ICS

itute of

Inst
informat

Swiss
Bio

details

N Mmore

SPARQL concepts

tal.

e

Marco Pagn

6 June 2024

Online

l(}(r

WITZERLAND

e

RDF /[SPARQL are specifications of W3C

The World Wide Web Consortium (W3C) is the main international standards organization for
the World Wide Web. Founded in 1994 and led by Tim Berners-Lee ...

W3C specifications are the foundations of the internet. They are public and open source. They are
not linked to a specific implementations or a particular vendors

Berners-Lee, Tim; Hendler, James; Lassila, Ora (May 17, 2001). "The Semantic Web". Scientific
American. Vol. 284, no. 5. pp. 34—43.

An RDF primer with many links to W3C specifications for RDF:

https://www.w3.0rg/TR/rdfll-primer/
SPARQL 1.1 specifications:

https://www.w3.0rg/TR/sparqlll-overview/

RDF 1.2 and SPARQL 1.2 specifications have not yet been finalized

Specifications vs. technologies / implementations

W3C specifications for SPARQL (and RDF, RDFS) are essentially blueprints for how
to build technologies (i.e. what constraints / requirements should these technologies
satisfy)

Caution: in the “Wild Wild Web”, there are many implementations claiming to comply
with W3C standards. Some don’t, some do, some are more reliable than others. (...) If
there is any doubt about W3C conformance for specific implementations, the W3C
specs are the “go to” ground truth resources and there are test specs.

adapted from slides by Michel Dumontier and the Institute of Data Science at Maastricht University (2024 CC-BY)

https://www.w3.org/2009/sparql/docs/tests/summary.html

IRI - Internationalized Resource Identifier

- Inthe RDF world, IRIs are used as “names”, or an equivalent of “IDs"”, for graph nodes.

- IRl often looks like URL, and indeed can often be used such as (this is convenient, but not
mandatory)

- Forexample:
http://purl.uniprot.org/uniprot/P04062
is the legacy IRl of GBA1_HUMAN. When search in a browser, the UniprotProt server redirect it to

https://www.uniprot.org/uniprotkb/P04062/entry

ALY
: -
Uanro.t..- BLAST Align Peptidesearch IDmapping SPARQL UniProtkB ~

N
IFunction % P04062 - GBA1_HUMAN
Names & Taxono my L g . . - .
Protein Lysosomal acid glucosylceramidase Amino acids | 536 (go to sequence)
Subcellular Location Genel | GBA1 Protein Evidence at protein level
R) .) . . existel
Disease & Varian ts Status' | % UniProtKB reviewed (Swiss-Prot)
L Annotat @9
PTM/Process ing Organism' | Homo sa| piens (Human)
Expr
Entry Variant viewer Feature viewer Genomic coor dinates Publications External links

Interacti
Structure

BLAST Align X Download ¢ Add Addapublication Entryfeedback
Family & Domains
Sequence & Isoforms Fu nCtIOn‘

IRI, URI, URL and URN definitions

The Internationalized Resource Identifier (IRI) is an internet protocol standard which
builds on the Uniform Resource Identifier (URI) protocol by greatly expanding the
set of permitted characters.

({IRI} > {URI}

URIs which provide a means of locating and retrieving information resources on a
network (either on the Internet or on another private network, such as a computer
filesystem or an Intranet) are Uniform Resource Locators (URLs). Other URIs provide
only a unique name, without a means of locating or retrieving the resource or
information about it; these are Uniform Resource Names (URNSs).

{URI} = {URL} U {URN}

IRI, URI, URL and URN examples

https://www.uniprot.org/uniprotkb/P04062/entry

http://purl.uniprot.org/uniprot/P04062

https://en.wiktionary.org/wiki/Pédo¢

https://en.wiktionary.org/wiki/$E1%BF$ACSCF%8C%CE
$B4%CESBF%CF%82

ISBN:0-395-36341-1

http://example.org/my own cat

1: should not be used as an IRl in RDF

(V)

v
v

v v

v o)?
(V)3 (V)

v v

v

v

SwissProt page of
GBA1_HUMAN

IRI of GBA1_HUMAN

features UTF-8

the above example URL-
encoded: same URL but
different IR| !

N4 a book reference

http://example.org is a
v/ reserved domain name, for
defining private URN

Nota Bene about "http:" link:

2: redirected to https://www.uniprot.org/uniprotkb/Po4o62/entry in browser

3: modern browser can URL-endcode it

migration of URL to "https:" is
recommended

preservation of "http:" IRl ensure
backward compatibility of existing RDF

URI examples from Wikipedia

userinfo host port
| |

| 11 |
Tttp?://?ohn.doe@www.example.com:12?{forum/questions{?Fag=networking&order=newes$#top

I I | T
scheme authority path query fragment

}da?://fzoel:dbs::71{c=G???bjectC1ass?on?

I | T |
scheme authority path query

mailto:John.Doe@example.coT

|
scheme path

news:comp.infosystems.www.servers.unix

T
scheme path

tel:+1-816-555-1212
Lt |
T

scheme path

telnet://192.0.2.16:80/
| | | I | |

scheme authority path

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

I_'_I [|

|
scheme path

Long and short forms of IRIs

In the Turtle serialization of RDF, IRI must be "quoted" using <>:
<http://purl.uniprot.org/uniprot/P04062>

which is known as long-form syntax of IRIs.

By using a prefix definition, one can rewite IRl in a short-form notation:

@prefix up: <http://purl.uniprot.org/uniprot/> .
up:P04062

Very important for RDF:

The long form is the reference one. It is the only form that matters for data exchanges.
The short form is human friendly, but

the prefix declaration is local to the file or client software (i.e. it is not publicly defined).
different short-form identifiers may actually refer to the same long form identifier.

PREFIXES and vocabularies

Prefix definitions are local, but there existst some generally
accepted conventions for widely use vocabularies

rdf:

rdfs:

owl:

skos:

foaf:

http:

http:

http:

http:

http

//www.w3.0rg/1999/02/22-rdf-syntax-ns#

//www.w3.0rg/2000/01/rdf-schema#

//www.w3.0rg/2002/07/owl#

//www.w3.0rg/2004/02/skos/core#

://xmlns.com/foaf/0.1/

identifiers.org

identifiers.org has attempted to define universal short-form identifiers:

This is a complete heresy with respect to the semantic-web principles, for which
the long forms is the reference

Identifiers.org has systematically recreated new long-form identifiers (to redirect
the web traffic through their servers?), ignoring previously defined IRlIs.

Identifiers.org URL have changed at least three times during the last ten years!

Very, very unfortunately, identifiers.org short-form identifiers have been adopted
in the SBML standard @ ©® ® ®

With respect to systems biology, MetaNetX is attempting to keep links between
legacy stable IRIs and the most recent version of identifiers.org URLs, but this is a
daunting task with no added scientificvalue ® ® ® ®

RDF Triple

The simplest possible RDF graph is made of a single triple, for example in Turtle syntax:

<http://purl.uniprot.org/uniprot/P04062>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://purl.uniprot.org/uniprot/Protein>

That can be rewritten using short-form notations

@prefix up: <http://purl.uniprot.org/uniprot/> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

up:P04062 rdf:type up:Protein
which can be further simplifies as Turtle support a as syntactic sugar for rdf : type

up:P04062 a up:Protein

RDF triple

up:P04062 rdf: type up:Protein
subject predicate object
subject = predicate s object

1 jlw:VGF144_G10

rdf:type

Extract VGF1441G10 type
Lab extract

jlw:LabExtract

L 12

Literal

up:P04062 up:mnemonic "GBAl HUMAN"

I I I

subject predicate object

Literals are only permitted to occur as the object position

Literal can be optionnally typed:

"GBA1l HUMAN"*“xsd:string isthe same as "GBA1l_ HUMAN"
"5"~rxsd:integer isthesameas5
"2018-04-09T12:00:00"**xsd:dateTime

Language tag

String can be endowed with a language tag, e.g. the name of Galway in wikidata:
wd:0129610 wdt:P31 "Galway'"@en, "Gaillimh"(@ga .

Show titles of wikipedia articles about Ukrainian villages on Romanian Wikipedia,

plus English and Ukrainian labels in Wikidata items:

item LabelEN LabelUK page_titleRO
#added in 2017-05 Q wd:Q100114 Ivanivka IBaHiBKa Ivanivka, Karlivka
SELECT DISTINCT ?item ?LabelEN ?LabelUK ?page titleRO WHERE {Q wd:Q149173 | Sokyriany Coxupstin Secureni
item: is a - Village Q wd:Q146542 Perechyn MepeunH Perecin
?item wdt:P31 wd:Q532 Qwd:Q146510 Rakhiv Paxis Rahau
item: country - Ukraine Q wd:Q146474 Irshava Ipwasa llosva
?item wdt:P17 wd: Q2 12 Q wd:Q110668 Stebnyk CTebHuK Stebnik
exists article in item that is ro.wiki QwdQ1e77281 Nemyriv T Nermiriv. lavoriv
?article schema:about ?item 7 Q wd:Q650064 Semenivka Cemeniska Semenivka, Lenine
SChema : iSPartOf <httpS : / /ro - W1klpedla : org/> 2 Q wd:Q629892 Nizhni Otrozhki HuxHi OTpoXkkn Nijni Otrojki, Djankoi
schema:name ?page_titleRO Q wd:Q581689 Brazhenets' BpaxeHeub Brajenet, Korostisiv
wd labels Q wd:Q532838 Perekop Mepexon Perekop, Armeansk
?item rdfs:label ?LabelEN FILTER (lang(?LabelEN) = "en") . o Mizhhirya Mixcip's Boureni, Transcarpatia
?item rdfs:label ?LabelUK FILTER (lang (?LabelUK) = "uk") ° Qwd:Q474871 Zolote Pole 3onorte Mone Zolote Pole (Kirovske)

Q wd:Q241910

Q wd:Q304276

Velykyi Bereznyi

Ivanivka

Benukunin BepeaHuin

IBaHiBKa

Velikii Bereznii

Ilvanivka, Lenine

Object property and data property

A property is an IRl that is used as a predicate.

An object property is an IRl that is used as a predicate and which object is an IRI.

up:P04062 rdf: type up:Protein

2N 7N 7N

subject predicate object

A data property is an IRl that is used as a predicate and which object is a Literal.

up:P04062 up:mnemonic "GBAl HUMAN"

N N o

subject predicate object

Blank nodes

A blank node is an "anonymous placeholder" node in a

RDF graph.
Blank nodes have no IRI that can be used to refer to Here a snippet of Turtle to express that Anna
them. knows someone (she unfortunately does not

remember its name), who is also a friend of Bob:
Blank nodes are allowed as subject or object of triples,

exclusively. :Anna knows _:nobody .
There is two syntaxes for blank nodes: _:nobody :isFriendOf :Bob
* _isapredefined prefix for blank nodes or

* The [] constructcan be used

: o , : :Anna knows :isFriendOf :Bob
There is no clear benefits in using blank nodes in large [:

RDF graphs. They can be safely replaced with opaque IRI.

Blank nodes appear from time to time in SPARQL
queries.

RDF graph

PREFIX : <http://contextualise.dev/ontology/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

:The_Beatles rdf :type :Band

:The_Beatles :name "The Beatles”
:The_Beatles :member :John_Lennon
:The_Beatles :member :Paul_McCartney .
:The_Beatles :member :Ringo_Starr
:The_Beatles :member :George_Harrison
:John_Lennon rdf:type :SoloArtist
:Paul_McCartney rdf :type :SoloArtist
:Ringo_Starr rdf:type :SoloArtist
:George_Harrison rdf:type :SoloArtist
:Please_Please_Me rdf:type :Album .
:Please_Please_Me :name "Please Please Me"
:Please_Please_Me :date "1963-03-22"AAxsd :date .
:Please_Please_Me :artist :The_Beatles .
:Please_Please_Me :track :Love_Me_Do .
:Love_Me_Do rdf :type :Song

:Love_Me_Do :name "Love Me Do"
:Love_Me_Do :length 125 .

:Love_Me_Do :writer :John_Lennon
:Love_Me_Do :writer :Paul_McCartney .

QR

4%9

a

Please Please Me T

"1963-03-22"""xsd date

L7

ga®

sue

:Please_Please_Me

-:Rlngo_smrr

track

Punctuation in Turtle syntax

ex:Anna a foaf:Person

ex:Anna foaf:knowns ex:Bob
ex:Bob a foaf:Person _ _
ex:Bob foaf:mBox mail :bob@gmail.com dotis the triple separator

ex:Bob foaf:mBox mail :bob@github.com

ex:Anna a foaf:Person ;

foaf:knowns ex:Bob : : : L .
semicolon is a triple separator, with implicit

ex:Bob a foaf:Person ; suMect

foaf:mBox mail:bob@gmail.com ;

foaf:mBox mail :bob@github.com
ex:Anna a foaf:Person ;

foaf:knowns ex:Bob) comma is a triple separator, with implicit
ex:Bob a foaf:Person ; subject and object

foaf:mBox mail :bob@gmail.com ,
mail :bob@github.com

Common pitfalls in SPARQL programming

SELECT *
WHERE {
?prot AC
?prot AC

rdf:type up:Protein .
up:mnemonic ?prot ID

SELECT *
WHERE {
?prot AC
?prot AC

rdf:type up:Protein .
up:mnemonics ?prot ID

SELECT *
WHERE {
?prot AC
?prot AD

rdf:type up:Protein .
up:mnemonic ?prot ID

—)

—)

—)

"A0A0G2QSQ0_9MUR|™sd:string
"A0AOG2YPK2_BACIU"™sd:string
"AOAOG2YSX8_BACIUsd:string
"AOAOG2YW19_BACIU"sd:string
"AOAOG2YWE2_BACIU"sd:string
"AOAOG2YXG9_BACIU"sd:string
"AOAOG2YY17_BACIU"sd:string
"ADAOG2YY83_BACIU"™sd:string
"AOAOG3BCA7_9BURK"sd:string
"AOAOG3BDG2_9BURK"*sd:string

<

http://purl.uniprot.org/uniprot/AOA0G2QSQOs#
http://purl.uniprot.org/uniprot/AOA0G2Y PK23#
http://purl.uniprot.org/uniprot/AOA0G2Y SX8%#
http://purl.uniprot.org/uniprot/AOA0G2YW19s#
http://purl.uniprot.org/uniprot/AOA0G2YWE2:#
http://purl.uniprot.org/uniprot/AOA0G2YXG9s#
http://purl.uniprot.org/uniprot/AOA0G2YY175#
http://purl.uniprot.org/uniprot/AOA0G2YY83i#s
http://purl.uniprot.org/uniprot/AOAOG3BCA7+#
http://purl.uniprot.org/uniprot/AOAOG3BDG2s#

424'647'286

(424'647'286)2 = 1.8e+1l7 lines

lines

Common pitfalls in SPARQL programming

SELECT *

WHERE {
?prot AC rdf:type up:Protein ;
up:mnemonic ?prot ID

Mitigation:
use ";" and "," punctuations
cut-and-paste from template
use editor auto-completion
progressively build and run large queries

SPARQL sub-queries help

Anatomy of a SPARQL query

PREFIX dbo: <http://dbpedia.org/ontology/> Prefix
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> declarations

Variables to display

? p) ?
SELECT ?name ?author ?pages in the results

WHERE {
?book a dbo:Book ;
dbo:author ?author ; “Triple patterns” to Where clause to
dbo:numberOfPages ?pages ; match in the graph gf;':: :a'ft:;s'c
rdfs:label ?name . (BGP)
FILTER (?pages > 500) Filter triples based on the g/latc_rf\. a?c_j 1;|Iter
FILTER (langMATCHES(LANG(?name),"en")) values of some entities pECHIE HIpIEs
}
ORDER BY ?pages rSn%I:it;;r:ss.equence
LIMIT 10 Order by, group by, offset,
limit clauses

adapted from slides by Michel Dumontier and the Institute of Data Science at Maastricht University (2024 CC-BY)

http://www.w3.org/2000/01/rdf-schema

A few ubiquitous predicates

rdf:type

rdfs:label
rdfs:comment

foaf:depiction

owl:sameAs

class IRI

string literal
string literal

image URL

IRI

usually abreviated with 'a'in Turtle
every IRl should belong to a class
multiple types are permitted

should be short
should have a unique value

should be more descriptive than label

used by graphdb-workbench to identify
Images

Subject and object IRIs referer to
exactly the same thing

Data, schema and documentation

In most programming languages and in relational databases, there exists a clear distinction between
data, schema and documentation. Usually, each one has its own syntax.

There is no such distinction in RDF: data, schema and documentation are expressed as RDF ! In the
music example, the "schema" was limited to type assignment, e.g.

:ABBA: The Album rdf:type :Album

it could be completed with a class definition and documentation:

:Album rdf:type rdfs:Class ;

rdfs:comment "An album is a collection of
audio recordings (e.g., music) issued on a medium
such as compact disc (CD), wvinyl (record), audio tape
(like 8-trackor cassette), or digital."

Benefit: RDF is totally open for semantic innovations

Drawback: anything is possible — the distinction between data and schema is often blurred —
automated validation is not part of the specifications (SHACL address this)

Important vocabularies

RDF/RDFS
* Ubiquitously used to define types, classes and properties
* allows for basic reasoning (e.g. type inheritence through class definition)

* https://[www.emse.fr/~zimmermann/Teaching/SemWeb/rdfs.pdf
OWL

* Extension of RDF/RDFS, to build ontologies and to perform reasoning
SKOS

* A popularvocabulary to organize thesaurus and ontologies.
SHACL

* Avocabulary to validate RDF schema

https://github.com/dgarijo/Widoco

WIlzard for DOCumenting Ontologies (WIDOCO)

WIDOCO helps you to publish and create an enriched and customized documentation of your ontology
automatically, by following a series of steps in a GUI.

Author: Daniel Garijo Verdejo (@dgarijo)

More vocabularies

Hu,
_. - VOCABS TERMS AGENTS SPARQL/DUMP
Ll |

https://lov.linkeddata.es/dataset/lov/

Linked Open Vocabularies

oo [B - | | @

849 Vocabularies in Latest insertion

okh - Open Know How (OKH)
ontology
2024-05-09

nyon - NyOn: A Multilingual Legal
Ontology for Globalized Judicial
System

2024-05-07

cmd - Compound Measure
Description
2024-05-06

hpo - Hyperdimensional Polymer
Ontology
2024-04-24

experts - MAEO - MarketPlace
Agent and Expert Ontology
2024-04-24

Latest Updates

okh - Open Know How (OKH)
ontology
2024-05-09

nyon - NyOn: A Multilingual Legal
Ontology for Globalized Judicial
System

2024-05-07

chameo - CHAracterisation
MEthodology Ontology
2024-05-07

cmd - Compound Measure

Description
2024-05-07

2024-04-24

General & Upper Geometry Events Multimedia Biology
W3C Rec eBusiness FRBR Contracts m

Reuse existing vocabularies... or create a new one?

Reusing existing vocabulary is a recommended practice, however it comes at the risk of semantic
alteration, and this is very detrimental!

For example, consider:

chebi:57972 chebislash:InChI "InChI=1S/C3H7NO2/cl-2(4)3(5)6/h2H,4H2,1H3, (H,5,6)/t2-/m0/sl1l"

Does the data property chebislash:InchI implies that the InChl string must be a standard InChl? Does it
imply a particular version of the inchi-1 software? It is impossible to answer these questions, and the ChEBI
documentation lacks these details. A solution would to create our own property

chebi:57972 reconxkg:InChI "InChI=1S/C3H7NO2/cl-2(4)3(5)6/h2H,4H2,1H3, (H,5,6)/t2-/m0/s1"

and document it with:

reconxkg:InChl a rdf:Property ;

rdfs:label "has InChI" ;
rdfs:comment "Standard InChI, computed with inchi-1 version 1.07" ;
owl:equivalentProperty chebislash:InChI

No information is lost, precisions are given and chebislash:InchI is referenced ;-)

SPARQL endpoints

"A SPARQL Endpoint is a Point of Presence on an HTTP network that’s capable of receiving and
processing SPARQL Protocol requests."

It is identified by an URL commonly referred to as a SPARQL Endpoint URL.
It expects a query parameter which value is SPARQL code (SELECT, DESCRIBE, ...)
It can return the request results (if any) under different formats, e.g. TSV, JSON, Turtle, ...

A few SPARQL Endpoint URL:
https://sparql.rhea-db.org/sparql (RHEA)
https://sparql.uniprot.org/sparql (UniProt)
https://reconx.vital-it.ch/graphdb/sparqgl (ReconxKG provisional public site)

http://localhost:7200/repositories/ReconXKG (ReconxKG deployed on my
local instance of GraphDB)

SPARQL federated queries, example 1

Generate a draft human metabolome is a RHEA demo query to be run on the RHEA SPARQL endpoint:
https://sparql.rhea-db.org/sparql

SELECT
?uniprot ?mnemonic ?rhea ?chebi ?smiles ?inchiKey
WHERE
{
?rhea rh:side/rh:contains/rh:compound ?compound .
?compound (rh:chebi| (rh:reactivePart/rh:chebi) | (rh:underlyingChebi/rh:chebi)) ?chebi
?chebi chebislash:smiles ?smiles ;
chebislash:inchikey ?inchiKey
SERVICE <https://sparql.uniprot.org/sparql/> {
?uniprot up:annotation/up:catalyticActivity/up:catalyzedReaction ?rhea ;
up:organism taxon:9606 ;
up :mnemonic ?mnemonic

SPARQL federated queries, example 2

Use IDSM Sachem to find ChEBIs with a a Cholestane skeleton (in SMILES). Then match
returned ChEBIs to Rhea undirected reactions:

PREFIX sachem: <http://bioinfo.uochb.cas.cz/rdf/v1.0/sachem#>
PREFIX rh: <http://rdf.rhea-db.org/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
SELECT

?rhea

?chebi
WHERE {

SERVICE <https://idsm.elixir-czech.cz/sparql/endpoint/chebi> {
?chebi sachem:substructureSearch [
sachem:query "[ce]12(ccc3cccc[c@]3(C) [CRRI1([H])CC[CRI1(C) [CRR] ([H]) ([CRR] (C) ([H])CCCC(C)C)CC[CRRI21[H]) [H]"

}

?rhea rh:side/rh:contains/rh:compound/rdfs:subClassOf ?chebi

SPARQL subquery, example

The example below calculates the population of each country in the world, expressing the population
as a percentage of the world's total population. In order to calculate the world's total population, it

uses a subquery.

SELECT 7?countryLabel ?population (round(?population/?worldpopulation®*1000)/10 AS ?percentage)
WHERE { ~
?country wdt:P31 wd:Q3624078; # /s a sovereign state
wdt:P1082 ?population.
{ # subquery to determine ?worldpopulation
SELECT (sum(?population) AS ?worldpopulation)
WHERE {
?country wdt:P31 wd:Q3624078; # /s a sovereign state
wdt:P1082 ?population.

}

}
SERVICE wikibase:label {

bd:serviceParam wikibase:language "[AUTO LANGUAGE],en".

}

}
ORDER BY desc(?population)

SPARQL subqueries

SPARQL subqueries are guaranteed to be executed first, starting from the innermost, which
permits to exert some control on the query execution plan.

SPARQL is a declarative language, like SQL or Prolog. SPARQL basic graph pattern specifies a list of
constraints to be satisfied by the results.

The database engine is responsible for establishing the execution plan, i.e. the order in which the
constraints to be satisfied.

Sometimes the database engine takes a wrong decision: a query may never finish.

SPARQL subqueries permits to structure large SPARQL queries and facilitate their debugging.

SPARQL subqueries expand SPARQL capabilities by allowing the formulation of complex
constrains.

Named graphs

Named graphs:

permit to identify a set of triples with an IRI; there exists a default named graph in
any triplestore.

are known as "context" in the RDF4J/GraphDB world

are meant to facilitate the handling of triples, i.e. they must not be used to bring
additional semantics.

SPARQL syntax provides full support for named graphs

SELECT DISTINCT <?g
WHERE {
GRAPH ?g {
?s ?p 2o

SELECT *
FROM <http:example.org/toto>
WHERE {

?s ?p 2o }

}

SPARQL CONSTRUCT ...

SELECT ?person_ 1 ?person 3
WHERE {
?person_1 :hasSex :Male ;
:hasSibling ?person 2
?person 2 :isParentOf ?person 3

CONSTRUCT {
:1sUncleOf a rdf:Property
?person_1 :isUncleOf ?person_3
}
WHERE {
?person_1 :hasSex :Male ;
:hasSibling ?person 2
?person 2 :isParentOf ?person 3

INSERT {
GRAPH <:family relationships> {
:1sUncleOf a rdf:Property
?person_1 :isUncleOf ?person_3

}
WHERE {

?person_1 :hasSex :Male ;
:hasSibling ?person 2
?person 2 :isParentOf ?person 3

The WHERE clause stays the same ;-))

Types of SPARQL queries

SPARQL (read only)
e ASK: Returns a boolean answer (true/false) to specified graph pattern
DESCRIBE

o
e SELECT: Retrieve entities matching identified variables from graph pattern
e CONSTRUCT: create a target graph from graph pattern

SPARQL update (read/write)

e LOAD: load triples from an URL and insert them into the (specified) graph.

e INSERT: creates triples and inserts the constructed triples into the (specified) graph.

e DELETE: similar structure to both CONSTRUCT and INSERT - deletes triples from the graph!
e CLEAR

SPARQL update

Usainone and ather
o banad-auinors
[ty

HPD

<HIBADH ¢

Onidoroductise,

OLEGAA

Tupcoss

.. .
-t
s
2. @
[..
., e -
apmiss {
./
o
Q... - -4
Doxorubicin - "
Atp2a2, §
g o iney akre

cornBs7

corAsor 4

coTABos LAY

corAos

b4 corRa0s

Aonotam

corasez

£ % Y,
WA ADHIC

TS

Amosbisis

Dodmitians @
(]

aconolspuse

acute icney tubulr

SPARQL
update

¥
&

Ubiquinone and ather

3

CHBADH ¢

Ousorodctise

OLEGIA

Tuparcuosie
Natural Ko oal mactated
3 totoweiy

Amyotropnicateal
- erous AL

Aizhoimers dsoase

Galcm ATPase

acuts oy faire

comar, b

Aeuto KaragIoiy g

GoTaBs2

o H ATPSH

Y corasez LIRS
coTABon s 2 Crvenic myolac eukoma
AdenccarcnonaOf 3 k sl
O Barages bt
coraae 5
corRaos ORar Adenoma
GATAG

sconal snuse

HIReA AOHIC

Apoplonis o et ey e

GGCAAGCGGCGGCCAGGCCCAGGGCCCGGGGTGCCCCCAAAGCGGGCCCGTGGGGGCCTCTGGGATGAI‘ Y ?&A
ATCCCAATTCGAGGAGGACCTGGCACTGATGGAGGAGATGGAGGCAGAACACAGGCTGCAGG G_AGGE& A
AGTCCTGGAGGGGGTTGCAGACGGGCAGGTCCCACCATCAGCCATAGATCCTCGCTGGCTTC y A

&
elixir

SWITZERLAND

