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Hypothesis Testing



1. Specify the biological question of interest.

2. Put the question in the form of a biological null hypothesis and alternate hypothesis.

3. Put the question in the form of a statistical null hypothesis and alternate hypothesis.

4. Determine which variables are relevant to the question and what kind of variable each one is.

5. Design an experiment that controls or randomizes the confounding variables.

6. Based on the number of variables, the kinds of variables, the expected fit to the parametric assumptions, and the 
hypothesis to be tested, choose the best statistical test to use.

7. If possible, do a power analysis to determine a good sample size for the experiment.

8. Do the experiment.

9. Examine the data (explore variation and check if the assumptions of the statistical test you chose - primarily 
normality and homoscedasticity for tests of measurement variables - are met - if it doesn’t, choose a more 

appropriate test).

10. Apply the statistical test you chose and interpret the results.

11. Communicate your results effectively.

Guideline for using statistics in biology



A possible experiment

1. We have possibly found a new drug for treating the flu.

2. Biological Null hypothesis : Drug A and Placebo have the same efficacy 
against the flu.

Biological Alternate hypothesis : Drug A and Placebo have a different 
efficacy against the flu.

Efficacy how is it measured ?

Example : Proportion of people cured. 



A possible experiment

3.  Statistical Null hypothesis : Drug A and Placebo have the same 
proportion of cured people against the flu.

Statistical Alternate hypothesis : Drug A and Placebo have different 
proportion of cured people against the flu.

4. Variable that are important : proportion of cured people, a number 
between 0-1, to compare proportion we use z-statistics. 

5. Confounding  variables ? Possibly : age of people in the cohort, gender, 
comorbidity, etc. 



A possible experiment

6. Power analysis or how many subjects do I need in my study to be at 
least (for example) 80% sure that I will see an effect between my tested 
conditions. 
Statistical power is made of four related parts: 

Effect size: The quantified size of a result present in the population
Sample size: A number of things measured: How many patients do you 
need to observe the effect
Significance: the level of significance used in the experiment (generally 
0.05)
Statistical power: The probability of accepting the alternative hypothesis 
(usually 80%).



A possible experiment

•We do the experiment, with 800 subjects (as maybe suggested 

by our power analysis), 195 were treated with the placebo and 
605 with the treatment.

•The placebo works on 41 people out of a sample of 195. The treatment works on 351 

people in a sample of 605. Are the two drugs comparable?

•State the null hypothesis and alternate hypothesis. 

H0: the proportions of cured people are the same for both 

drugs.

H1: the proportions of cured people are different for both drugs.
•Choose an alpha level.
alpha = 0.05



A possible experiment

• Find the critical value inside tables of z.
• Calculate the z test statistic.
• Compare the test statistic to the critical value above and decide if you should support 

or reject the null hypothesis.
•8.99 > 1.96, so we can reject the null hypothesis.



How to judge whether a difference is significant ?

• The p-value is the probability of getting a result that is as or more 
extreme than the observed result, assuming that the null hypothesis 
is true.

• A p-value is not the probability that the null hypothesis is correct.

• A p-value is not the probability of making an error.



How to judge whether a difference is significant ?

• A predefined significance level (α) is defined, typically 0.05 or 0.01

• The value of the test statistic which correspond to the significance level is 
calculated or often read in tables.

• If the observed test statistic is above the threshold, we reject the null hypothesis.



How to judge whether a difference is significant ?

• If "p<0.05", we don't know if it is 0.049 (barely significant) or 0.000000001 
(extremely significant)

• Computers can now calculate exact p-values, which should be reported.

• “p<0.05” remains a magical threshold for many scientists



Two-sided test versus one-sided test

• Two-sided, nondirectional, two-tailed hypothesis 
tests (H1: ≠)

H0: the proportions are the same: p1 = p2 

H1: the proportions are different: p1 ≠ p2

• One-sided, directional, upper-tail hypothesis tests 
(H1: >)

H0: the proportions are the same: p1 = p2 

H1: p1 is larger than p2: p1 > p2

• One-sided, directional, lower-tail hypothesis tests 
(H1: >)

H0: the proportions are the same: p1 = p2 

H1: p1 is smaller than p2: p1 < p2



Pitfalls in hypothesis testing

• Even if a result is ‘statistically significant’, it can still be due to chance.

• Conversely, if a result is not statistically significant, it may be only because you do 
not have enough data (lack of power)

• A test of significance does not say how important the difference is, or what 
caused it (Is H0 incorrect ? Was an assumption violated ? Were you unlucky ?)

• Using a significance level transforms a complicated, real-world problem, into a 
simple dichotomous question.



Difference between two-samples and two-sided tests

• A two-samples test is a hypothesis test for answering questions about means for 
two different populations. Data are collected from two random samples of 
independent observations.

• A two-sided test (or two-tailed test) is a hypothesis test in which the values for 
rejecting the null hypothesis are in both tails of the probability distribution

• The choice between a one-sided test and a two-sided test is determined by the 
purpose of the investigation or prior information





Statistical significance 

is not the same

as practical importance.





Statistical significance is not the same as practical importance

8 SNPs (6 discovered in 
the study) significantly 
associated with BMI.

They correspond to a 
change of 173–954 g in 
weight per allele in adults 
who are 160–180 cm tall



Which test should I use ?

The most widely used tests try to answer 

questions about the location of the center of 

the data (e.g. mean or median).



We have data about mice for which a gene was knocked out.
Question:

Is their weight different from the mean weight of the mice lab population (e.g. 28 g) ?

n = 12

Which test should I use ?

Expected = 28 g Observed = 29.692 g



H0: the mean of the mice weight in our sample is equal to 28 

H1: the mean of the mice weight in our sample is not equal to 28

To perform this hypothesis test, we can use a one-sample t-test.

The most commonly used of all tests. Main assumptions:

▪ The data are continuous.
▪ The data are independent.
▪ The sample data have been randomly sampled from a population.
▪ No significant outliers in the data
▪ Normality: the data should be approximately normally distributed

Which test should I use ?



Main assumptions:
▪ No significant outliers in the data

>ggboxplot(weight$weight, width = 0.5, add = 

c("mean","jitter"), ylab = "Weight (g)", xlab = F)

> identify_outliers(weight)

## [1] name weight is.outlier is.extreme 

## <0 rows> (or 0-length row.names)

Values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR are considered as outliers. 

Q1 and Q3 are the first and third quartile, respectively.

IQR is the interquartile range (IQR = Q3 - Q1).

> Q1 <- quantile(weight$weight, probs = 0.25)

> Q3 <- quantile(weight$weight, probs = 0.75)

> IQR <- Q3-Q1

One-sample t-test

data point

mean



Main assumptions:
▪ Normality: the data should be approximately normally distributed

> shapiro_test(weight$weight)

# A tibble: 1 x 3

variable statistic p.value

<chr> <dbl> <dbl>

1 weight$weight 0.902 0.166

> ggqqplot(weight, x = "weight")

One-sample t-test



One-sample t-test

Test-statistic (Student’s t-statistic):

2

where

– 𝑥̅ is the average of the observations (29.692g)
– μ is the mean weight of the mice lab population (28g)
– S is the (estimated) standard deviation (2.081g)
– n is the number of observations (12)



The t-distribution

The t-distribution describes the standardized distances of sample means to the 
population mean when the population standard deviation is not known, and 
the observations come from a normally distributed population.

The t-distribution is similar to a normal distribution.
• Like the normal distribution, the t-distribution has a smooth shape.
• Like the normal distribution, the t-distribution is symmetric.
• Like a standard normal distribution (or z-distribution), the t-distribution has a mean of zero.

• The t-distribution is defined by the degrees of freedom. These are related to the sample size.
• The t-distribution is most useful for small sample sizes, when the population standard deviation is not known, or

both.

• As the sample size increases, the t-distribution becomes more similar to a normal distribution.



The t-distribution



The t-distributiontwo-tailed test

t-distribution with df = 11

one-tailed test

t-distribution with df = 11

Fail to reject H0 if 

T < |2.080|

Reject H0 if 
T < -2.080

Reject H0 if 
T > 2.080

Reject H0 if 
T > 1.721

tn-1,1-α/2=t11,0.975=2.080 tn-1,1-α=t11,0.95=1.721



> t.test(weight$weight, mu = 28)

One Sample t-test

data: weight$weight

t = 2.8162, df = 11, p-value = 0.01678

alternative hypothesis: true mean is not equal to 28

95 percent confidence interval: 

28.36953 31.01366

sample estimates:

mean of x 

29.69159

One-sample t-test



> t.test(weight$weight, mu = 28)

One Sample t-test

data: weight$weight

t = 2.8162, df = 11, p-value = 0.01678

alternative hypothesis: true mean is not equal to 28

95 percent confidence interval:

28.36953 31.01366

sample estimates:

mean of x 

29.69159

One-sample t-test

Pr {−2.201 < T < 2.201} = 0.95

Pr {−2.201 < < 2.201} = 0.95

Pr { −2.201 < 𝜇 < +2.201 } = 0.95

2

𝑥̅ — 𝜇

𝑆2/𝑛



One-sample t-test

> t.test(weight$weight, mu = 28, alternative="greater")

One Sample t-test

data: weight$weight

t = 2.8162, df = 11, p-value = 0.008391

alternative hypothesis: true mean is greater than 28

95 percent confidence interval:

28.61286 Inf

sample estimates: 

mean of x

29.69159

−1.796Pr { 𝜇 > } = 0.95



We have data about mice for which a gene was knocked out (KO), as well as control mice (WT)
Question:

Is there a significant difference between the average weight of these two groups ?

Which test should I use ?

n = 11

n = 10



H0: the mean of the two groups is the same 
H1: the mean of the two groups is different

To perform this hypothesis test, we can use a two-sample t-test.

Main assumptions:

▪ Data values must be independent.
▪ Data in each group must be obtained via a random sample from the population.
▪ Data in each group are normally distributed.
▪ Data values are continuous.

▪ The variances for the two independent groups are equal (Here you can use a 
levene-test, in R : levene_test() to check for this assumption).

Which test should I use ?



Two-sample t-test

n = 11
Mean = 30.324
Standard deviation = 1.986

n = 10
Mean = 31.542
Standard deviation = 1.928



Two-sample t-test (assuming equal variance)

Test-statistic (Student’s t-statistic):

where

1 2

p
2

1 2

p– 𝑆2 is the (estimated) pooled variance

– 𝑥1 is the average of the observations for WT mice (30.324g)

– 𝑥2 is the average of the observations for KO mice (31.542g)

1 2



Welch Two-sample t-test (unequal variance)

Test-statistic (Student’s t-statistic):

where
– 𝑥1 is the average of the observations for WT mice (30.324g)

– 𝑥2 is the average of the observations for KO mice (31.542g)

1 2

2
1

2
2

1 2

Welch approximation to 
the degrees of freedom



> t.test(KO_WT$weight ~ KO_WT$genotype)

Welch Two Sample t-test

data: KO_WT$weight by KO_WT$genotype

t = -1.4261, df = 18.905, p-value = 0.1702

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.0078465 0.5705536

sample estimates:

mean in group KO mean in group WT 

30.32366 31.54231

Two-sample t-test



> t.test(KO_WT$weight ~ KO_WT$genotype)

Welch Two Sample t-test

data: KO_WT$weight by KO_WT$genotype

t = -1.4261, df = 18.905, p-value = 0.1702

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.0078465 0.5705536

sample estimates:

mean in group KO mean in group WT 

30.32366 31.54231

var.equal

Two-sample t-test

a logical variable indicating whether to treat the two 
variances as being equal. If TRUE then the pooled 
variance is used to estimate the variance otherwise 
the Welch […] approximation to the degrees of 
freedom is used. Default is FALSE.



> t.test(KO_WT$weight ~ KO_WT$genotype, var.equal = T)

Two Sample t-test

data: KO_WT$weight by KO_WT$genotype 

t = -1.4239, df = 19, p-value = 0.1707

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.0099018 0.5726089

sample estimates:

mean in group KO mean in group WT 

30.32366 31.54231

Two-sample t-test

1 2



We have data about mice at two different time points (T0 and T1)
Question:

Is there a significant difference between the average weight of these mice at these two time points ?

n = 13

Which test should I use ?



H0: the mean of the differences is zero 
H1: the mean of the differences is not zero

To perform this hypothesis test, we can use a paired t-test.

Main assumptions:

▪ Subjects must be independent. Measurements for one subject do not affect 
measurements for any other subject.

▪ Each of the paired measurements must be obtained from the same subject.
▪ The measured differences are normally distributed.

Which test should I use ?



• In the two-sample t-test, we compared two samples of unrelated data points
• If the data between the two samples is paired, that is, each point xi in the first sample 

correspond to a point yi in the second sample, we can do a paired t-test
• Equivalent to testing if the difference between the pairs is significantly different from

zero.

• More powerful than the two-sample t-test because we provide more information (the 
pairing) to the test

Paired t-test



> t.test(T0_T1$weight_T0,T0_T1$weight_T1)

Welch Two Sample t-test

data: T0_T1$weight_T0 and T0_T1$weight_T1 

t = -2.3758, df = 23.97, p-value = 0.02585

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.8996244 -0.2738217

sample estimates:

mean of x mean of y 

29.89671 31.98343

Two-sample t-test



> t.test(T0_T1$weight_T0,T0_T1$weight_T1, paired = T)

Paired t-test

data: T0_T1$weight_T0 and T0_T1$weight_T1 

t = -11.537, df = 12, p-value = 7.491e-08

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.480824 -1.692622

sample estimates:

mean of the differences

-2.086723

Paired t-test

D
D

i i
2 i i

2



The right data visualization for paired data



Multiple testing

(even if a result is ‘statistically significant’, it can still be due to chance)



Type I and type II errors

Decision / «Truth» H0 true H1 true

Do not reject H0 Correct decision 
1-α

Incorrect decision 
Type II error

β

Reject H0 Incorrect decision 

Type I error

α

Correct decision 

1-β

𝛼 = 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) 𝛽 = 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟)



Why Multiple Testing Matters

If we perform m hypothesis tests, what is the probability of at least 1 false positive?

𝑃 ( 𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝛼

𝑃 ( 𝑛𝑜𝑡 𝑚𝑎𝑘𝑖𝑛𝑔 𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 1 - 𝛼

𝑃 ( 𝑛𝑜𝑡 𝑚𝑎𝑘𝑖𝑛𝑔 𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑚 𝑡𝑒𝑠𝑡𝑠) = (1 - 𝛼 )m

𝑃 ( 𝑚𝑎𝑘𝑖𝑛𝑔 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑚 𝑡𝑒𝑠𝑡𝑠) = 1-( 1 - 𝛼 )m



Probability of false positives increases with number of tests

Number of tests Probability that at least one event is significant just by chance

1 0.050

2 0.097

3 0.142

4 0.185

5 0.226

10 0.401

20 0.641

50 0.923

100 0.994

𝑃 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 = 1 — ( 1 —

0.05)number of tests



What Does Correcting for Multiple Testing Mean?

• Adjusting p-values for the number of hypothesis tests performed means controlling 
the Type I error rate

• Very active area of statistics - many different methods have been described

• Different Approaches To Control Type I Errors:

▪ Family-wise error rate (FEWR): the probability of at least one type I error
𝐹𝐸𝑊𝑅 = 𝑃(𝑉 ≥ 1)  ≤ 𝛼

▪ False discovery rate (FDR) is the expected proportion of Type I errors among the 
rejected hypotheses

𝑉

𝑅
𝐹𝐷𝑅 = 𝐸 ≤ 𝛼



• It assumes that all tests are independent of each other. In practical applications, that 
is often not the case. Depending on the correlation structure of the tests, the 
Bonferroni correction could be extremely conservative, leading to a high rate of false 
negatives.

Bonferroni correction controls FWER

20

• Significance threshold = α/m
• Bonferroni correction tends to be too conservative

𝑃 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 =  1 —(1 —0.05)20=0.0488



• To control FWER at level α=0.05:

Holm’s method controls FWER

𝑝1 ≤ 𝑝2 ≤ .. ≤ 𝑝m1. Order the unadjusted p-values:
2. The step-down Holm adjusted p-values are

𝑝 j  = min[ 𝑚—𝑗+ 1 * 𝑝j , 1]

3. The point here is that we don’t multiply every 𝑝j by the same factor m

𝑖𝑓 𝑚 = 1000: 𝑝̃ 1 = 1000* 𝑝1 , 𝑝̃ 2 = 999* 𝑝2 , .., 𝑝̃m = 1* 𝑝m



• FWER is appropriate when you want to guard against ANY false positives
• However, in many cases (particularly in genomics) we can live with a certain number 

of false positives
• In these cases, the more relevant quantity to control is the false discovery rate (FDR)

FWER or FDR ?



• To control FDR at level δ=0.05:
1. Order the unadjusted p-values:
2. Find the test with the highest rank, j, for which the p

value, 𝑝j, is less than equal to

3. Declare the tests of rank 1, 2, .., j as significant

Benjamini Hochberg controls FDR

𝑝1 ≤ 𝑝2 ≤ .. ≤ 𝑝m

m

j  δ



Multiple testing correction in R: p.adjust



Multiple testing correction
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