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Multiple Regression



What happens if both,
age and weight variables
were included in the same model ?



One multiple regression with two variables

Lm(formula = Height ~ Age + Weight, data = class)

Residuals:

1Q Median 3Q Max

-3.6248 -1.3016 -0.0176 ©0.8324 4.1019

Coefficients:

Estimate Std. Error t value Pr(>Itl)

(Intercept) 132.1943 5.0823 26.011 1.6le-14 *x**

1.2267 0.5302 2.314 0.03431 *
0.2761 0.0695 3.973 0.00109 **

Signif. codes: @ ‘***’ 0.001 ‘**’ @.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 2.255 on 16 degrees of freedom
Multiple R-squared: 0.828, Adjusted R-squared: @.8065
F-statistic: 38.52 on 2 and 16 DF, p-value: 7.646e-07

This model allows us to determine the respective

contribution of each variable separately.
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Coefficients:

Estimate Std. Error t value Pr(Gltl)
(Intercept) 132.1943 5.0823 26.011 1.61le-14 ***
Age 1.2267 0.5302 2.314 0.03431 *
Weight 0.27601 0.0695 3.973 0.00109 **

Signif. codes: @ ‘***’ 0.001 ‘**’ 9.01 ‘*’ .05 ‘.” 0.1 ¢’ 1

This is similar to the simple regression case.

Each test is conducted assuming that the tested parameter is the last
one entering the model:

« If weight is already in the model, is the coefficient for age
significantly different from 0 ? »
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Two single regressions vs one multiple regression

Coefficients:

Estimate Std. Error t value Pr(ltl)
(Intercept) 142.57014 2.67989 53.200 < 2e-16 ***
Weight ©0.39523 0.05231  7.555 7.89%e-Q7 ***

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 125.2239 6.5217 19.201 5.82e-13 ***
Age 2.7871 0.48069 5.724 2.48e-05 ***

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 132.1943 5.0823 26.011 1.6le-14 ***
Age 1.2267 0.5302 2.314 0.03431 *
Weight 0.2761 0.0695 3.973 0.00109 **

While both age and weight seem significant by themselves, age is much
less significant when weight is already included (see also the R?2).

It is likely that a lot of the information provided by the age is also provided

by the weight, so that there may be little need to have both terms in the
model.



Multiple and adjusted R-squared

Multiple R-squared: 0.828,

As before, R2is the proportion of the total variance in
the response data that is explained by the model.

Adding a new variable in the model will always
increase R2, up to 1 when there the number of degrees
of freedom is 0 (number of parameters to estimate =
number of observations).



Multiple and adjusted R-squared

Adjusted R-squared: 0.8065

The adjusted R-squared adjusts for the number of
variables in the model, and does not necessarily
increase when the number of variables increase; it can

even be negative.
S i
SS,..

It is always equal or below R2.

W, Y
Adjusted R = 1 (el 3
Adjuste =l-733

I

Tn-1)



y <- rnorm(10)

X1l <- rnorm(1l0); x2 <- rnorm(10); .. ;
rnorm(10)

summary (lm(y ~ x1));

1:
2
3:
4
5:
6:
7
8:
9:

Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple
Multiple

R-squared:
R-squared:
R-squared:
R-squared:
R-squared:
R-squared:
R-squared:
R-squared:
R-squared:

OO O O O o o o o

Adjusted
Adjusted
Adjusted
Adjusted
Adjusted
Adjusted
Adjusted
Adjusted
Adjusted

R-squared:
R-squared:
R-squared:
R-squared:
R-squared:
R-squared:
R-squared:
R-squared:
R-squared:

Example

x9 <-

O O O O o o o o

summary (Im(y ~ x1+x2));




The last regression from the example

Call:
Im(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)

Residuals:
ALL 10 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) -0.02693 NA NA NA
x1 0.53886 NA NA NA
X2 -0.52227 NA NA NA
X3 0.51881 NA NA JAPAN
x4 0.74757 NA NA NA
x5 0.14394 NA INP NA
X0 -0.65387 NA NA NA
X'/ -0.48271 NA NA NA
X8 -0.62487 NA NA NA
) 0.23759 NA NA JAPAN

Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 9 and 0 DF, p-value: NA
9



F-statistic for significance of regression

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 81.77355 12.90896 6.335 9.92e-06 *x*x*
Age 3.11575 1.34668 2.314 0.03431 *
Weight 0.350064 0.08827 3.973 0.00109 *~*

F-statistic: 38.52 on 2 and 16 DF, p-value: 7.646e-07

Again, the F-statistic allows us to test if the whole regression
(adding all variables vs having only the intercept in) is significant.

If any of the tests for the individual variables is significant, the F-
test will generally be significant as well.

However, even if no individual variable is significant (e.g. p < 0.05),
the F-test can still be significant.



Categorical variables,
dummy variables and
contrasts
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Categorical variables

We'd like to use categorical variables in a linear model, as in:

Height = b, + b, Age + b, « Gender » +error

Intuitively, we want to estimate a « Male » and a « Female » effect.



Categorical variables

We'd like to use categorical variables in a linear model, as in:
Height = b, + b, Age + b, « Gender » +error

Intuitively, we want to estimate a « Male » and a « Female » effect.

In practice, categorical variables (factors in R) are turned (bty default,
based on alphabetical order) into dummy variables of the form

_ 1 if Female
Gender= " 5 if male
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Example of summary results of the 1m command in R

Call:
Im(formula = Height ~ Age + Gender, data = class)

Residuals:
Min 1Q Median 3Q Max
-3.483 -1.910 -0.319 1.326 5.317

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 124.5241 5.8886 21.147 4.04e-13 ***
Age 2.7276 0.4398 6.202 1.27e-05 ***
GenderM 2.8362 1.2797 2.216 0.0415 *

Signif. codes: @ ‘***’ 0.001 ‘**’ 9.01 ‘*’> 0.05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 2.78 on 16 degrees of freedom

Multiple R-squared: .7387, Adjusted R-squared: 0.706
F-statistic: 22.61 on 2 and 16 DF, p-value: 2.176e-05
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Example of summary results of the 1m command in R

Call:
Im(formula = Height ~ Age + Gender, data = class)

Residuals:

Min 1Q Median 3Q Max baseline for
-3.483 -1.910 -0.319 1.326 5.317 helght among
Coefficients: Female

Estimate Std. Error t value Pr(>Itl) ‘,/////
(Intercept) 124.5241 5.8886 21.147 4.04e-13 *** —
Age 2.7276 0.4398 6.202 1.27e-05 ***
GenderM 2.8362 1.2797 2.216 0.0415 *

Signif. codes: @ ‘***’ 0.001 ‘**’ @.01 ‘*’> .05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 2.78 on 16 degrees of freedom

Multiple R-squared: 0.7387, Adjusted R-squared: 0.706
F-statistic: 22.61 on 2 and 16 DF, p-value: 2.176e-05
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Example of summary results of the 1m command in R

Call:
Im(formula = Height ~ Age + Gender, data = class)

Residuals:

LN basclin for
T EeS eIl e ' ' height among
Coefficients: Female

Estimate Std. Error t value Pr(>ltl) ,////

(Intercept) 124.5241 5.8886 21.147 4.04e-13 *** <
Age 2.7276 0.4398 6.202 1.27e-05 ***
GenderM 2.8362 1.2797 2.216 0.0415 *

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 2.78 on 16 degrees of freedom
Multiple R-squared: 0.7387, Adjusted R-squared: 0.706
F-statistic: 22.61 on 2 and 16 DF, p-value: 2.176e-05

The factor GenderM corresponds to the difference in
baseline for Males compared to females 16



Graphical interpretation

The model specifies 2 straight lines, with the same slope but different y-
intercepts:

For women: Height = 124.52 + 2.72 Age (in orange)
For men: Height = 127.3 + 2.72 Age (in red)

I} 2.8362

170

165

class$Height

160

155
|

11 12 13 14 15 16

17
class$Age



What if we don’t use a linear model ?

We could also compute the difference in means
between males and females directly:

> tapply(class$Height,class$Gender,mean)
F M
160.5889 163.9100

> means <- tapply(class$Height,class$Gender,mean)
> diff(means)

M
3.321111

This result is slightly different from the

2.8362 cm difference found with the linear
model.

Where does the difference come from ?



Interactions

So far, we have assumed a difference between the lines, but the
same slope; that is, for both men and women, the effect of age is
the same.

If this assumption is incorrect, it means that there is an interaction
between the factors « age » and « gender », that is, the effect of
age is different depending on the gender.

Interactions are modeled in R in the following way:

Im(formula = Height ~ Age + Gender + Age:Gender)

170

which is equivalent to

165

Im(formula = Height ~ Age * Gender)

160

155




Coefficients with an interaction

Call:
Im(formula = Height ~ Age * Gender, data = class)

Residuals:
Min 1Q Median 3Q Max
-3.4429 -1.7844 -0.30648 1.37380 5.3571

Coefficients:

Estimate Std. Error t value Pr(>I1tl)
(Intercept) 122.1500 9.6409 12.670 2.05e-09 ***
Age 2.9071 0.7256 4.007 0.00114 **
GenderM 6.7443 12.4109 0.543 0.59483
Age:GenderM -0.2940 0.9285 -0.317 @.75585

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1
Residual standard error: 2.862 on 15 degrees of freedom

Multiple R-squared: @.7404, Adjusted R-squared: @.6885
F-statistic: 14.26 on 3 and 15 DF, p-value: 0.0001152

The coefficients can be interpreted as follows:
According to the model, the height is equal to

122.15 (the intercept)
plus 2.9071 times the person’s age

plus 6.7443, but only for males
-0.2940 times the person’s age, but only for males.



class$Height
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class$Height
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class$Age

No interaction
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165

160

155

Different slopes

11 12 13 14 15 16

class$Age

With interaction
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oy e haestendert, datasclass) What if Males were the baseline ?

Call:
Im(formula = Height ~ Age + Genderl, data = class)

Residuals:
Min 1Q Median 3Q Max
-3.483 -1.910 -0.319 1.326 5.317

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 127.3603 5.9587 21.374 3.43e-13 **x*
Age 2.7276 0.4398 6.202 1.27e-@5 ***
GenderlF -2.8362 1.2797 -2.216 ©.0415 *

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘** 0.05 ‘.’ 0.1 ¢’ 1

The two models are
Residual standard error: 2.78 on 16 degrees of freedom
Multiple R-squared: 0.7387, Adjusted R-squared: 0.706 exactly the same;

F-statistic: 22.61 on 2 and 16 DF, p-value: 2.176e-@5

> model <- 1m( Height ~ Age+Gender, data=class) Only the Way We IOOk

> summary(model)

catt: at the coefficient
Im(formula = Height ~ Age + Gender, data = class)
changes.

Residuals:
Min 1Q Median 3Q Max
-3.483 -1.910 -0.319 1.326 5.317

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 124.5241 5.8880 21.147 4.04e-13 ***
Age 2.7276 0.4398 6.202 1.27e-05 ***
GenderM 2.8362 1.2797 2.216 0.0415 *

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢ °* 1

Residual standard error: 2.78 on 16 degrees of freedom Genderl <- relevel (Gender, ref="M")
Multiple R-squared: 0.7387, Adjusted R-squared: @.706

F-statistic: 22.61 on 2 and 16 DF, p-value: 2.176e-05



Diagnostic tools



It is always possible to fit a linear model and find a slope and intercept
... but it does not mean that the model is meaningful !

Examination of residuals: (which should show no obvious trend, since any systematic effect in
the residuals should ideally be captured by the model):

— Normality

— Time effects

— Nonconstant variance — Curvature



Examination of residuals

residualsimodel)

o 0 o

1 12 13 14 15 16

plot( Age, residuals (model) )

Works only for simple regression
(only one variable on x axis)

residuals(model)

o _J °
-
°
o J o
- (]
o
O -
°
° o
°
o - o °
o
° °
9
°
o
- =
o °
°

145 150 155 160 165 170 175

fited(model)

plot( fitted(model), residuals(model) )

Works also for multiple regression
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Hat values

High leverage (‘influential’) points are far from the
center, and have potentially greater influence

One way to assess points is through the hat values
(obtained from the hat matrix H):

y = Xb = X(X’X)' X’y = Hy

hi — ZJhUZ

Average value of h = number of coefficients/n
(including the intercept) = p/n

Cutoff typically 2p/n or 3p/n
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Index Age

Hat values Actual fit

>hat <- Im.influence( model )
>plot( hat$hat ) 83
>abline(h=c(c(2,3)*2/19),lty=c(2,3),col=c("blue","red") )



Height
160 170 180 190
! ] | I

150
1

140
I

130
|
o

1 12 13 14 15 16

Age

Narrow bands: describe the uncertainly about the regression line
Wide bands: describe where most (95% by default) predictions would fall,
assuming normality and constant variance.

In R: ?predict.1lm
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