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Hypothesis Testing
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Guideline for using statistics in biology

Specify the biological question of interest.

Put the question in the form of a biological null hypothesis and alternate hypothesis.

Put the question in the form of a statistical null hypothesis and alternate hypothesis.
Determine which variables are relevant to the question and what kind of variable each one is.

Design an experiment that controls or randomizes the confounding variables.

Based on the number of variables, the kinds of variables, the expected fit to the parametric assumptions, and the
hypothesis to be tested, choose the best statistical test to use.

If possible, do a power analysis to determine a good sample size for the experiment.

Do the experiment.

Examine the data (explore variation and check if the assumptions of the statistical test you chose - primarily
normality and homoscedasticity for tests of measurement variables - are met - if it doesn’t, choose a more
appropriate test).

Apply the statistical test you chose and interpret the results.

Communicate your results effectively.



A possible experiment

1. We have possibly found a new drug for treating the flu.

2. Biological Null hypothesis : Drug A and Placebo have the same efficacy
against the flu.

Biological Alternate hypothesis : Drug A and Placebo have a different
efficacy against the flu.

Efficacy how is it measured ?

Example : Proportion of people cured.



A possible experiment

3. Statistical Null hypothesis : Drug A and Placebo have the same
proportion of cured people against the flu.

Statistical Alternate hypothesis : Drug A and Placebo have different
proportion of cured people against the flu.

4. Variable that are important : proportion of cured people, a number
between 0-1, to compare proportion we use z-statistics.

5. Confounding variables ? Possibly : age of people in the cohort, gender,
comorbidity, etc.



A possible experiment

6. Power analysis or how many subjects do | need in my study to be at
least (for example) 80% sure that | will see an effect between my tested
conditions.

Statistical power is made of four related parts:

Effect size: The quantified size of a result present in the population
Sample size: A number of things measured: How many patients do you
need to observe the effect

Significance: the level of significance used in the experiment (generally
0.05)

Statistical power: The probability of accepting the alternative hypothesis
(usually 80%).



A possible experiment

*We do the experiment, with 800 subjects (as maybe suggested
by our power analysis), 195 were treated with the placebo and
605 with the treatment.

*The placebo works on 41 people out of a sample of 195. The treatment works on 351
people in a sample of 605. Are the two drugs comparable?

State the null hypothesis and alternate hypothesis.
HO: the proportions of cured people are the same for both
drugs.

H1: the proportions of cured people are different for both drugs.
*Choose an alpha level.
alpha =0.05



A possible experiment

* Find the critical value inside tables of z.

* Calculate the z test statistic.
* Compare the test statistic to the critical value above and decide if you should support

or reject the null hypothesis.
*8.99 > 1.96, so we can reject the null hypothesis.

Critical values for a nondirectional : ~

(two-tailed) test with o = .05 _— PP
~
Op
Rejection region Rejection region
o.=.0250 o =.0250
s g el 4 4
Op=.|P(1-p) —+—
n m
I T T T T T T T T U T 1 }3 — ——————-—-—’2lﬁl + nlﬁ:
-3 -2 -1 0 1 3
v Nul ¢ £l



How to judge whether a difference is significant ?

* The p-value is the probability of getting a result that is as or more
extreme than the observed result, assuming that the null hypothesis
Is true.

* A p-value is not the probability that the null hypothesis is correct.
* A p-value is not the probability of making an error.



How to judge whether a difference is significant ?

* A predefined significance level (a) is defined, typically 0.05 or 0.01

* The value of the test statistic which correspond to the significance level is
calculated or often read in tables.

* If the observed test statistic is above the threshold, we reject the null hypothesis.



How to judge whether a difference is significant ?

* If "p<0.05", we don't know if itis 0.049 (barely significant) or 0.000000001
(extremely significant)

* Computers can now calculate exact p-values, which should be reported.
e “p<0.05” remains a magical threshold for many scientists



Two-sided test versus one-sided test

* Two-sided, nondirectional, two-tailed hypothesis
tests (H1: #)
HO: the proportions are the same: pl =p2
H1:the proportions are different: p1 # p2

* One-sided, directional, upper-tail hypothesis tests

(H1: >)

HO: the proportions are the same: p1 =p2
H1:plislarger than p2: pl > p2

* One-sided, directional, lower-tail hypothesis tests

(H1: >)

HO: the proportions are the same: p1 = p2
H1:plissmaller than p2: pl<p2

Critical values for a nondirectional

Rejection region

(two-tailed) test with 0. = .05

Rejection region

o.=.0250 o.=.0250
L T A T
Null
-1.96 - 1.96
Critical value for an upper-
tail critical test with oc= .05
Rejection region
o=.05
3 2 -1 0 | o2 7 s
Null
z=1.645
Critical value for an lower-
tail critical test with o. = .05
Rejection region
0.=.05
y T T T
-3 -2 -1 0 2 3
4 Null




Pitfalls in hypothesis testing

Even if a result is ‘statistically significant’, it can still be due to chance.

Conversely, if a result is not statistically significant, it may be only because you do
not have enough data (lack of power)

A test of significance does not say how important the difference is, or what
caused it (Is HO incorrect ? Was an assumption violated ? Were you unlucky ?)

Using a significance level transforms a complicated, real-world problem, into a
simple dichotomous question.



Difference between two-samples and two-sided tests

* Atwo-samples testis a hypothesis test for answering questions about means for
two different populations. Data are collected from two random samples of
independent observations.

* Atwo-sided test (or two-tailed test) is a hypothesis test in which the values for
rejecting the null hypothesis are in both tails of the probability distribution

* The choice between a one-sided test and a two-sided test is determined by the
purpose of the investigation or prior information
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Brief Communication | Published: 12 January 2014

Post-study caffeine administration enhances memory

consolidationin humans

Daniel Borota, Elizabeth Murray, Gizem Keceli, Allen Chang, Joseph M Watabe, Maria Ly, John P

Toscano & Michael A Yassa &

Nature Neuroscience 17, 201-203 (2014) | Cite this article
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(a) Outline of study design. After arrival of screened subjects, a baseline salivary sample was collected.
Then the encoding task was administered. This was an incidental indoor-outdoor judgment task
(stimuli every 2,500 ms, with an interstimulus interval (ISI) of 500 ms). After encoding, subjects were
administered either 200 mg caffeine or placebo pills. After Lh and 3 h, additional saliva samples were
collected. Subjects returned 24 h later for testing. Before a recognition test, a final saliva sample was
collected. Recognition was tested using an old-similar-new judgment task (stimuli every 2,500 ms
with a 500-ms ISI) using targets, foils and similar lures that are particularly sensitive to hippocampal
pattern separation. (b) Lure discrimination by subjects (i.e., whether subjects had a higher propensity
to call lure items 'similar’ rather than 'old’) [¢4, =1.79, one-tailed P= 0.04)}} *P < 0.05, one-tailed. (c,d)

Target hit rates (c) and foil rejection rates (d) (¢4, = 0.59, one-tailed P=0.27 and t4, = 0.15, one-tailed P
=0.44 between groups that received caffeine and placebo, for datain ¢ and d, respectively). Error

bars, +s.e.m.; n =20 subjects (caffeine) and n = 24 subjects (placebo).



Statistical significance
IS not the same

as practical Iimportance.



Published: 14 December 2008

Six new loci associated with body mass index
highlight a neuronal influence on body weight
regulation

the GIANT Consortium

Nature Genetics 41, 25-34(2009) ‘ Cite this article

1034 Accesses ‘43 Altmetric ‘ Metrics

Abstract

Common variants at only two loci, FTO and MC4R, have been reproducibly associated with
body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis
of 15 genome-wide association studies for BMI (n >32,000) and followed up top signalsin 14
additional cohorts (n>59,000). We strongly confirm FTO and MC4R and identify six
additional loci (P< 5 x10°8): TMEMI8, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGRI (where a
45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal
genes are highly expressed or known to act in the central nervous system (CNS),
emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to
obesity.



Statistical significance is not the same as practical importance
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Which test should | use ?

The most widely used tests try to answer
guestions about the location of the center of
the data (e.g. mean or median).



Which test should | use ?

We have data about mice for which a gene was knocked out.
Question:
Is their weight different from the mean weight of the mice lab population (e.g. 28 g) ?

Mice weight at 18 weeks

n=12

20

1.5

Frequency
1.0

05
|

Q|
o

| | | l l | |
26 27 28 29 30 31 32 33

Expected =28 g Observed = 29.692 ¢




Which test should | use ?

HO: the mean of the mice weight in our sample is equal to 28
H1:the mean of the mice weightin our sample is not equal to 28

Toperform this hypothesis test, we can use a one-sample t-test.

The most commonly used of all tests. Main assumptions:

= The data are continuous.
= The data are independent.

= The sample data have been randomly sampled from a population.
= No significant outliers in the data

= Normality: the data should be approximately normally distributed



One-sample t-test

Main assumptions:
= No significant outliers in the data

>ggboxplot (weight$weight, width = 0.5, add =
c("mean","jitter"), vylab = "Weight (g)", xlab = F)

> identify outliers (weilght)
## [1] name weight is.outlier 1is.extreme
## <0 rows> (or 0O-length row.names)

Values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR are considered as outliers.
Q1 and Q3 are the first and third quartile, respectively.
IQR is the interquartile range (IQR = Q3 - Q1).

> Q1 <- quantile(weight$weight, probs = 0.25)
> Q3 <- quantile(weight$weight, probs = 0.75)
> IQR <- Q3-Q1

321

311

)

Weight {

29 1

28 1

27 1

data point

5301

mean




One-sample t-test

Main assumptions:
= Normality: the data should be approximately normally distributed

> shapiro test(weightSweight)

# A tibble: 1 x 3
variable statistic p.value 2
<chr> <dbl> <dbl>
1 weightS$Sweight 0.902 0.166
: . éw
> ggqggplot (weight, x = "weight") s

254

A 0 1
Theoretical



One-sample t-test

Test-statistic (Student’s t-statistic):
X—U
JS%/n
where

— X is the average of the observations (29.692g)

— 1 is the mean weight of the mice lab population (28g)
— S is the (estimated) standard deviation (2.081g)

—nis the number of observations (12)

T =




The t-distribution

The t-distribution describes the standardized distances of sample means to the
population mean when the population standard deviation is not known, and
the observations come from a normally distributed population.

The t-distribution is similar to a normal distribution.

* Like the normal distribution, the t-distribution has a smooth shape.

* Like the normal distribution, the t-distribution is symmetric.

* Like a standard normal distribution (or z-distribution), the t-distribution has a mean of zero.

* The t-distribution is defined by the degrees of freedom. These are related to the sample size.

* The t-distribution is most useful for small sample sizes, when the population standard deviation is not known, or
both.

* As the sample size increases, the t-distribution becomes more similar to a normal distribution.



The t-distribution

==t with 10 degrees of freedom
==t with 2 degrees of freedom
==t with 1 degree of freedom
w= Standard Normal (2)




Reject Hoif

two-tailed test

t-distribution with df = 11

Reject Ho if

T<-2.080 Fail to reject Ho if T>2.080
T< |2.080]

-4 3

-2 -1 0 1 2 3 4

th11-0/2=111,0975=2.080

The t-distribution

one-tailed test

t-distribution with df = 11

Reject Ho if
T>1.721

-2 -1 0 1 2 3 4

th11-0=111095=1.721



One-sample t-test

> t.test (weight$weight, mu = 28)
One Sample t-test

data: weightS$weight
t = 2.8162, df = 11, p-value = 0.01678
alternative hypothesis: true mean 1s not equal to 28
95 percent confidence interval:
28.36953 31.01366
sample estimates:

mean of x
29.069159

/2 0/2
| I
-t 0 +t
Test unilatéral Test bilatéral
Seuil de signification pour le test unilatéral
25 20 15 .10 .05 .025 .01 .005 .0005
Seuil de signification pour le test bilatéral
dl .50 40 .30 .20 .10 .05 I .02 .01 I .001

11000 1376 1.963 3.078 6314 12706 31.821 63.657 636.620
2 0816 1.061 1386 1.886 2920  4.303 6.965 9.925 31.599
3 0765 0978 1.250 1.638 2.353 3.182  4.541 5.841 12.924
4 0741 0941 1.190 1.533 2132 2776 3.747  4.604 8.610
5 0727 0920 1.156 1476 2015 2.571 3365  4.032 6.869
6 0718 0906 1.134 1.440 1.943 2.447 3.143 3.707 5.959
7 0711 0.89 1.119 1415 1.895 2.365 2.998 3.499 5.408
8 0706 0.889 1.108 1.397 1.860  2.306 2.896 3.355 5.041
9 0703 0.883 1.100 1383 1.833 2262  2.821 3.250 4.781
10 0700 0.879 1.093 1372 1.812 2.228 64 69 4.587
11 0697 0876 1.088 1363 1.796 2.201 2.718 3.106 4.437



One-sample t-test

> t.test (weight$weight, mu = 28)

One Sample t-test T —

[C2
data: weightSweight S /n

t = 2.8162, df = 11, p-value = 0.01678
alternative hypothesis: true mean 1is not equal to 28 df = N — 1

95 percent confidence interval:
28.36953 31.01366

sample estimates:

mean of x Pr {—2201 <T< 2201} =0.95

29.69159

Pr{-2.201< *—H <2.201}=0.95
JS2/n

Pr{¥-2.201/S%/n < u < ¥+2.2014/S*/n }=0.95




One-sample t-test

> t.test (weight$weight, mu = 28, alternative="greater")

One Sample t-test

data: weightS$weight
t = 2.8162, df = 11, p-value = 0.008391
alternative hypothesis: true mean 1s greater than 28
95 percent confidence interval:
28.61286 Inf

sample estimates:

mean of x
29.069159

Pr{u>7x-179+S>/n }=0.95

-t 0 +t
Test unilatéral Test bilatéral

Seuil de signification pour le test unilatéral

25 20 U5 .0 .05 025 01 .005__| .0005
Seuil de signification pour le test bilatéral
dl 50 40 30 20 .10 .05 02 01 .001
1 1000 1376 1963 3.078 6314 12706 31.821 63.657 636.620
2 0816 1061 138 1.886 2920 4303 6965 9925  31.599
3 0765 0978 1250 1.638 2353  3.182 4541 5841  12.924
4 0741 0941 1.190 1.533 2132 2776 3747 4604 8610
5 0727 0920 1156 1476 2015 2571 3365 4.032  6.869
6 0718 0906 1.134 1440 1943 2447 3.143 3707  5.959
7 0711 0896 1119 1415 1.895 2365 2998 3499 5408
8 0706 0889 1.108 1397 1.860 2306 2.896 3.355  5.041
9 0703 0883 1.100 1383 1.833 2262 2821 3250  4.781
10 0700 0879 1.093 1372 1812 2228 64 69 4.587
110697 0876 1.088 1363 1796 2201 4.437



Which test should | use ?

We have data about mice for which a gene was knocked out (KO), as well as control mice (WT)
Question:
Is there a significant difference between the average weight of these two groups ?

Mice weight at 18 weeks

34
|

_—
|

32

n=10

30
L

n=11

28

KO WT



Which test should | use ?

HO: the mean of the two groups is the same
H1:the mean of the two groups is different

Toperform this hypothesis test, we can use a two-sample t-test.

Main assumptions:

= Datavalues must be independent.

= Datain each group must be obtained via a random sample from the population.

= Datain each group are normally distributed.

= Data values are continuous.

= The variances for the two independent groups are equal (Here you can use a
levene-test, in R : levene_test() to check for this assumption).



Frequency

20

1.5

1.0

05

0.0

Mice weight at 18 weeks (KO)

Two-sample t-test
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| | |
28 30 32

n=11
Mean = 30.324
Standard deviation = 1.986
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30 32

n=10
Mean = 31.542
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Two-sample t-test (assuming equal variance)

Test-statistic (Student’s t-statistic):

where
—x7 is the average of the observations for WT mice (30.324g)

—X2 is the average of the observations for KO mice (31.542g)
—SI% is the (estimated) pooled variance

SZ
P n, +n, —2

_ ((H1—1)512+(n2—1)522 df=n1-|—n2—2



Welch Two-sample t-test (unequal variance)

Test-statistic (Student’s t-statistic): T X1 — Xy
2 2
S1 n S
np Ny
where \

—x7 is the average of the observations for WT mice (30.324g)
—X72 is the average of the observations for KO mice (31.542g)

2
2 2

S_l + S_Z

nq n,
Welch approximation to df —
the degrees of freedom Sf n S;L

2 2
ni(ni—1) n3(n,—1)



Two-sample t-test

> t.test (KO WISweight ~ KO WTSgenotype)

Welch Two Sample t-test

data: KO WTISweight by KO WTSgenotype

t = -1.4261, df = 18.905, p-value = 0.1702

alternative hypothesis: true difference in means 1s not equal to O
95 percent confidence interval:
-3.0078465 0.5705536

sample estimates:

/2 /2

|
-t 0 +t
Test unilatéral Test bilatéral

mean in group KO mean in group WT

Seuil de signification pour le test unilatéral

3 O . 32 3 6 6 3 1 . 54 2 3 1 25 20 .15 .10 .05 .025 .01 .005 .0005
Seuil de signification pour le test bilatéral
dl .50 40 .30 I .20 .10 I .05 .02 .01 .001

1.000 1376 1963 3.078 6314 12706 31.821 63.657 636.620
0816 1.061 1386 1.886 2920 4303 6965 9925  31.599
0765 0978 1250 1.638 2353  3.182 4541 5841 12924
0741 0941 1190 1533 2132 2776 3747 4604 8610
0727 0920 1.156 1476 2015 2571 3365 4032  6.869
0718 0906 1.134 1440 1943 2447 3.143 3707 5959
0711 0896 1.119 1415 1.895 2365 2998 3499  5.408
0706 0.889 1.108 1397 1.860 2306 2896 3355  5.041
0703 0.883 1.100 1383 1.833 2262 2821 3250  4.781
0.700  0.879  1.093 g 2228 2764 3.169  4.587
0.697 0.876  1.088 2201 2718  3.106 4437

—C ORI RE WN -



Two-sample t-test

> t.test (KO WTSweight ~ KO WTSgenotype)
Welch Two Sample t-test

data: KO WTSweight by KO WTSgenotype
t = -1.4261, df = 18.905, p-value = 0.1702
alternative hypothesis: true difference 1n means 1s not equal to O
95 percent confidence interval:
-3.0078465 0.5705536
sample estimates:
mean in group KO mean in group WT

30.32366 31.54231
2 2
S_l + S_2
var.equal nq n,
a logical variable indicating whether to treat the two df — 54 54
variances as being equal. If TRUE then the pooled 1 + 2
variance is used to estimate the variance otherwise Tl% (711 — 1) n% (nz —_— 1)

the Welch [...] approximation to the degrees of
freedom is used. Default is FALSE.



Two-sample t-test

> t.test (KO WISweight ~ KO WTSgenotype, var.equal = T)
Two Sample t-test

data: KO WTSweight by KO WTSgenotype
t = -1.4239, df = 19, p-value = 0.1707
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.0099018 0.5726089
sample estimates:
mean in group KO mean in group WT
30.32366 31.54231

df=n1+n2—2



Which test should | use ?

We have data about mice at two different time points (To and T1)
Question:
Is there a significant difference between the average weight of these mice at these two time points ?

Mice weight at 18 weeks (T0) and at 19 weeks (T1) n=13

34
|

32

30
|

28
|

T0 ™



Which test should | use ?

HO: the mean of the differences is zero
H1: the mean of the differences is not zero

Toperform this hypothesis test, we can use a paired t-test.

Main assumptions:

= Subjects must be independent. Measurements for one subject do not affect
measurements for any other subject.

= Each of the paired measurements must be obtained from the same subject.

= The measured differences are normally distributed.



Paired t-test

In the two-sample t-test, we compared two samples of unrelated data points

If the data between the two samples is paired, that is, each point x;in the first sample
correspond to a point yiin the second sample, we can do a paired t-test

Equivalent to testing if the difference between the pairs is significantly different from
zZero.

More powerful than the two-sample t-test because we provide more information (the
pairing) to the test



Two-sample t-test

> t.test (TO T1lSweight TO,TO0 TlSweight TI1)
Welch Two Sample t-test

data: TO TlSweight TO and TO TlSweight T1
t = -2.3758, df = 23.97, p-value = 0.02585

alternative hypothesis: true difference 1n means is not equal to 0

95 percent confidence interval:
-3.8996244 -0.2738217

sample estimates:
mean of x mean of y

29.89671  31.98343 ) 2\ 2
52, 82
X1— X2 1 N2
T = df = 7 4
—L -2 ni(n—1)  nj(n;—1)



Paired t-test

> t.test(TO TlSweight TO,TO0 TlSweight T1, paired = T)
Paired t-test

data: TO TlSweight TO and TO TlSweight T1
t = -11.537, df = 12, p-value = 7.491e-08
alternative hypothesis: true difference 1n means 1s not equal to O
95 percent confidence interval:
-2.480824 -1.692622
sample estimates:
mean of the differences
-2.086723

Y (x; — J/i)z _ (2(x; — yi))z

r= XY n df 1
— p— = N —
So/Nm DA n—1
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The right data visualization for paired data
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Multiple testing

(even if a result is ‘statistically significant’, it can still be due to chance)



Type | and type Il errors

Do not reject HO Correct decision Incorrect decision
1-a Type Il error
B
Reject HO Incorrect decision Correct decision
Type | error 1-B
a

a = P(Type I error) f = P(Type Il error)



Why Multiple Testing Matters

If we perform m hypothesis tests, what is the probability of at least 1 false positive?

P (Typelerror) = a
P (not making Typelerror) =1-a
P (not making Type Il error inmtests) = (1-a)m

P (making at least 1 Type I error in m tests) =1-(1-qa)m



Probability of false positives increases with number of tests

Number of tests Probability that at least one event is significant just by chance

1 0.050
2 0.097
3 0.142
4 0.185
5 0.226
10 0.401
20 0.641
50 0.923
100 0.994
P(at least one significant result) = 1 — (1 —

O_()S)number of tests



What Does Correcting for Multiple Testing Mean?

Adjusting p-values for the number of hypothesis tests performed means controlling
the Type | error rate
Very active area of statistics - many different methods have been described

Different Approaches ToControl Type | Errors:
= Family-wise error rate (FEWR): the probability of at least one type | error
FEWR = P(V 2 1) £ «
* False discovery rate (FDR) is the expected proportion of Type | errors among the
rejected hypotheses

FDR—EV <
o)< o



Bonferroni correction controls FWER

Significance threshold = a/m
Bonferroni correction tends to be too conservative

P(at least one significant result) = 1 —(1 —92%)5)2():0.0488

It assumes that all tests are independent of each other. In practical applications, that
is often not the case. Depending on the correlation structure of the tests, the
Bonferroni correction could be extremely conservative, leading to a high rate of false
negatives.



Holm’s method controls FWER

 Tocontrol FWER at level a=0.05:
1. Order the unadjusted p-values: p1 = p2< ..< Pm
2. The step-down Holm adjusted p-values are

pj= min[(m—j+ 1) * pj,1]

3. The point here is that we don’t multiply every p;j by the same factor m
if m= 1000: p1 = 1000*p1,p2 = 999*p2, .., Pm = 1*pm



FWER or FDR ?

FWER is appropriate when you want to guard against ANY false positives

However, in many cases (particularly in genomics) we can live with a certain number
of false positives
In these cases, the more relevant quantity to control is the false discovery rate (FDR)



Benjamini Hochberg controls FDR

* Tocontrol FDR at level 6=0.05:
1. Order the unadjusted p-values: pP1 = p2< ..< Pm
2. Find the test with the highest rank, j, for which the p

value, pj, is less than equalto ! &
m
Controlling the FDR at & = 0.05

3. Declare the tests ofrank 1, 2, .., j as significant Rank () | Pvalue | (/m)xa | RejectH,?
1 | 00008 | 0005 | 1
2 0.009 0.010 1
3 0.165 0.015 0
4 0.205 0.020 0
5 0.396 0.025 0
6 0.450 0.030 0
7 0.641 0.035 0
8 0.781 0.040 0
9 0.900 0.045 0
10 0.993 0.050 0




Multiple testing correction in R: p.adjust

p.adjust {stats} R Documentation

Adjust P-values for Multiple Comparisons
Description
Given a set of p-values, returns p-values adjusted using one of several methods.

Usage

p.adjust (p, method = p.adjust.methods, n = length(p))
p.adjust.methods
# c("holm", "hochberg”, "hommel”, "bonferroni”, "BH", "BY",

$ "fdr", "none")

Arguments

B
numeric vector of p-values (possibly with 5zs). Any other R object is coerced by as.numeric.

method
correction method, a character string. Can be abbreviated.

number of comparisons, must be at least 1ength (p) ; only set this (to non-default) when you know what you are
doing!



Frequency
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Multiple testing correction

DESEQ2 results

uncorrected p value

Frequency

5000 10000 15000 20000

0

»

X

ENSMUSG00000000001
ENSMUSG00000000028
ENSMUSG00000000031
ENSMUSG00000000037
ENSMUSG00000000049
ENSMUSG00000000056
ENSMUSG00000000058
ENSMUSG00000000078
ENSMUSG00000000085
ENSMUSG00000000088
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DESEQ2 results

baseMean
1200.3945707
26.6663265
21.4444727
52.3910190
3.4930947
835.3274881
446,2751056
412.0205179
774.8375178
1449,9781814

Frequency
10000 15000 20000

5000

0

0.0

0.2
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04 06 0.8

adjusted p value (Bonferroni)

1.0

log2FoldChange

-0.0148535315
-0.0411264150
0.0426268105
-0.4151892308
-0.0136930701
0.1064909330
0.1683537754
-0.1306807947
-0.0217666588
0.1003037335

IfcSE

0.09208117
0.40057975
0.51792967
0.30340015
1.10102747
0.08664733
0.11789673
0.11359624
0.09468269
0.08810335

stat
-0.161309114
-0.102667235
0.082302314
-1.368454265
-0.012436629
1.229015714
1.427976594
-1.150397147
-0.229890586
1.138478125

DESEQ2 results

T [ |

pvalue

0.8718499450
0.9182270789
0.9344063142
0.1711699284
0.9900772616
0.2190659145
0.1532985955
0.2499803346
0.8181767921
0.2549208881
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Neural Correlates of Interspecies Perspective Taking in
the Post-Mortem Atlantic Salmon: An Argument For

Proper Multiple Comparisons Correction

Craig M. Bennett 1+, Abigail A. Baird 2, Michael B. Miller ! and George L.

Wolford 3

1Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106
2Department of Psychology, Blodgett Hall, Vassar College, Poughkeepsie, NY 12604
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03755
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t-value

Fig. 1. Sagittal and axial images of significant brain voxels in the task > rest contrast. The parameters for this comparison
were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold. Two clusters were observed in the salmon central
nervous system. One cluster was observed in the medial brain cavity and another was observed in the upper spinal column.
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