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ldentifying cell and gene candidates in severe
COVID-19 patients

Background: COVID-19 is an infectious disease driven by the virus SARS-CoV-2, which primarily infects lung epithelial
cells. However, elderly patients usually develop severe lung inflammation and lung dysfunction, ultimately leading to
respiratory failure (Guan et al 2020). The onset of the disease is characterised by a cytokine storm comprising several
inflammatory mediators (Pedersen et al 2020), specially in severe cases of the disease. Many cell types orchestrate the
immune response to the virus, but their relative contribution at the single-cell resolution is still unclear. Herein, our main
goal is to identify which cell types and gene pathways are altered in the blood of patients with severe COVID-19.

Main research question: Which cell types and genes are altered when comparing blood immune cells from healthy
versus COVID-19 patients.

Importance: Identifying such genes will allow us to: 1) better understand why severe COVID-19 patients develop stronger
immune responses; 2) find potential cells for blockage or immune enhancement therapy or; 3) identify pathways that could
be targeted pharmacologically.


https://www.nejm.org/doi/full/10.1056/nejmoa2002032
https://www.jci.org/articles/view/137647
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Most of our cells are of good quality taking into account the number of genes, transcripts,

mitochondrial genes and ribosomal genes detected from the cells,
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As expected most genes detected are protein coding genes - the
rest are filtered out
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Most cells do not show variation in their cell cycle score
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Normalisation is done to reads / UMIs
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Feature selection

Done to identify features that vary
between our samples

To enable us work with genes
informative enough to help us separate
our cells

Highly expressed genes will show higher
variance, to normalise this variation, the
log of their mean expression is taken
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Scaling and linear centering reads /UMIs  —
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Adapted from Paulo Czarnewski



Cell Clustering

scRNA-seq - graph construction and clustering

The k-Nearest Neighbor (kNN) graph is a graph in which
two vertices p and q are connected by an edge, if the
distance between p and g is among the k-th smallest
distances from p to other objects from P.
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The Shared Nearest Neighbor (SNN) graph has weights that -10
defines proximity, or similarity between two edges in terms of

the number of neighbors (i.e., directly connected vertices) they

have in common.

Adapted from Paulo Czarnewski



Cell Clustering

Clusters divided by sample composition (batch) (a) or by condition (covid/control) (b)
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Cell Clustering
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Differential expression analysis Type-1: Identifying cell populations
(DEA among clusters)
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Differential Expression Analysis Type-2: identification between conditions
(DEA within Clusters)
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Cluster Specific Differential Expression Analysis
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Differential Expression Analysis (Covid vs Control)

Biological Processes (corresponding to upregulated genes) in NK T-cells (a) and CD4 T-cells (b)
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Research Question:

Which cell types and genes are altered when comparing
blood immune cells from healthy versus COVID-19 patients

Importance
1) better understand why severe COVID-19 patients

develop stronger immune responses (identified DE-genes)

2) find potential cells for blockage or immune enhancement
therapy (NK T-cells, NK cells)

3) identify pathways that could be targeted
pharmacologically



