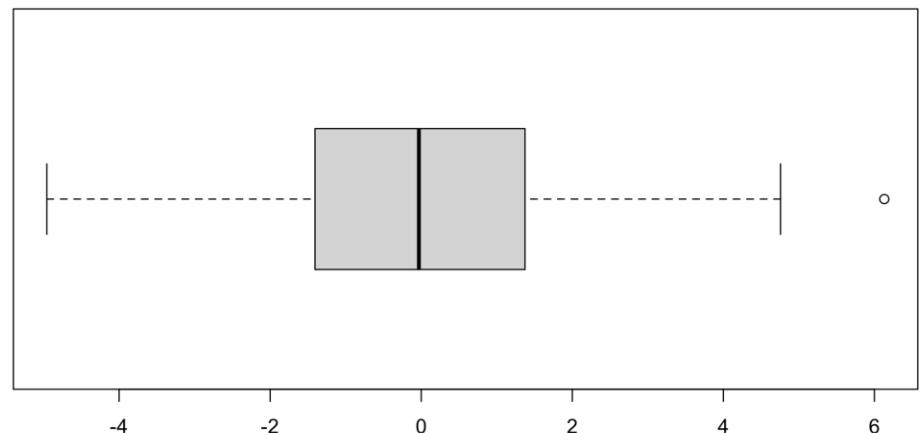
Five-number summary of the residuals equivalent to

```
> fivenum( residuals( model ) )
```

8	11	17	4	7
-4.95669291	-1.40669291	-0.03097113	1.37401575	6.13044619

or, graphically, using a boxplot:

```
>boxplot( residuals ( model ) ,  
horizontal=T)
```



Example of summary results of the lm command in R

```
> summary(model)
```

Call:

```
lm(formula = Height ~ Age, data = class)
```

Residuals:

Min	1Q	Median	3Q	Max
-4.957	-1.407	-0.031	1.374	6.130

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	125.2239	6.5217	19.201	5.82e-13 ***
Age	2.7871	0.4869	5.724	2.48e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.083 on 17 degrees of freedom

Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383

F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05

These statistical tests tell us if the parameters are significantly different from 0.

****It is not interesting for the intercept, but usually interesting for the slope.**

Estimate and Std. Error are used for hypothesis testing

$$\text{T-value} = \text{Estimate} / \text{Std. Error}$$

This assumes that the residuals follow a normal distribution!

Example of summary results of the lm command in R

```
> summary(model)
```

Call:

```
lm(formula = Height ~ Age, data = class)
```

Residuals:

Min	1Q	Median	3Q	Max
-4.957	-1.407	-0.031	1.374	6.130

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	125.2239	6.5217	19.201	5.82e-13 ***
Age	2.7871	0.4869	5.724	2.48e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.083 on 17 degrees of freedom

Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383

F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05

RSE (Residual Standard Error) and degrees of freedom

The number of degrees of freedom indicates the number of independant pieces of data that are available to estimate the error

While we have 19 residuals here, they are not all independent: for example, the last one is constrained because the sum of all residuals must be 0.

The number of DF

total observations – number of parameters estimated

Two parameters are estimated (intercept + coefficient), so $19 - 2 = 17$

RSE (Residual Standard Error) and degrees of freedom

The residual standard error is the standard deviation of the residuals (which we would usually like to be small)

It is not exactly equal to what the `sd` command would return:

```
> sd(residuals(model))  
[1] 2.996486  
sqrt(sum(residuals(model)^2)/18)  
[1] 2.996486
```

Here, we must divide by the number of degrees of freedom to get the same number:

```
> sqrt(sum(residuals(model)^2)/17)  
[1] 3.083359
```

Example of summary results of the lm command in R

```
> summary(model)
```

Call:

```
lm(formula = Height ~ Age, data = class)
```

Residuals:

Min	1Q	Median	3Q	Max
-4.957	-1.407	-0.031	1.374	6.130

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	125.2239	6.5217	19.201	5.82e-13 ***
Age	2.7871	0.4869	5.724	2.48e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.083 on 17 degrees of freedom

Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383

F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05

Multiple and adjusted R-squared

R^2 is the proportion of the total variance in the response data that is explained by the model

if $R^2=1$, the data fits perfectly on a straight line, and the model explains all the variance

Multiple and adjusted R-squared

R^2 is the proportion of the total variance in the response data that is explained by the model

if $R^2=1$, the data fits perfectly on a straight line, and the model explains all the variance

In the case of simple regression, it is equal to the square of the correlation coefficient between the two variables:

```
> summary(model)$r.squared
[1] 0.6584257
> cor(class$Age, class$Height)^2
[1] 0.6584257
```

Multiple and adjusted R-squared

R^2 is the proportion of the total variance in the response data that is explained by the model

if $R^2=1$, the data fits perfectly on a straight line, and the model explains all the variance

In the case of simple regression, it is equal to the square of the correlation coefficient between the two variables:

```
> summary(model)$r.squared  
[1] 0.6584257  
> cor(class$Age, class$Height)^2  
[1] 0.6584257
```

The Adjusted R-squared is similar to R-squared, but it takes into account the number of variables in the model (we will come back to this later).

Example of summary results of the lm command in R

```
> summary(model)
```

Call:

```
lm(formula = Height ~ Age, data = class)
```

Residuals:

Min	1Q	Median	3Q	Max
-4.957	-1.407	-0.031	1.374	6.130

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	125.2239	6.5217	19.201	5.82e-13 ***
Age	2.7871	0.4869	5.724	2.48e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.083 on 17 degrees of freedom

Multiple R-squared: 0.6584, Adjusted R-squared: 0.6383

F-statistic: 32.77 on 1 and 17 DF, p-value: 2.48e-05

F-test for significance of regression

The **F-statistic** allows us to test if the whole regression (adding all variables vs having only the intercept in) is significant.

It calculates the F value which is given by the variation explained by our model divided by the variation that remains.

Mathematically :
$$\frac{SS(\text{mean}) - SS(\text{fit}) / (p\text{fit} - p\text{mean})}{SS(\text{fit}) / (n - p\text{fit})}$$

Pfit= number of parameters in the fit (2 parameters)

Pmean = number of parameters in the mean line (1 parameter)

Note: With only one variable, it provides *exactly* the same result as the t-test for the significance of the coefficient of this variable.

Challenge

Investigate the correlation and the relationship between weight and height using R basic commands