

Joao Lourenço and Rachel Marcone

Parametric and non parametric tests

T-tests: summary

T-test in general Used to compare means

One-sample t-test
Compare the mean of a sample to a given number

Two-sample t-test Compare the means of two samples

Paired t-test
Compare the difference between pairs of related data points

Assumptions for the t-test

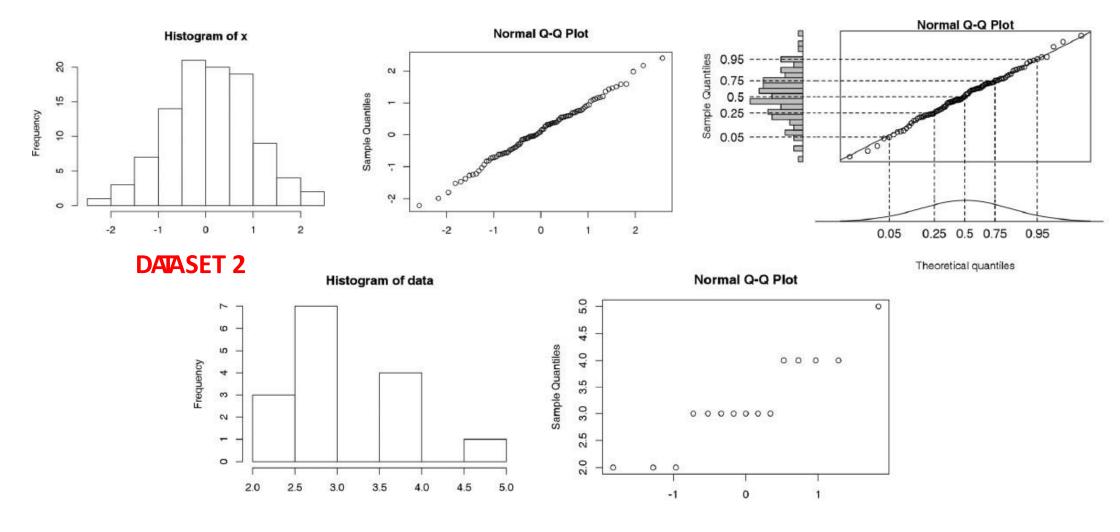
- This test is one of the most widely used tests. However, it can be used only if the background assumptions are satisfied.
 - Data values must be independent.
 - Data in each group must be obtained via a random sample from the population.
 - The variances for the two independent groups are equal.
 - Data in each group are **normally** distributed.
 - Data values are continuous.

T-test in practice

- Analysts generally don't use the standard (Student) t-test.
- The Welch t-test takes into account different sample variances.
- If the variances are actually the same, it provides the same results as the standard Student t-test.

DATASET 1

Graphical tools to assess normality



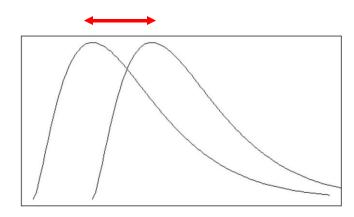
Normality tests

Examples: Shapiro-Wilk, Kolmogorov-Smirnov.

- Normality tests are statistical tests
 - They test against normality (and can not show/prove normality)
 - They may not have enough power
 - Conversely, if *n* is large, even a very small departure from normality may be significant.

What happens if the data is not normally distributed?

- Transform the data using the log function
 - Examples of data that should be logged:
 - Highly asymetrical data
 - Data spanning several orders of magnitude
 - Data originating from ratios
- Another possible solution: non-parametric tests
 - Wilcoxon rank-sum test (WRS)
 - Mann–Whitney U test
 - Mann–Whitney–Wilcoxon (MWW)



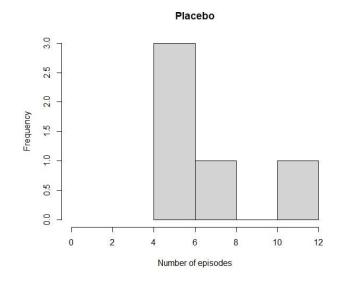
Mann–Whitney U test

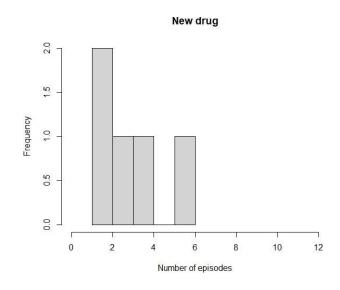
- General formulation:
 - All the observations from both groups are independent of each other
 - The variable is ordinal or numerical
 - H₀: the distributions of both populations are equal
 - H₁: the distributions are not equal

Mann–Whitney U test: an example

Consider a Phase II clinical trial designed to investigate the effectiveness of a new drug to reduce symptoms of asthma in children. Participants are asked to record the number of episodes of shortness of breath over a 1 week period following receipt of either the new drug or a placebo. Is the difference significant?

Placebo	7	5	6	4	12
New drug	3	6	4	2	1





Mann-Whitney U test: an example

		Total sampl	e (ordered)	Ranks		
Placebo	New drug	Placebo	New drug	Placebo	New drug	
7	3		1		1	
5	6		2		2	
6	4		3		3	
4	2	4	4	4.5	4.5	
12	1	5		6		
		6	6	7.5	7.5	
		7		9		
		12		10		

$$R1 = 4.5 + 6 + 7.5 + 9 + 10 = 37$$

$$R2 = 1+2+3+4.5+7.5=18$$

$$U_1 = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - R_1 = 5(5) + \frac{5(6)}{2} - 37 = 3$$

$$U_2 = n_1 n_2 + \frac{n_2(n_2 + 1)}{2} - R_2 = 5(5) + \frac{5(6)}{2} - 18 = 22$$

Test statistic for the Mann Whitney U Test is denoted $U = min(U_1, U_2)$

In R: wilcox.test(data\$placebo,data\$drug)

Mann–Whitney U test: an example

Alpha = .05 (two-tailed)

n1\ ⁿ²	2	3	4	5	6	7	8	9	10
	2	3	-4	3	0	/	0	7	
2							0	0	0
2				0	1	1	2	2	3
4			0	1	2	3	4	4	5
5		0	1	2	3	5	6	7	8
6		1	2	3	5	6	8	10	11
7		1	3	5	6	8	10	12	14
8	0	2	4	6	8	10	13	15	17
9	0	2	4	7	10	12	15	17	20
10	0	3	5	8	11	14	17	20	23

Decision for the test: if $U < U_{crit}$ we reject H0

We do not reject H0 because 3 > 2.

We do not have statistically significant evidence at α =0.05, to show that the two populations of numbers of episodes of shortness of breath are not equal.

Low power because of small sample sizes?

Take home message

- How to handle (non-)normality
 - Start by making sure that your data is of the right type
 - If the data spans several orders of magnitude, is made of ratios or is very asymmetrical, consider taking the log.
 - If n is large (>20 or 30), then you should not have to worry.
 - As long as your data is not "too" far from normality (and you are careful with borderline p-values), the t-test will return a meaning full value.
- How to handle (non-)normality: alternatively
 - Perform both a t-test and a Wilcoxon rank-sum test
 - If they return a coherent result, it is stronger that if you performed only one test.
 - If the results are incoherent, look at the data to find out what produced this.