

Swiss Institute of Bioinformatics

Introduction to RNA-Seq – Read Counting

Wandrille Duchemin

www.sib.swiss

Is RNA-Seq expression inference reliable?

- It's been known for many years that most Illuminatype RNA-Seq workflows are highly concordant with estimates from quantitative PCR methods
- Griffith et al (2010) Nature Methods
 - Validation rates of ~85% for junction discovery and 88% for expression validation
- Everaert *et al* (2017) Scientific Reports
 - ~85% concordance between RNA-Seq and RT-qPCR
 - reproducibly inconsistent genes are typically small, with fewer exons, and lower overall expression

Read Counting – Initial Considerations

- RNA-Seq comprises many technologies which are rapidly evolving
- The appropriate choice of methods highly depends on the question(s) you're asking
 - Parameter space is important!

Proper gene/transcript model annotations are crucial

How much sequencing goes to highly expressed genes?

Pr. Mark Robinson UZH

Basics of RNA-Seq Quantification

- Remember stochastic models underlie all methods for relative transcript abundance estimates
- First align reads against reference
- Count number of reads aligning to features
 - "fragment assignment"
 - decide how to treat multi-mapping reads
- **Convert read counts to** *relative abundance*
 - "density deconvolution"

Account for differences in:

- library size
- feature lengths
- sequence-based biases

Read Counting – Fundamental Problems

- Aligners map reads to genomic coordinates and/or to all features associated to the mapped coordinates
 - How to treat multi-mapping reads?
 - eg gene families, repetitive sequences, alternative splice forms

Read Counting – Fundamental Problems

Solutions to multi-mapping reads

- Discard all multi-reads, estimate abundance based on uniquely mapping reads only
 - Loss of information
 - Potentially biased abundance estimates
 - Appropriate for edgeR/DESeq2, expected that samples being compared have same distribution of multi-reads

"Rescue" multireads by fractional allocation

- Estimate abundances based on uniquely mapping reads
- Divide multireads between features based on abundance estimates from uniquely mapped reads
- Recompute abundances based on updated counts
- Used by tools like Cufflinks

Counting/Quantification

- -> simple sum of all reads

union counters

transcript counters -> sum of length-normalized reads (often unknown which reads map to which transcript)

Pr. Mark Robinson UZH

adapted from Trapnell et al 2013 Nat Biotech

Define the differential problem

Slide adapted from Mar Gonzàlez-Porta's talk at ECCB 2014 http://radiant-project.eu/ECCB/gonzalez-porta-140907065638-phpapp01.pdf

Define the differential problem

Pr. Mark Robinson UZH

Slide adapted from Mar Gonzàlez-Porta's talk at ECCB 2014 http://radiant-project.eu/ECCB/gonzalez-porta-140907065638-phpapp01.p

Define the differential problem

See also Soneson, Matthes et al., 2016, Genome Biology (comparison of DTU methods)

Pr. Mark Robinson UZH

Slide adapted from Mar Gonzàlez-Porta's talk at ECCB 2014 http://radiant-project.eu/ECCB/gonzalez-porta-140907065638-phpapp01.pdf

What do you want to know?

- whether individual transcripts have changed? (DTE)
- whether any transcripts in gene have changed? (DTE-> G)
- whether the overall output has changed? (DGE)

Yes

Blue/red transcript changed? Yes, Yes Any transcripts changed? Yes **Overall expression change?** No Transcript proportions changed?

Pr. Mark Robinson U7H

Transcript-Level Counting

- More informative to understand regulation of alternative transcript usage
- Enables novel transcript discovery
- **Primary drawbacks:**
 - requires complex statistical modeling, often difficult to interpret. see <u>Pachter's 2013 keynote address</u> describing how Cufflinks was (not) reviewed
 - highly dependent on the quality of feature annotation
 - Many more transcripts than genes, thus higher multiple testing penalty and potentially lower sensitivity
 - Generally introduces extra noise

Long-read sequencing is a solution here

Transcript-Level Counting & Alternative splicing

- splice junction counting as a proxy for differential isoform expression
 - JunctionSeq , Hartley & Mullikin (2016) Nucleic Acids Research
 - WHIPPET, Blencowe et al (2018) Molecular Cell

Gene-Level Counting

- Collapsing reads from all alternative spliced transcripts to one gene feature simplifies counting
- Recent insights indicate gene-level counting is preferred due to performance and interpretability
- However, differential isoform usage can lead to inflated false discovery rates when gene-level counting
 - this effect is relatively minor in most real datasets
 - can be addressed by incorporating offsets from transcript-level abundance estimates
 - → see the tximport Bioconductor package Soneson et al (2016) F1000Research 4:152

Approaches to RNA-Seq Abundance Estimation

RPKM/FPKM/TPM

- Normalization for feature length and library size
- Cufflinks combines FPKM counts with complex models for density deconvolution
- "Raw counts" used for subsequent abundance estimates by fitting to negative binomial distribution
 - Technical and biological noise is estimated from data
 - Employed by edgeR, DESeq2

RPKM/FPKM and TPM

Reads Per Kilobase per Million mapped reads

- Fragments Per Kilobase per Million mapped reads
 - Same as RPKM but accounts for paired-end reads

sum of all RPKM is not the same between samples

Transcripts Per Million :

- idem but operation order differs
- proportionality constants are comparable between experiments
- Li & Dewey 2011, Wagner *et al* 2012, Dillies *et al* 2012

https://rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/

Read Counting with STAR

- Use --quantMode GeneCounts
- "A gene is counted if it overlaps one and only one gene"
- "Both ends of the paired-end are checked for overlaps"
- This coincides with the counts produced by htseq-count with default parameters :

https://htseq.readthedocs.io/en/master/count.html

Read Counting with STAR

Read Counting with FeatureCount

http://subread.sourceforge.net/featureCounts.html

- FeatureCount is actually a part of the larger Subread package
- It summarizes the counts in one or several .bam/.sam files at a given level:
 - feature (eg. exon)
 - meta-feature (eg. gene)

Requirements:

- an annotation file (gtf/gff)
- Paired-end or single-end ?
- Stranding information
- a decision about how to treat multi-mapping/overlapping reads (generally discarded)

Read Counting with FeatureCount

http://subread.sourceforge.net/SubreadUsersGuide.pdf

Reads are counted if any overlap are found between read and feature.

change with --minOverlap

Multi-mapping reads : not counted

change with -M and –fraction

Multi-overlapping genes : not counted

change with -O and --fraction

Practical 5

Go to the website and do the featureCount practical

Griffith *et al* (2010) "Alternative expression analysis by RNA sequencing" Nature Methods 7:843-847.

Everaert *et al* (2017) "Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data" Scientific Reports 7:1559.

Soneson *et al* (2016) "Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences" F1000 Research 4:1521.

Li & Dewey (2011) BMC Bioinformatics 12:323.

Wagner *et al* (2012) Theory Biosciences 131(4):281-285. Dillies et al (2012) "A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis" Briefings Bioinformatics 14(6):671-683.

Liao Y, Smyth GK and Shi W (2014). "featureCounts: an efficient general purpose program for assigning sequence reads to genomic features." Bioinformatics, 30(7):923-30._

Swiss Institute of Bioinformatics

Contributors:

Wandrille Duchemin Geoffrey Fucile Walid Gharib Pablo Escobar Lopez Mark Robinson

www.sib.swiss