NGS - variant analysis

Introduction to variant analysis

Why study variants?

- Find causes for phenotypic variation
- Understand relatedness

https://en.wikipedia.org/wiki/Genome-wide association study

Mutation

Causes variation Change in DNA sequence

Mutations - causes

- Repair mistakes
- Unbalanced cell division
- Transposable elements

https://nl.wikipedia.org/wiki/Springend_gen

Mutations - types

- inherited germline variant
- cells caused by somatic mutation

Some definitions..

- Mutation: a change in DNA
- Variant: any difference that exists between any DNA
- **Polymorphism**: variation that is common in a population (often AF > 1%)

Variant vs polymorphism can be problematic: depends on the population

Question

Detecting variants

- Phenotypic analysis
- Molecular analysis
 - Sequencing

Small variants

Single nucleotide variant (SNV)

ATCATGACCGTCA ATCATGTCCGTCA

Insertion/deletion (INDEL)

ATCATGACCGTCA ATCATG---GTCA

Haplotypes

- NGS variants: mostly SNP
- Most SNPs are biallelic e.g. [A/T], [G/C]
- Genetic variation is often multi-allelic

Question

Large variants

- Structural variation (> 1,000 base pairs)
 - Copy number variation
 - Translocations
 - Inversions
 - Deletions/insertions
- Chromosomal abberation

https://en.wikipedia.org/wiki/Aneuploidy

This course

- Inherited (germline) small variants
- Detection by next generation sequencing (NGS)

GATK

