b UNIVERSITÄT BERN

Whole genome assembly using long read sequences

Heidi Tschanz-Lischer, Interfaculty Bioinformatics Unit (IBU) 17.02.2021

De novo genome assembly

Why do we need whole genome sequences?

- Better understand variations within and between species
- Reduces the costs of future sequencing projects
 - Lower coverage required (e.g.: population genomic or genome wide association studies)
 - Simplify bioinformatics analyses

De novo assembly:

- Reconstructing the original DNA sequence from fragmented reads
- is like a big and complicated jigsaw puzzle
 - Millions of small pieces
 - Missing and pieces with mistakes (sequencing errors)
 - Polymorphisms (diploid)
 - Long repetitive parts

^b UNIVERSITÄT BERN

De novo genome assembly

Current sequencing technologies do not have all

- Illumina: good quality reads, but short
- PacBio / Nanopore: very long reads, but lower quality
- PacBio HiFi: long reads and good quality, but expensive

What is needed for a good assembly?

- Low heterozygosity DNA
- High coverage
- High read lengths
- Good read quality

→ Genome assembly is still a difficult problem and requires high computational resources

Choosing assembly strategy

^D UNIVERSITÄT BERN

The choice of algorithms depends on

- how much long reads (PacBio/Nanopore) can be obtained
- how much short read data are available

ABVSS	>80x	short reads	
SOAPdenovo2, ALLPATHS-LG, IDBA, Unicycler,	Short read de novo assembly		(assembly polishing) Pilon
PBJelly 2, LINKS	Gap filling, scaffolding, Assembly upgrade	Hybrid assembly hybridSPAdes, dbg2olc, pacBioToCA, PBcR, ALLPATHS-LG, Trycycler,	Long reads de novo assembly Flye, Falcon, Canu,
	<5x	Long reads	>50x

HGAP: Hierarchical Genome Assembly Process

(https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP)

- PacBio, included in the SMART Analysis software (GUI based)
- developed to allow the complete and accurate assembly of bacterial sized genomes (<100 Mb)
- 3 step process
 - Preassembly:
 generate long and highly accurate reads
 - Assembly: Overlap-layout-consensus (OLC)
 - Consensus polishing: reduce remaining Indels and SNP errors (Quiver)

b UNIVERSITÄT BERN

Miniasm (https://github.com/lh3/miniasm)

- Very fast OLC-based (overlap-layout-consensus) de novo assembler for noisy long reads
- Outputs only assembly graphs (GFA format) \rightarrow no consensus calling

Trycycler (https://github.com/rrwick/Trycycler/wiki)

- hybrid or long-read-only (Flye, Miniasm, Raven) assemblies
- Takes multiple separate long-read assemblies and produces a consensus long-read assembly
- Not especially fast, but circularizes genomes without a separate tool (e.g. Circlator)
- Both: \rightarrow for bacterial genomes
 - \rightarrow PacBio or Nanopore reads
 - \rightarrow easy and straight forward to use

b UNIVERSITÄT BERN

Shasta (https://github.com/chanzuckerberg/shasta)

- Nanopore reads
- Default parameters optimized for coverage ~60x
- RAM requirements: around 4-6 bytes per input base
- Accuracy is comparable or better than alternative assemblers
- Very fast and simple to use
- 60x human genome: 5 hours (128 virtual CPUs) and 2 TB RAM

Raven (https://github.com/lbcb-sci/raven)

- PacBio or Nanopore
- Fast and simple to use
- 44x Nanopore human genome: 500 CPU hours, 380 GB RAM

b UNIVERSITÄT BERN

Wtdbg2 (redbean) (https://github.com/ruanjue/wtdbg2)

- PacBio or Nanopore
- Assembles reads without error correction and builds consensus sequences
- Based on fuzzy Bruijn graph method
- Fast and easy to use assembler
- from small bacterial projects to large mammalian-scale assemblies
 - E. coli (4.6 Mb) 50x PacBio:
 - Human (3 Gb) 28x PacBio (HiFi): 29
 - Human (3 Gb) 35x Nanopore:

10m CPU time, 1 Gb RAM

- 290h CPU time, 113 Gb RAM
 - 1025h CPU time, 215 Gb RAM

alcon

b UNIVERSITÄT BERN

FALCON / pb-assembly (https://pb-falcon.readthedocs.io/en/latest/)

- PacBio Assembly tool Suite
- diploid-aware assembler \rightarrow follows HGAP
- optimized for large genome assembly
- >30-50x per haplotype (highly heterozygous diploid \rightarrow require the double)
- extensive configuration file required
 - not easy to understand parameters
 - A few example files \rightarrow can be used as a basis for modification

FALCON-Unzip:

- phase the genome and perform phased-polishing with Arrow
- partially-phased primary contigs and fully-phased haplotigs (haplotypes)

Interfaculty Bioinformatics Unit

^b UNIVERSITÄT BERN

Canu (fork of Celera Assembler; https://canu.readthedocs.io/en/latest/index.html)

- PacBio or Nanopore
- 3 phases: correction \rightarrow trimming (get high-quality sequences) \rightarrow assembly
- follows the hierarchical genome assembly process (HGAP)
- >30-60x
- automatically takes full advantage of grid systems (cluster) \rightarrow submitting itself for execution
- consensus sequences:
 - >99.99% identity for PacBio HiFi data
 - >99% identity for PacBio and Nanopore (accuracy varies depending on pore and basecaller version)
- Easy and straight forward to use
 - Good manual with recommendations for parameter values (PacBio, Nanopore, low coverage data)

^b UNIVERSITÄT BERN

Flye (https://github.com/fenderglass/Flye)

- PacBio or Nanopore
- from small bacterial projects to large mammalian-scale assemblies
 - E. coli (4.6 Mb) 50x PacBio: 2h CPU time, 2 Gb RAM
 - Human (2.9 Gb) 30x PacBio (HiFi): 780h CPU time, 300 Gb RAM
 - Human (2.9 Gb) 35x Nanopore: 3100h CPU time, 141 Gb RAM
- complete pipeline: raw reads \rightarrow polished contigs
- Include special mode for metagenome assembly
- Very easy and straight forward to use

Post-assembly correction

\rightarrow improves quality and removes errors

- Nanopore \rightarrow Nanopolish: ٠
 - calculates an improved consensus sequence
 - nanopolish call-methylation: predict methylated genomic bases
 - nanopolish variants: detect SNPs and indels

\rightarrow Medaka:

- Faster than Nanopolish (can use GPU)
- Create consensus sequence and variant calls \rightarrow based on a neural network approach
- PacBio \rightarrow Arrow (former Quiver): •
 - Get improved consensus \rightarrow based on a hidden Markov model approach
 - get variant calls
- Illumina \rightarrow Pilon: •

- Automatically improve draft assemblies (SNPs, small/large indels, gap filling, local misassemblies)
- Find variations, including large event detection

UNIVERSITÄT BERN

Genome annotation

Bacteria

Prokka

- rapid prokaryotic genome annotation
- quickly annotate bacterial, archaeal and viral genomes
- outputs standard-compliant files

RAST

- Rapid Annotation using Subsystem Technology
- fully-automated service for annotating complete or nearly complete bacterial and archaeal genomes
- Webservice (http://rast.theseed.org/FIG/rast.cgi)

glimmer3

- Gene Locator and Interpolated Markov ModelER
- a system for finding genes in microbial DNA

b UNIVERSITÄT BERN

Genome annotation

Eukaryotes

- **RepeatMasker**: screens genome for interspersed repeats and low complexity DNA sequences
- MAKER:
 - Genome annotation pipeline \rightarrow allow smaller projects to independently annotate their genomes
 - identifies repeats
 - aligns ESTs and proteins to a genome
 - produces ab-initio gene predictions
- **PASA** (Program to Assemble Spliced Alignments):
 - exploits spliced alignments of transcripts to automatically model gene structures and splice variations
- Augustus:
 - find genes and their structures
 - can be used as an ab initio program \rightarrow bases its prediction purely on the sequence.
 - also incorporate hints from extrinsic sources (e.g.: EST, MS/MS, protein alignments, ...)
 - fully automatic annotation pipeline available

Example

UNIVERSITÄT BERN

U

PunNye1.0 (Broad Institute):

- 7,236 Nb scaffolds: •
- N50: 2.5 Mb ۲
- Total length: 830.1 Mb ۲
- Total length: 698.8 Mb ۲ (without N)

PunNye2.0 (FeuIner et al.):

- 6,876 Nb scaffolds:
- N50: 29.8 Mb •
- Total length: 856.2 Mb
- 698.8 Mb Total length: (without N)

- \rightarrow 126x Illumina read
- \rightarrow ALLPATHS-LG

→ Linkage map - 1,597 SNP markers

ALLMAPS \rightarrow

Interfaculty Bioinformatics Unit

Raw data

PacBio (Sequel)

- Nb reads: 4,020,155
- Min length: 50 bp
- Max length: 143,514 bp
- Mean length: 10,538 bp
- Total length: 42.35 Gb \rightarrow estimated coverage 42.7x

Illumina reads

- 4 closely related samples (380bp insertion):
 - Nb reads: 520,955,224
 - Total length: 78.14 Gb \rightarrow estimated coverage ~78.7x (each sample 15-20x)
- SRA samples (used in original PunNye1.0 assembly):
 - 3 kb libraries: 709,783,284 (72.2x coverage)
 - 6-14 kb libraries: 721,087,418 (51.2x coverage)
 - 40 kb FOSILLs4: 36,341,216 (3.7x coverage)

Pipeline – genome assembly

Interfaculty Bioinformatics Unit

17

Pipeline – genome assembly

^b UNIVERSITÄT BERN

Assembly comparison

D UNIVERSITÄT BERN

h

U

Interfaculty Bioinformatics Unit

Assembly comparison

^b UNIVERSITÄT BERN

b

U

QUAST	Stats	Pnyererei2	canu	falcon	flye								
	nb scaffolds	6'876	5'753	2'832	2'201								
	N50	29'830'996	27'606'787	29'593'783	31'265'002								
	NG50	27'967'145	28'136'703	31'084'370	31'116'785	BUSCO Assessment Results							
	max length	60'199'168	62'610'257	55'908'494	59'759'838		Complete (C) and single-copy (S) Complete (C) and duplicated (D) Fragmented (F) Missing (M)					licated (D)	
	total length	856'242'559	1'130'373'166	1'073'822'959	916'080'688								
	total length without N	698'778'000	1'083'432'443	1'032'560'317	890'889'752	canu	canu C:2485 [S:2255, D:230], F:38, M:63, n:				2586		
	N's per 100kb	18'390	4'153	3'843	2'750								
BUSCO						falcon	C:2527	[S:2391, D:136	s], F:37, M:22, n:258)			
	complete	2'498	2'484	2'528	2'532	flye	C:2531 [S:2479, D:52], F:43, M:12, n:2586						
	complete single copy	2'469	2'256	2'394	2'481								
	complete duplicated	29	228	134	51	Pnyererei2	C:2498	C:2498 [S:2469, D:29], F:58, M:30, n:2586					
	fragmented	58	39	36	42								
	missing	30	63	22	12		 0	 20	l 40 %BUS0	l 60 COs	 80	 100	

Interfaculty Bioinformatics Unit

Conclusion

- (high quality) long read sequences are important for high quality draft genomes
- >50x coverage is required for long reads only assemblies
 - \rightarrow still expensive for large genomes, but prices will come down even more in near future
- No single best assembly strategy/program, depends on
 - Input data (quality, coverage)
 - Species (heterozygosity, complexity)
- Assembly evaluations are not straight forward
 - Longer assembles (higher N50/NG50) are not always the best assemblies
 - Always use a combination of metrics
 - Only a few tools work without a known reference (e.g.: BUSCO (Waterhouse et al. 2017), QUAST (Gurevich et al. 2013), ALE (Clark et al. 2013), REAPR (Hunt et al. 2013))