
SPARQL concepts 
in more details 

6 June 2024

Online

Marco Pagni et al.



RDF / SPARQL are specifications of W3C

• The World Wide Web Consortium (W3C) is the main international standards organization for 
the World Wide Web. Founded in 1994 and led by Tim Berners-Lee ...

• W3C specifications are the foundations of the internet. They are public and open source. They are 
not linked to a specific implementations or a particular vendors 

• Berners-Lee, Tim; Hendler, James; Lassila, Ora (May 17, 2001). "The Semantic Web". Scientific 
American. Vol. 284, no. 5. pp. 34–43.

• An RDF primer with many links to W3C specifications for RDF:

https://www.w3.org/TR/rdf11-primer/

• SPARQL 1.1 specifications:

https://www.w3.org/TR/sparql11-overview/

• RDF 1.2 and SPARQL 1.2 specifications have not yet been finalized



Specifications vs. technologies / implementations

W3C specifications for SPARQL (and RDF, RDFS) are essentially blueprints for how 
to build technologies (i.e. what constraints / requirements should these technologies 
satisfy)

Caution: in the “Wild Wild Web”, there are many implementations claiming to comply 
with W3C standards. Some don’t, some do, some are more reliable than others. (...) If 
there is any doubt about W3C conformance for specific implementations, the W3C 
specs are the “go to” ground truth resources and there are test specs.

adapted from slides by Michel Dumontier and the Institute of Data Science at Maastricht University (2024 CC-BY)

https://www.w3.org/2009/sparql/docs/tests/summary.html


IRI - Internationalized Resource Identifier

• In the RDF world, IRIs are used as “names”, or an equivalent of “IDs”, for graph nodes. 

• IRI often looks like URL, and indeed can often be used such as (this is convenient, but not 
mandatory) 

• For example:

http://purl.uniprot.org/uniprot/P04062 

is the legacy IRI of GBA1_HUMAN. When search in a browser, the UniprotProt server redirect it to 

https://www.uniprot.org/uniprotkb/P04062/entry 



IRI, URI, URL and URN definitions 

The Internationalized Resource Identifier (IRI) is an internet protocol standard which 
builds on the Uniform Resource Identifier (URI) protocol by greatly expanding the 
set of permitted characters.

𝐼𝑅𝐼 ⊃ 𝑈𝑅𝐼

URIs which provide a means of locating and retrieving information resources on a 
network (either on the Internet or on another private network, such as a computer 
filesystem or an Intranet) are Uniform Resource Locators (URLs). Other URIs provide 
only a unique name, without a means of locating or retrieving the resource or 
information about it; these are Uniform Resource Names (URNs).

𝑈𝑅𝐼 = 𝑈𝑅𝐿 ∪ 𝑈𝑅𝑁



IRI, URI, URL and URN examples
example IRI URI URL URN comment

https://www.uniprot.org/uniprotkb/P04062/entry (✓)1 ✓ ✓ SwissProt page of 
GBA1_HUMAN

http://purl.uniprot.org/uniprot/P04062 ✓ ✓ (✓)2 IRI of GBA1_HUMAN

https://en.wiktionary.org/wiki/Ῥόδος ✓ (✓) 3 (✓)3 features UTF-8 

https://en.wiktionary.org/wiki/%E1%BF%AC%CF%8C%CE
%B4%CE%BF%CF%82 ✓ ✓ ✓

the above example URL-
encoded: same URL but 
different IRI !!!

ISBN:0-395-36341-1 ✓ ✓ ✓ a book reference

http://example.org/my_own_cat ✓ ✓ ✓
http://example.org is a 
reserved domain name, for 
defining private URN

1: should not be used as an IRI in RDF
2: redirected to https://www.uniprot.org/uniprotkb/P04062/entry in browser
3: modern browser can URL-endcode it 

Nota Bene about "http:"  link:
• migration of URL to "https:" is 

recommended
• preservation of "http:" IRI ensure 

backward compatibility of existing  RDF



URI examples from Wikipedia



Long and short forms of IRIs

In the Turtle serialization of RDF,  IRI must be "quoted" using <>:
<http://purl.uniprot.org/uniprot/P04062>

which is known as long-form syntax of IRIs.

By using a prefix definition, one can rewite IRI in a short-form notation:
@prefix up: <http://purl.uniprot.org/uniprot/> .
up:P04062

Very important for RDF: 
• The long form is the reference one. It is the only form that matters for data exchanges.
• The short form is human friendly, but
• the prefix declaration is local to the file or client software (i.e. it is not publicly defined). 
• different short-form identifiers may actually refer to the same long form identifier.



PREFIXES and vocabularies

short long

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

owl: http://www.w3.org/2002/07/owl#

skos: http://www.w3.org/2004/02/skos/core#

foaf: http://xmlns.com/foaf/0.1/

Prefix definitions are local, but there existst some generally 
accepted conventions for widely use vocabularies



identifiers.org

identifiers.org has attempted to define universal short-form identifiers:

• This is a complete heresy with respect to the semantic-web principles, for which 
the long forms is the reference

• Identifiers.org has systematically recreated new long-form identifiers (to redirect 
the web traffic through their servers?), ignoring previously defined IRIs.

• Identifiers.org URL have changed at least three times during the last ten years! 

☠☠☠☠

• Very, very unfortunately, identifiers.org short-form identifiers have been adopted 
in the SBML standard LLLL

• With respect to systems biology, MetaNetX is attempting to keep links between 
legacy stable IRIs and the most recent version of identifiers.org URLs, but this is a 
daunting task with no added scientific value LLLL



RDF Triple

The simplest possible RDF graph is made of a single triple, for example in Turtle syntax:

<http://purl.uniprot.org/uniprot/P04062>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://purl.uniprot.org/uniprot/Protein>

That can be rewritten using short-form notations

@prefix up: <http://purl.uniprot.org/uniprot/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
up:P04062 rdf:type up:Protein

which can be further simplifies as Turtle support a as syntactic sugar for rdf:type

up:P04062 a up:Protein



RDF triple

up:P04062    rdf:type up:Protein

subject predicate object



Literal 

Literals are only permitted to occur as the object position

Literal can be optionnally typed:

"GBA1_HUMAN"^^xsd:string is the same as "GBA1_HUMAN"
"5"^^xsd:integer is the same as 5

"2018-04-09T12:00:00"^^xsd:dateTime

up:P04062   up:mnemonic "GBA1_HUMAN"

subject predicate object



Language tag

String can be endowed with a language tag, e.g. the name of Galway in wikidata:
wd:Q129610 wdt:P31 "Galway"@en, "Gaillimh"@ga .

Show titles of wikipedia articles about Ukrainian villages on Romanian Wikipedia, 
plus English and Ukrainian labels in Wikidata items:

#added in 2017-05

SELECT DISTINCT ?item ?LabelEN ?LabelUK ?page_titleRO WHERE {

# item: is a - village

?item wdt:P31 wd:Q532 .

# item: country - Ukraine

?item wdt:P17 wd:Q212 .

# exists article in item that is ro.wiki

?article schema:about ?item ; 

schema:isPartOf <https://ro.wikipedia.org/> ; 

schema:name ?page_titleRO .

# wd labels

?item rdfs:label ?LabelEN FILTER (lang(?LabelEN) = "en") .

?item rdfs:label ?LabelUK FILTER (lang(?LabelUK) = "uk") .

}



Object property and data property

A property is an IRI that is used as a predicate.

An object property is an IRI that is used as a predicate and which object is an IRI.

A data property is an IRI that is used as a predicate and which object is a Literal.



Blank nodes

• A blank node is an "anonymous placeholder" node in a
RDF graph. 

• Blank nodes have no IRI that can be used to refer to 
them. 

• Blank nodes are allowed as subject or object of triples, 
exclusively.

• There is two syntaxes for blank nodes:
• _ is a predefined prefix for blank nodes

• The [] construct can be used

• There is no clear benefits in using blank nodes in large 
RDF graphs.  They can be safely replaced with opaque IRI.

• Blank nodes appear from time to time in SPARQL 
queries.

Here a snippet of  Turtle to express that  Anna 
knows someone (she unfortunately does not 
remember its name), who is also a friend of Bob:

:Anna knows _:nobody .
_:nobody :isFriendOf :Bob

or

:Anna knows [ :isFriendOf :Bob ]



RDF graph



Punctuation in Turtle syntax 
ex:Anna a foaf:Person .
ex:Anna foaf:knowns ex:Bob .
ex:Bob a foaf:Person .
ex:Bob foaf:mBox mail:bob@gmail.com .
ex:Bob foaf:mBox mail:bob@github.com

dot is the triple separator

semicolon is a triple separator, with implicit 
subject

comma is a triple separator, with implicit 
subject and object

ex:Anna a foaf:Person ;
foaf:knowns ex:Bob .

ex:Bob a foaf:Person ;
foaf:mBox mail:bob@gmail.com ;
foaf:mBox mail:bob@github.com

ex:Anna a foaf:Person ;
foaf:knowns ex:Bob .

ex:Bob a foaf:Person ;
foaf:mBox mail:bob@gmail.com , 

mail:bob@github.com



Common pitfalls in SPARQL programming

424'647'286 lines

SELECT *
WHERE{

?prot_AC rdf:type up:Protein .
?prot_AC up:mnemonic ?prot_ID

}

SELECT *
WHERE{

?prot_AC rdf:type up:Protein .
?prot_AC up:mnemonics ?prot_ID

}

SELECT *
WHERE{

?prot_AC rdf:type up:Protein .
?prot_AD up:mnemonic ?prot_ID

}

(424'647'286)2 = 1.8e+17 lines



Common pitfalls in SPARQL programming

Mitigation:

• use ";" and "," punctuations
• cut-and-paste from template

• use editor auto-completion

• progressively build and run large queries

• SPARQL sub-queries help

SELECT *
WHERE{

?prot_AC rdf:type up:Protein ;
up:mnemonic ?prot_ID

}



PREFIX dbo:  <http://dbpedia.org/ontology/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?name ?author ?pages
WHERE {
?book a dbo:Book ;
dbo:author ?author ;
dbo:numberOfPages ?pages ;
rdfs:label ?name .

FILTER (?pages > 500)
FILTER (langMATCHES(LANG(?name),"en"))

}
ORDER BY ?pages
LIMIT 10

Anatomy of a SPARQL query

Prefix 
declarations

Variables to display 
in the results

“Triple patterns” to 
match in the graph

Filter triples based on the 
values of some entities

Where clause to 
define the basic 
graph pattern 
(BGP)
Match and filter 
specific triples

Solution sequence 
modifiers:
Order by, group by, offset, 
limit clauses

adapted from slides by Michel Dumontier and the Institute of Data Science at Maastricht University (2024 CC-BY)

http://www.w3.org/2000/01/rdf-schema


A few ubiquitous predicates

predicate object type comment

rdf:type class IRI
• usually abreviated with 'a' in Turtle
• every IRI should belong to a class
• multiple types are permitted

rdfs:label string literal
• should be short
• should have a unique value

rdfs:comment string literal • should be more descriptive than label

foaf:depiction image URL
• used by graphdb-workbench to identify 

images

owl:sameAs IRI
• Subject and object IRIs referer to 

exactly the same thing



Data, schema and documentation

In most programming languages and in relational databases, there exists a clear distinction between 
data,  schema and documentation. Usually, each one has its own syntax.

There is no such distinction in RDF: data,  schema and documentation are expressed as RDF ! In the 
music example, the  "schema" was limited to type assignment, e.g.

it could be completed with a class definition and documentation:

Benefit: RDF is totally open for semantic innovations

Drawback: anything is possible – the distinction between data and schema is often blurred –
automated validation is not part of the specifications (SHACL address this)

:Album rdf:type rdfs:Class ;
rdfs:comment "An album is a collection of 

audio recordings (e.g., music) issued on a medium 
such as compact disc (CD), vinyl (record), audio tape 
(like 8-trackor cassette), or digital." .

:ABBA:_The_Album rdf:type :Album



Important vocabularies

• RDF/RDFS 

• Ubiquitously used to define types, classes and properties

• allows for basic reasoning (e.g. type inheritence through class definition)
• https://www.emse.fr/~zimmermann/Teaching/SemWeb/rdfs.pdf

• OWL
• Extension of RDF/RDFS, to build ontologies and to perform reasoning 

• SKOS

• A popular vocabulary to organize thesaurus and ontologies.
• SHACL

• A vocabulary to validate RDF schema 



https://github.com/dgarijo/Widoco



More vocabularies 

https://lov.linkeddata.es/dataset/lov/



Reuse existing vocabularies... or create a new one?
Reusing existing vocabulary is a recommended practice, however it comes at the risk of semantic 
alteration, and this is very detrimental!

For example, consider: 
chebi:57972 chebislash:InChI "InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1"

Does the data property chebislash:InChI implies that the InChI string must be a standard InChI? Does it 
imply a particular version of the inchi-1 software? It is impossible to answer these questions, and the ChEBI
documentation lacks these details. A solution would to create our own property
chebi:57972 reconxkg:InChI "InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1"

and document it with:

reconxkg:InChI a rdf:Property ;
rdfs:label "has InChI" ;
rdfs:comment "Standard InChI, computed with inchi-1 version 1.07" ;
owl:equivalentProperty chebislash:InChI .

No information is lost, precisions are given and chebislash:InChI is referenced ;-)



SPARQL endpoints

"A SPARQL Endpoint is a Point of Presence on an HTTP network that’s capable of receiving and 
processing SPARQL Protocol requests."

• It is identified by an URL commonly referred to as a SPARQL Endpoint URL.

• It expects a query parameter which value is SPARQL code (SELECT, DESCRIBE, ...)

• It can return the request results (if any) under different formats, e.g. TSV, JSON, Turtle, ... 

A few SPARQL Endpoint URL:

• https://sparql.rhea-db.org/sparql (RHEA)

• https://sparql.uniprot.org/sparql (UniProt)

• https://reconx.vital-it.ch/graphdb/sparql (ReconxKG provisional public site )

• http://localhost:7200/repositories/ReconXKG (ReconxKG deployed on my 
local instance of GraphDB)



SPARQL federated queries, example 1

Generate a draft human metabolome is a RHEA demo query to be run on the RHEA SPARQL endpoint: 
https://sparql.rhea-db.org/sparql

SELECT
?uniprot ?mnemonic ?rhea ?chebi ?smiles ?inchiKey

WHERE
{

?rhea rh:side/rh:contains/rh:compound ?compound .
?compound (rh:chebi|(rh:reactivePart/rh:chebi)|(rh:underlyingChebi/rh:chebi)) ?chebi .
?chebi chebislash:smiles ?smiles ;

chebislash:inchikey ?inchiKey .
SERVICE <https://sparql.uniprot.org/sparql/> {

?uniprot up:annotation/up:catalyticActivity/up:catalyzedReaction ?rhea ;
up:organism taxon:9606 ;
up:mnemonic ?mnemonic .

}
}



SPARQL federated queries, example 2

Use IDSM Sachem to find ChEBIs with a a Cholestane skeleton (in SMILES). Then match 
returned ChEBIs to Rhea undirected reactions:

PREFIX sachem: <http://bioinfo.uochb.cas.cz/rdf/v1.0/sachem#>
PREFIX rh: <http://rdf.rhea-db.org/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT 
?rhea 
?chebi

WHERE {
SERVICE <https://idsm.elixir-czech.cz/sparql/endpoint/chebi> {

?chebi sachem:substructureSearch [
sachem:query "[C@]12(CCC3CCCC[C@]3(C)[C@@]1([H])CC[C@]1(C)[C@@]([H])([C@@](C)([H])CCCC(C)C)CC[C@@]21[H])[H]" 

]
}
?rhea rh:side/rh:contains/rh:compound/rdfs:subClassOf ?chebi

}



SPARQL subquery, example
The example below calculates the population of each country in the world, expressing the population 
as a percentage of the world's total population. In order to calculate the world's total population, it 
uses a subquery.

SELECT ?countryLabel ?population (round(?population/?worldpopulation*1000)/10 AS ?percentage) 
WHERE { ¨

?country wdt:P31 wd:Q3624078; # is a sovereign state
wdt:P1082 ?population. 

{ # subquery to determine ?worldpopulation
SELECT (sum(?population) AS ?worldpopulation) 
WHERE { 

?country wdt:P31 wd:Q3624078; # is a sovereign state
wdt:P1082 ?population. 

}
} 
SERVICE wikibase:label {

bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en".
} 

} 
ORDER BY desc(?population)



SPARQL subqueries

• SPARQL subqueries are guaranteed to be executed first, starting from the innermost, which 
permits to exert some control on the query execution plan.
• SPARQL is a declarative language, like SQL or Prolog. SPARQL basic graph pattern specifies a list of 

constraints to be satisfied by the results. 
• The database engine is responsible for establishing the execution plan, i.e. the order in which the 

constraints to be satisfied.
• Sometimes the database engine takes a wrong decision: a query may never finish.

• SPARQL subqueries permits to structure large SPARQL queries and facilitate their debugging.

• SPARQL subqueries expand SPARQL capabilities by allowing the formulation of complex 
constrains.



Named graphs

Named graphs:

• permit to identify a set of triples with an IRI; there exists a default named graph in 
any triplestore.

• are known as "context" in the RDF4J/GraphDB world

• are meant to facilitate the handling  of triples, i.e. they must not be used  to bring 
additional semantics.

• SPARQL syntax provides full support for named graphs

SELECT *
FROM <http:example.org/toto>
WHERE{

?s ?p ?o
}

SELECT DISTINCT ?g
WHERE{

GRAPH ?g {
?s ?p ?o

}
}



SPARQL CONSTRUCT ...

CONSTRUCT{
:isUncleOf a rdf:Property .
?person_1 :isUncleOf ?person_3

}
WHERE{

?person_1 :hasSex :Male     ;
:hasSibling ?person_2 .

?person_2 :isParentOf ?person_3
}

INSERT{
GRAPH <:family_relationships> {

:isUncleOf a rdf:Property .
?person_1 :isUncleOf ?person_3

}
}
WHERE{

?person_1 :hasSex :Male     ;
:hasSibling ?person_2 .

?person_2 :isParentOf ?person_3
}

SELECT ?person_1 ?person_3
WHERE{

?person_1 :hasSex :Male     ;
:hasSibling ?person_2 .

?person_2 :isParentOf ?person_3
}

The WHERE clause stays the same ;-))



Types of SPARQL queries

SPARQL (read only)
● ASK: Returns a boolean answer (true/false) to specified graph pattern
● DESCRIBE
● SELECT: Retrieve entities matching identified variables from graph pattern
● CONSTRUCT: create a target graph from graph pattern

SPARQL update (read/write)
● LOAD: load triples from an URL and insert them into the (specified) graph.
● INSERT: creates triples and inserts the constructed triples into the (specified) graph.
● DELETE: similar structure to both CONSTRUCT and INSERT - deletes triples from the graph!
● CLEAR
● ...



SPARQL update

SPARQL
update




