

Joao Lourenço (joao.lourenco@sib.swiss) and Rachel Marcone (rachel.marcone@sib.swiss)
January 2024

A possible experiment

195 adults treated with treatment A
800 adults with flu \square 605 adults treated with treatment B

Drug A works on 41 people out of a sample of 195. Drug B works on 351 people in a sample of 605 . Are the two drugs comparable?

Introduction to hypothesis testing

Guideline for using statistics in biology

1. Specify the biological question of interest.
2. Put the question in the form of a biological null hypothesis and alternate hypothesis.
3. Put the question in the form of a statistical null hypothesis and alternate hypothesis.
4. Determine which variables are relevant to the question and what kind of variable each one is.
5. Design an experiment that controls or randomizes the confounding variables.
6. Based on the number of variables, the kinds of variables, the expected fit to the parametric assumptions, and the hypothesis to be tested, choose the best statistical test to use.
7. If possible, do a power analysis to determine a good sample size for the experiment.
8. Do the experiment.
9. Examine the data (explore variation and check if the assumptions of the statistical test you chose - primarily normality and homoscedasticity for tests of measurement variables - are met - if it doesn't, choose a more appropriate test).
10. Apply the statistical test you chose, and interpret the results.
11. Communicate your results effectively.

A possible experiment

195 adults treated with treatment A \square 800 adults with flu \square 605 adults treated with treatment B

Drug A works on 41 people out of a sample of 195. Drug B works on 351 people in a sample of 605 . Are the two drugs comparable?

Biological Null hypothesis: Drug A and Drug B have the same efficacy.

Biological Alternate hypothesis : Drug A and Drug B have a different efficacy.

Efficacy how is it measured ?

A possible experiment

195 adults treated with treatment A

800 adults with flu

351 adults treated with treatment B

Drug A works on 41 people out of a sample of 195. Drug B works on 351 people in a sample of 605 . Are the two drugs comparable?
Comparison of 2 proportionsone option:Ztest
-State the null hypothesis and alternate hypothesis.
HO: the proportions are the same.
H 1 : the proportions are different
-Choose an alpha level.
alpha $=0.05$

- Find the critical value inside tables of z.
- Calculate the z test statistic.
- Compare the test statistic to the critical value above and decide if you should support or reject the null hypothesis.
$8.99>1.96$, so we can reject the null hypothesis.

$$
\begin{gathered}
\hat{\sigma}_{D}=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
\hat{p}=\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}}{n_{1}+n_{2}}
\end{gathered}
$$

How to judge whether a difference is significant ?

- The p-value is the probability of getting a result that is as or more extreme than the observed result, assuming that the null hypothesis is true.
- A p-value is not the probability that the null hypothesis is correct.
- A p-value is not the probability of making an error.

How to judge whether a difference is significant?

- A predefined significance level (α) is defined, typically 0.05 or 0.01
- The value of the test statistic which correspond to the significance level is calculated or often read in tables.
- If the observed test statistic is above the threshold, we reject the null hypothesis.

How to judge whether a difference is significant ?

- If "p<0.05", we don't know if it is 0.049 (barely significant) or 0.000000001 (extremely significant)
- Computers can now calculate exact p-values, which should be reported.
- "p<0.05" remains a magical threshold for many scientists

Two-sided test versus one-sided test

- Two-sided, nondirectional, two-tailed hypothesis tests (H1: \#)

H0: the proportions are the same: p1 = p2
H 1 : the proportions are different: $\mathrm{p} 1 \neq \mathrm{p} 2$

- One-sided, directional, upper-tail hypothesis tests ($\mathrm{H} 1: ~>)$

H0: the proportions are the same: p1 = p2
H1: p1 is larger than p2: p1 > p2

- One-sided, directional, lower-tail hypothesis tests ($\mathrm{H} 1: ~>)$

H0: the proportions are the same: p1 = p2
H 1 : p 1 is smaller than p 2 : $\mathrm{p} 1<\mathrm{p} 2$

Critical value for an lower-

Pitfalls in hypothesis testing

- Even if a result is 'statistically significant', it can still be due to chance.
- Conversely, if a result is not statistically significant, it may be only because you do not have enough data (lack of power)
- A test of significance does not say how important the difference is, or what caused it (Is HO incorrect? Was an assumption violated ? Were you unlucky ?)
- Using a significance level transforms a complicated, real-world problem, into a simple dichotomous question.

Difference between two-samples and two-sided tests

- A two-samplestest is a hypothesis test for answering questions about means for two different populations. Data are collected from two random samples of independent observations.
- A two-sided test (or two-tailed test) is a hypothesis test in which the values for rejecting the null hypothesis are in both tails of the probability distribution
- The choice between a one-sided test and a two-sided test is determined by the purpose of the investigation or prior information

Post-study caffeine administration enhances memory consolidation in humans

Daniel Borota, Elizabeth Murray, Gizem Keceli, Allen Chang, Joseph M Watabe, Maria Ly, John P
Toscano \& Michael A Yassa

Nature Neuroscience 17, 201-203 (2014) | Cite this article

Abstract

(a) Outline of study design. After arrival of screened subjects, a baseline salivary sample was collected Then the encoding task was administered. This was an incidental indoor-outdoor judgment task (stimuli every $2,500 \mathrm{~ms}$, with an interstimulus interval (ISI) of 500 ms). After encoding, subjects were administered either 200 mg caffeine or placebo pills. After 1 h and 3 h , additional saliva samples were collected. Subjects returned 24 h later for testing. Before a recognition test, a final saliva sample was collected. Recognition was tested using an old-similar-new judgment task (stimuli every 2,500 ms with a $500-\mathrm{ms}$ ISI) using targets, foils and similar lures that are particularly sensitive to hippocampal pattern separation. (b) Lure discrimination by subjects (i.e., whether subjects had a higher propensity to call lure items 'similar' rather than 'old') $t_{42}=1.79$, one-tailed $P=0.04$). ${ }^{*} P<0.05$, one-tailed. (c,d) Target hit rates (c) and foil rejection rates (d) $\left(t_{42}=0.59\right.$, one-tailed $P=0.27$ and $t_{42}=0.15$, one-tailed P $=0.44$ between groups that received caffeine and placebo, for data in \mathbf{c} and \mathbf{d}, respectively). Error bars, \pm s.e.m.; $n=20$ subjects (caffeine) and $n=24$ subjects (placebo).

Statistical significance is not the same

 as practical importance.
Six new loci associated with body mass index highlight a neuronal influence on body weight regulation

the GIANT Consortium
Nature Genetics 41, 25-34(2009) | Cite this article
1034 Accesses | 43 Altmetric \mid Metrics

Abstract

Common variants at only two loci, $F T O$ and $M C 4 R$, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI ($n>32,000$) and followed up top signals in 14 additional cohorts ($n>59,000$). We strongly confirm FTO and MC4R and identify six additional loci $\left(P<5 \times 10^{-8}\right)$: TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a $45-\mathrm{kb}$ deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.

Statistical significance is not the same as practical importance

8 SNPs (6 discovered in the study) significantly associated with BMI.

They correspond to a change of 173-954 g in weight per allele in adults who are $160-180 \mathrm{~cm}$ tall

Which test should I use?

The most widely used tests try to answer questions about the location of the center of the data (e.g. mean or median).

Which test should I use?

We have data about mice for which a gene was knocked out. Question:
Is their weight different from the mean weight of the mice lab population (e.g. 28 g) ?

Which test should I use ?

HO : the mean of the mice weight in our sample is equal to 28
H 1 : the mean of the mice weight in our sample is not equal to 28

To perform this hypothesistest, we can use a one-samplet-test.

The most commonly used of all tests. Main assumptions:

- The data are continuous.
- The data are independent.
- The sample data have been randomly sampled from a population.
- No significant outliers in the data
- Normality: the data should be approximately normally distributed

One-sample t-test

Main assumptions:

- No significant outliers in the data

```
>ggboxplot(weight$weight, width = 0.5, add =
c("mean","jitter"), ylab = "Weight (g)", xlab = F)
> identify_outliers(weight)
## [1] name weight is.outlier is.extreme
## <0 rows> (or 0-length row.names)
```

Values above Q3+1.5xIQR or below Q1-1.5xIQR are considered as outliers. Q1 and Q3 are the first and third quartile, respectively.

IQR is the interquartile range (IQR = Q3-Q1).

```
> Q1 <- quantile(weight$weight, probs = 0.25)
>Q3 <- quantile(weight$weight, probs = 0.75)
> IQR <- Q3-Q1
```


One-sample t-test

Main assumptions:

- Normality: the data should be approximately normally distributed

```
> shapiro_test(weight$weight)
# A tibble: 1 x 3
    variable statistic p.value
    <chr> <d.bl> <d.bl>
1 weight$weight 0.902 0.166
> ggqqplot(weight, x = "weight")
```


One-sample t-test

Test-statistic (Student'st-statistic):
where

$$
T=\frac{\bar{x}-\mu}{\sqrt{S^{2} / n}}
$$

$-\bar{x}$ is the average of the observations (29.692g)
$-\mu$ is the mean weight of the mice lab population (28 g)
$-S$ is the (estimated) standard deviation (2.081g)
-n is the number of observations (12)

The t-distribution

The t-distribution describes the standardized distances of sample means to the population mean when the population standard deviation is not known, and the observations come from a normally distributed population.

The t-distribution is similar to a normal distribution.

- Like the normal distribution, the t-distribution has a smooth shape.
- Like the normal distribution, the t-distribution is symmetric.
- Like a standard normal distribution (or z-distribution), the t-distribution has a mean of zero.
- The t-distribution is defined by the degrees of freedom. These are related to the sample size.
- The t-distribution is most useful for small sample sizes, when the population standard deviation is not known, or both.
- As the sample size increases, the t-distribution becomes more similar to a normal distribution.

The t-distribution

One-sample t-test

> t.test(weight$weight, mu = 28)
> t.test(weight$weight, mu = 28)
One Sample t-test
One Sample t-test
data: weight$weight
data: weight$weight
t = 2.8162, df = 11, p-value = 0.01678
t = 2.8162, df = 11, p-value = 0.01678
alternative hypothesis: true mean is not equal to 28
alternative hypothesis: true mean is not equal to 28
95 percent confidence interval:
95 percent confidence interval:
28.36953 31.01366
28.36953 31.01366
sample estimates:
mean of x
29.69159

	Seuil de signification pour le test unilatéral										
	.25	.20	.15	.10	.05	.025	.01	.005	.0005		
	Seuil de signification pour le test bilatéral										
	.50	.40	.30	.20	.10	.05	.02	.01	.001		
1	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.620		
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.599		
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924		
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610		
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869		
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959		
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408		
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041		
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781		
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587		
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437		

One-sample t-test

```
> t.test(weight$weight, mu = 28)
```


One Sample t-test

```
data: weight$weight
```

$t=2.8162, \mathrm{df}=11, \mathrm{p}$-value $=0.01678$
alternative hypothesis: true mean is not equal to 28

$$
\begin{aligned}
& T=\frac{\bar{x}-\mu}{\sqrt{S^{2} / n}} \\
& d f=n-1
\end{aligned}
$$

95 percent confidence interval:

$$
\begin{array}{r}
\operatorname{Pr}\{-2.201<T<2.201\}=0.95 \\
\operatorname{Pr}\left\{-2.201<\frac{\bar{x}-\mu}{\sqrt{S^{2} / n}}<2.201\right\}=0.95 \\
\operatorname{Pr}\left\{\bar{x}-2.201 \sqrt{S^{2} / n}<\mu<\bar{x}+2.201 \sqrt{S^{2} / n}\right\}=0.95
\end{array}
$$

mean of x
29.69159

One-sample t-test

```
> t.test(weight$weight, mu = 28, alternative="greater")
    One Sample t-test
data: weight$weight
t = 2.8162, df=11, p-value = 0.008391
alternative hypothesis: true mean is greater than 28
9 5 \text { percent confidence interval:}
    28.61286 Inf
sample estimates:
mean of }
    29.69159
\[
\operatorname{Pr}\left\{\mu>\bar{x}-1.796 \sqrt{S^{2} / n}\right\}=0.95
\]
```


	Seuil de signification pour le test unilatéral										
	.25	.20	.15	.10	.05	.025	.01	.005	.0005		
	Seuil de signification pour le test bilatéral										
$d l$.50	.40	.30	.20	.10	.05	.02	.01	.001		
1	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.620		
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.599		
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924		
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610		
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869		
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959		
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408		
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041		
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781		
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587		
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437		

Which test should I use ?

We have data about mice for which a gene was knocked out (KO), as well as control mice (WT) Question:
Is there a significant difference between the average weight of these two groups?

Mice weight at 18 weeks

Which test should I use ?

HO: the mean of the two groups is the same
H 1 : the mean of the two groups is different
To perform this hypothesis test, we can use a two-sample t-test.

Main assumptions:

- Data values must be independent.
- Data in each group must be obtained via a random sample from the population.
- Data in each group are normally distributed.
- Data values are continuous.
- The variances for the two independentgroups are equal (Here you can use a levene-test, in R : levene_test() to check for this assumption).

Two-sample t-test

Mice weight at 18 weeks (KO)

Mice weight at 18 weeks (WT)

Two-sample t-test (assuming equal variance)

Test-statistic (Student'st-statistic):
where

$$
T=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{S_{\mathrm{p}}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$-x_{1}$ is the average of the observations for WT mice $(30.324 \mathrm{~g})$
$-\overline{x_{2}}$ is the average of the observations for KO mice (31.542 g)
$-S_{\mathrm{p}}^{2}$ is the (estimated) pooled variance

$$
S_{p}^{2}=\frac{\left(\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right.}{n_{1}+n_{2}-2} \quad d f=n_{1}+n_{2}-2
$$

Welch Two-sample t-test (unequal variance)

Test-statistic (Student'st-statistic):
where

$$
T=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}
$$

$-x_{1}$ is the average of the observations for WT mice (30.324 g)
$-\overline{x_{2}}$ is the average of the observations for KO mice (31.542 g)

Welch approximation to the degrees of freedom

$$
d f=\frac{\left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{S_{1}^{4}}{n_{1}^{2}\left(n_{1}-1\right)}+\frac{S_{2}^{4}}{n_{2}^{2}\left(n_{2}-1\right)}}
$$

Two-sample t-test

```
> t.test(KO_WT$weight ~ KO_WT$genotype)
    Welch Two Sample t-test
data: KO_WT$weight by KO_WT$genotype
t = -1.4261, df=18.905, p-value = 0.1702
alternative hypothesis: true difference in means is not equal to 0
9 5 ~ p e r c e n t ~ c o n f i d e n c e ~ i n t e r v a l : ~
    -3.0078465 0.5705536
sample estimates:
mean in group KO mean in group WT
    30.32366 31.54231
```


Test unilatéral

	Seuil de signification pour le test unilatéral									
	.25	.20	.15	.10	.05	.025	.01	.005	.0005	
			Seuil de signification pour le test bilatéral							
	.50	.40	.30	.20	.10	.05	.02	.01	.001	
1	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.620	
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.599	
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924	
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610	
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869	
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959	
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408	
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041	
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781	
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587	
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437	

Two-sample t-test

```
> t.test(KO_WT$weight ~ KO_WT$genotype)
```

```
Welch Two Sample t-test
data: KO_WT$weight by KO_WT$genotype
t = -1.4261, df = 18.905, p-value = 0.1702
alternative hypothesis: true difference in means is not equal to 0
9 5 \text { percent confidence interval:}
    -3.0078465 0.5705536
sample estimates:
mean in group KO mean in group WT
    30.32366 31.54231
```

var.equal
a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch [...] approximation to the degrees of

$$
d f=\frac{\left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{S_{1}^{4}}{n_{1}^{2}\left(n_{1}-1\right)}+\frac{S_{2}^{4}}{n_{2}^{2}\left(n_{2}-1\right)}}
$$

freedom is used. Default is FALSE.

Two-sample t-test

```
> t.test(KO_WT$weight ~ KO_WT$genotype, var.equal = T)
    Two Sample t-test
data: KO_WT$weight by KO_wT$genotype
t = -1.4239, df = 19, p-value = 0.1707
alternative hypothesis: true difference in means is not equal to 0
9 5 ~ p e r c e n t ~ c o n f i d e n c e ~ i n t e r v a l : ~
    -3.0099018 0.5726089
sample estimates:
mean in group KO mean in group WT
    30.32366 31.54231
df= n}=\mp@subsup{n}{1}{}+\mp@subsup{n}{2}{}-
```


Which test should I use ?

We have data about mice at two different time points (T_{0} and T_{1})

Question:

Is there a significant difference between the average weight of these mice at these two time points?
Mice weight at 18 weeks (T0) and at 19 weeks (T1)

Which test should I use ?

HO: the mean of the differences is zero
H 1 : the mean of the differences is not zero
To perform this hypothesis test, we can use a paired t-test.
Main assumptions:

- Subjects must be independent. Measurements for one subject do not affect measurements for any other subject.
- Each of the paired measurements must be obtained from the same subject.
- The measured differences are normally distributed.

Paired t-test

- In the two-sample t-test, we compared two samples of unrelated data points
- If the data between the two samples is paired, that is, each point x_{i} in the first sample correspond to a point y_{i} in the second sample, we can do a paired t-test
- Equivalent to testing if the difference between the pairs is significantly different from zero.
- More powerfulthan the two-sample t-test because we provide more information (the pairing) to the test

Two-sample t-test

```
> t.test(T0_T1$weight_T0,T0_T1$weight_T1)
```


Welch Two Sample t-test

```
data: T0_T1$weight_T0 and T0_T1$weight_T1
t = -2.37\overline{5}8, df = 23.97, p-value = 0.02585
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -3.8996244 -0.2738217
sample estimates:
mean of }x\mathrm{ mean of }
    29.89671 31.98343
\[
T=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}} \quad d f=\frac{\left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{S_{1}^{4}}{n_{1}^{2}\left(n_{1}-1\right)}+\frac{S_{2}^{4}}{n_{2}^{2}\left(n_{2}-1\right)}}
\]
```


Paired t-test

```
> t.test(T0_T1$weight_T0,T0_T1$weight_T1, paired = T)
    Paired t-test
```

data: T0_T1\$weight_T0 and T0_T1\$weight_T1
$t=-11.537, \mathrm{df}=12, \mathrm{p}$-value $=7.491 \mathrm{e}-08$
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
$-2.480824-1.692622$
sample estimates:
mean of the differences
-2.086723
$T=\frac{\bar{X}-\bar{Y}}{S_{\mathrm{D}} / \sqrt{n}} \quad S_{\mathrm{D}}=\sqrt{\frac{\sum\left(x_{\mathrm{i}}-y_{\mathrm{i}}\right)^{2}-\frac{\left(\sum\left(x_{\mathrm{i}}-y_{\mathrm{i}}\right)\right)^{2}}{n}}{n-1}} \quad d f=n-1$

The right data visualization for paired data

Multiple testing

(even if a result is 'statistically significant', it can still be due to chance)

Type I and type II errors

Decision / «Truth»	H0 true	H1 true
Do not reject H0	Correct decision	Incorrect decision Type II error β
Reject H0	Incorrect decision Type I error α	Correct decision $1-\beta$
$\alpha=$ P(Type I error $)$	$\beta=P($ Type II error $)$	

Why Multiple Testing Matters

If we perform m hypothesis tests, what is the probability of at least 1 false positive?

$$
\begin{gathered}
P(\text { Type I error })=\alpha \\
P(\text { not making Type I error })=1-\alpha \\
P(\text { not making Type I error in } m \text { tests })=(1-\alpha)^{\mathrm{m}} \\
P(\text { making at least } 1 \text { Type I error in } m \text { tests })=1-(1-\alpha)^{\mathrm{m}}
\end{gathered}
$$

Probability of false positives increases with number of tests

Number of tests	Probability that at least one event is significant just by chance
1	0.050
2	0.097
3	0.142
4	0.185
5	0.226
10	0.401
20	0.641
50	0.923
100	0.994

$$
\begin{aligned}
& P(\text { at least one significant result })=1-(1- \\
&0.05) \text { number of tests }
\end{aligned}
$$

What Does Correcting for Multiple Testing Mean?

- Adjusting p-values for the number of hypothesis tests performed means controlling the Type I error rate
- Very active area of statistics - many different methods have been described
- Different Approaches ToControl Type I Errors:
- Family-wise error rate (FEWR): the probability of at least one type I error

$$
F E W R=P(V \geq 1) \leq \alpha
$$

- False discovery rate (FDR) is the expected proportion of Type I errors among the rejected hypotheses

$$
F D R=E\left(\frac{V}{R}\right) \leq \alpha
$$

Bonferroni correction controls FWER

- Significance threshold $=\alpha / \mathrm{m}$
- Bonferronicorrection tends to be too conservative

$$
P(\text { at least one significant result })=1-\left(1-\frac{0.05}{20}\right)^{20}=0.0488
$$

- It assumes that all tests are independent of each other. In practical applications, that is often not the case. Depending on the correlation structure of the tests, the Bonferroni correction could be extremely conservative, leading to a high rate of false negatives.

Holm's method controls FWER

- Tocontrol FWER at level $\alpha=0.05$:

1. Order the unadjustedp-values: $p_{1} \leq p_{2} \leq . . \leq p_{\mathrm{m}}$
2. The step-down Holm adjusted p-values are

$$
\tilde{p}_{\mathrm{j}}=\min \left[(m-j+1)^{*} p_{\mathrm{j}}, 1\right]
$$

3. The point here is that we don't multiply every p_{j} by the same factor m

$$
\text { if } m=1000: \tilde{p}_{1}=1000^{*} p_{1}, \tilde{p}_{2}=999^{*} p_{2}, . ., \tilde{p}_{\mathrm{m}}=1^{*} p_{\mathrm{m}}
$$

FWER or FDR?

- FWER is appropriate when you want to guard against ANY false positives
- However, in many cases (particularly in genomics) we can live with a certain number of false positives
- In these cases, the more relevant quantity to control is the false discovery rate (FDR)

Benjamini Hochberg controls FDR

- Tocontrol FDR at level $\delta=0.05$:

1. Order the unadjusted p -values: $p_{1} \leq p_{2} \leq$.. $\leq p_{\mathrm{m}}$
2. Find the test with the highest rank, j, for which the p
value, p_{j}, is less than equal to ${ }_{\frac{j}{\mathrm{~m}}}^{\mathrm{j}} \delta$

$$
\text { Controlling the FDR at } \delta=0.05
$$

3. Declare the tests of rank $1,2, . ., j$ as significant

Rank (j)	P-value	$(\mathrm{j} / \mathrm{m}) \times \delta$	Reject H_{0} ?
1	0.0008	0.005	1
2	0.009	0.010	1
3	0.165	0.015	0
4	0.205	0.020	0
5	0.396	0.025	0
6	0.450	0.030	0
7	0.641	0.035	0
8	0.781	0.040	0
9	0.900	0.045	0
10	0.993	0.050	0

Multiple testing correction in R: p.adjust

```
p.adjust {stats} R Documentation
    Adjust P-values for Multiple Comparisons
Description
Given a set of p-values, returns p-values adjusted using one of several methods.
Usage
p.adjust(p, method = p.adjust.methods, n = length(p))
p.adjust.methods
# c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
# "fdr", "none")
Arguments
p
    numeric vector of p-values (possibly with NA.s). Any other R object is coerced by as.numeric.
method
    correction method, a character string. Can be abbreviated
n
    number of comparisons, must be at least length (p); only set this (to non-default) when you know what you are
    doing!
```


Multiple testing correction

\star	X	baseMean	log2FoldChange	IfCSE	stat	pvalue
1	ENSMUSG00000000001	1200.3945707	-0.0148535315	0.09208117	-0.161309114	0.8718499450
2	ENSMUSG00000000028	26.6663265	-0.0411264150	0.40057975	-0.102667235	0.9182270789
3	ENSMUSG00000000031	21.4444727	0.0426268105	0.51792967	0.082302314	0.9344063142
4	ENSMUSG00000000037	52.3910190	-0.4151892308	0.30340015	-1.368454265	0.1711699284
5	ENSMUSG00000000049	3.4930947	-0.0136930701	1.10102747	-0.012436629	0.9900772616
6	ENSMUSG00000000056	835.3274881	0.1064909330	0.08664733	1.229015714	0.2190659145
7	ENSMUSG00000000058	446.2751056	0.1683537754	0.11789673	1.427976594	0.1532985955
8	ENSMUSG00000000078	412.0205179	-0.1306807947	0.11359624	-1.150397147	0.2499803346
9	ENSMUSG00000000085	774.8375178	-0.0217666588	0.09468269	-0.229890586	0.8181767921
10	ENSMUSG00000000088	1449.9781814	0.1003037335	0.08810335	1.138478125	0.2549208881

Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction
 Craig M. Bennett ${ }^{1 *}$, Abigail A. Baird ${ }^{2}$, Michael B. Miller ${ }^{1}$ and George L. Wolford ${ }^{3}$
 ${ }^{1}$ Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106 ${ }^{2}$ Department of Psychology, Blodgett Hall, Vassar College, Poughkeepsie, NY 12604 ${ }^{3}$ Department of Psychological and Brain Sciences, Moore Hall, Dartmouth College, Hanover, NH 03755

Fig. 1. Sagittal and axial images of significant brain voxels in the task $>$ rest contrast. The parameters for this comparison were $t(131)>3.15, p$ (uncorrected) $<0.001,3$ voxel extent threshold. Two clusters were observed in the salmon central nervous system. One cluster was observed in the medial brain cavity and another was observed in the upper spinal column.

