Long-read sequence analysis

File formats and QC

Raw file formats

• ONT:

- POD5 (new, apache arrow)
- FAST5 (HDF5)
- Base calling: MinKNOW (guppy)/dorado/third party

PacBio:

 unaligned BAM (binary sequence alignment format SAM)

fastq

fastq

```
fasta + basequality (fasta + q = fastq)
   BASEQ = -10log_{10} \Pr\{base \ is \ wrong\}
                                 -BASEQ
       Pr\{base\ is\ wrong\} = 10^{-10}
     Acurracy = 1 - Pr\{base \ is \ wrong\}
            -10log_{10}(0.01) = 20
            -10log_{10}(0.05) = 13
```

 $-10log_{10}(0.5) = 3$

Question 9

Read quality control

- Number of reads
- Read length (mean and spread)
- Base quality
- GC content
- Demultiplexing statistics
- Run duration/location dependency
- Others?

Question 10

Read quality software

- Software of manufacturer: SMRT Link; MinKNOW
- NanoPlot (https://github.com/wdecoster/NanoPlot)
 - Takes many input formats
 - Basic statistics
- PycoQC (https://github.com/a-slide/pycoQC)
 - Specific for ONT
 - Requires so-called sequencing_summary file
- FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
 - Works also for long reads
 - Familiar output to most people

Read lengths vs Average read quality plot

Quality trimming

- Removal of:
 - Low quality sequences
 - Adapters/barcodes
- Oxford nanopore: On-instrument (guppy)
- PacBio:
 - On-instrument
 - During CCS generation (pbccs)

Read alignment

Mapping quality

$$MAPQ = -10log_{10} \Pr\{mapping \ position \ is \ wrong\}$$

$$Pr\{mapping \ position \ is \ wrong\} = 10^{\frac{-MAPQ}{10}}$$

$$-10log_{10}(0.01) = 20$$

 $-10log_{10}(0.5) = 3$

sam header

```
@HD VN:1.0 S0:coordinate

@SQ SN:U00096.3 LN:4641652

@PG ID:bowtie2 PN:bowtie2 VN:2.4.1 CL: bowtie2-
align-s --wrapper basic-0 -x ref.fasta -1 reads_1.fastq -2
reads_2.fastq"
```

SAM column	example
read name	SRR519926.5
flag	89
reference	chr20
start position	61
mapping quality	42
CIGAR string	150M
reference name mate is mapped	=
start position mate	476
fragment length	515
sequence	CATCACCATTCCCAC
base quality	@>4:4C@89+&9CC@
optional	AS:i:-2
optional	XN:i:0

Question 11

samtools

- Convert .sam files into (a.o.)
 - .bam (compressed .sam)
 - .fastq
- Subset alignments based on:
 - flag
 - region
- Ordering
- Mark alignment duplicates
- And many other things

Long-reads & fastq

- fastq format is limited to:
 - base
 - base-quality
- Long-read technologies -> need to store more information:
 - PacBio: (unaligned) bam
 - ONT: fast5/pod5/bam/rich fastq

Methylation calling

- PacBio always done
- ONT Remora
 - https://github.com/nanoporetech/remora
 - https://nanoporetech.com/sites/default/ files/s3/literature/epigenetics-workflow.pdf
- Stored in bam file (MM and ML tags)

Group work preference

Fill out the google form:

https://forms.gle/YXV5DwBe5DeD3Yx76