
1www.sib.swiss

R packaging
September 2024
Frédéric Schütz (Frederic.Schutz@sib.swiss)

How can we
distribute/share

R code ?

data <- read.table("data.txt")
Our routine data analysis
par(mfrow=c(2,2))
hist(data[,1])
plot(data[,2], data[,3])
hist(data[,4])
boxplot(data[,5])

data <- read.table("data2.txt")
par(mfrow=c(2,2))
hist(data[,1])
plot(data[,2], data[,3])
hist(data[,4])
boxplot(data[,5])

analyze1.R

analyze2.R

Copy/paste snippets of code

data <- read.table("data3.txt")
par(mfrow=c(2,2))
hist(data[,1])
plot(data[,2], data[,3])
hist(data[,4])
boxplot(data[,5])

analyze3.R

data <- read.table("data.txt")
source("common.R")

analyze1.R Source files

par(mfrow=c(2,2))
hist(data[,1])
plot(data[,2], data[,3])
hist(data[,4])
boxplot(data[,5])

common.R

data <- read.table("data2.txt")
source("common.R")

analyze2.R

library("common_analysis")
data <- read.table("data.txt")
plot_data(data)

analyze1.R

Packages

library("common_analysis")
data <- read.table("data2.txt")
plot_data(data)

analyze2.R

library("common_analysis")
data <- read.table("data3.txt")
plot_data(data)

analyze3.R

Several ways to distribute R code

• Copy/paste snippets of code
• Source files
• Packages

R packages

«In R, the fundamental unit of shareable code
is the package. A package bundles together
code, data, documentation, and tests, and is
easy to share with others. »

– Hadley Wickham

http://cran.r-project.org, September 2024

Why create R packages ?

If you want to …

• share code
• organize code
• version code
• make your code easily available, even if

only for yourself

Using R packages

Downloading, installing and loading an R package

Package from CRAN
> install.packages("ABPS")
Installing package into '/usr/local/lib/R/site-library'
(as 'lib' is unspecified)
[…]
* DONE (ABPS)
> library(ABPS)
>
Local package file
> install.packages("test_0.01.tar.gz")
Installing package into '/usr/local/lib/R/site-library'
(as 'lib' is unspecified)
inferring 'repos = NULL' from 'pkgs'
[…]
* DONE (test)
>

From the console

Downloading, installing and loading an R package

From the basic R GUI (Windows)

Downloading, installing and loading an R package

From RStudio

Note about using the console in RStudio

When using install.packages() within
RStudio, you are calling a different version of
the function than in base R.
To install a local package, you must specify
explicitly that it does not come from a
repository:

install.packages("test_0.01.tar.gz",
repos=NULL)

Creating R packages

References

Hadley Wickham, "R packages".
Print: O'Reilly, April 2015
Up-to-date version online at:
http://r-pkgs.org/

"Writing R Extensions"
https://cran.r-project.org/doc/manuals/r-
release/R-exts.html

Prerequisites

Prerequisites

R contains the bare minimum in order to build
packages.

Highly recommended: RStudio

Highly recommended: the devtools package

Other useful tools

You may also need:

• LaTeX for building manuals in PDF
• GNU software tools, if your package is

compiled (for example, if it contains C code)

https://support.rstudio.com/hc/en-us/articles/200486498-Package-Development-Prerequisites

Other useful tools

• Linux: depends on your distribution
for example, Ubuntu/Debian:
sudo apt install r-base-dev texlive-full

• Mac:
Install "Command Line Tools for XCode"
Install MacTeX

• Windows
Install the Rtools:
https://stat.ethz.ch/CRAN/bin/windows/Rtools/
Install Miktex:
http://miktex.org/download

https://support.rstudio.com/hc/en-us/articles/200486498-Package-Development-Prerequisites

How to create
a basic R package ?

What you need to create a basic "test" package by hand

test (directory), containing
DESCRIPTION (file)

The DESCRIPTION file contains two lines:
Package: test
Version: 1.0

This is the bare minimum
required to create

an R package

What you need to create a basic "test" package by hand

test (directory), containing
DESCRIPTION (file)

The DESCRIPTION file contains two lines:
Package: test
Version: 1.0

This is the bare minimum
required to create

an R package
… which is completely useless.

The most basic useful package

test (directory), containing
DESCRIPTION (file)
NAMESPACE (file)
R (directory), containing
any_file.R (files), containing R functions

The DESCRIPTION file contains two lines:
Package: test
Version: 1.0

The NAMESPACE file indicates which functions are
made available to users of the package.

Note about the package name

The name of the package is provided by the
DESCRIPTION file.

The name of the directory containing the
package file should have the same name.

It makes your life easier, but you could choose
any other name if you wanted
(but you really, really, should not)

The R directory

Content of the R directory

myfunction <- function(arguments) {
…
}

plotdata <- function(data, add=TRUE) {
…
}

myfunctions_1.R

analyze_data <- function(arguments) {
…
}

pipeline <- function(data, add=TRUE) {
…
}

otherfunctions.R

The R directory

• The R directory contains .R files which are
executed when building the package, thus
creating the function objects

• The .R files must contain the assignment of
functions:

myfunction <- function(…) {…}

• You are free to organize the files as you wish
(one or more functions per file)

The NAMESPACE file

NAMESPACE

• Any function you define in the R directory is
by default internal to the package only

• To make it available to the user, you need to
export it explicitly.

NAMESPACE

You can export a function by adding a line

export(myfunction)

in the file NAMESPACE for each function you
want to export.

myfunction <- function(arguments) {…}
plotdata <- function(data, add=TRUE) {…}

myfunctions_1.R

analyze_data <- function(arguments) {…}
pipeline <- function(data, add=TRUE) {…}

internalfunction <- function(data) {…}

otherfunctions.R

export(myfunction)
export(plotdata)
export(analyze_data)
export(pipeline)

NAMESPACE

R subdirectory

The DESCRIPTION file

The DESCRIPTION file

The DESCRIPTION file contains the metadata
regarding the package.

The presence of this file is what makes a
directory recognized as an R package.

File format

Package: test
Title: What the Package Does (one line)
Version: 0.1
Description: What the package does (one
paragraph). The description can span
several lines if needed.

Field name (ASCII)
Value

Space

Indentations (spaces or tabs) indicate multi-line fields

Colon

DESCRIPTION File format

This file format is called "Debian Control File"
(DCF)

See the help page for the read.dcf()
function for more information.

DESCRIPTION File format

Field names are case-sensitive.

All those used by R are capitalized.

Some fields expect a boolean value.
You can use either "yes", "true", "no", "false"
(or a capitalized version of these)

Example

The 7 mandatory fields of a
DESCRIPTION file

The 7 "mandatory" fields in the DESCRIPTION

Package: test
Version: 0.0.1
Title: What the Package Does (one line, title case)
Description: What the package does (one paragraph),

over one or more lines.
Author: John Smith
Maintainer: John Smith <john@smith.com>
License: What license is it under?

You need these
in order to create
the package

Later checks of the package will fail
without these

Authors and maintainer

Each package must have at least one author and one
maintainer (which may be the same person)

Author: people who have made significant
contributions to the package

Maintainer: the person responsible for the
package, the main contact

At least the maintainer should have an email
address.

The Authors@R field

You can specify the authors in a more flexible way
using the Authors@R field.

This field contains an executable R command,
containing 4 fields for each author, e.g. :
Authors@R: person("First",

"Last",
email = "first.last@example.com",
role = c("aut", "cre"))

The Author and Maintainer fields will be automatically
generated from this field.

The Authors@R field

The most important roles:

• cre: the creator or maintainer, the person
responsible for the package, main contact

• aut: authors (people who have made significant
contributions to the package)

• ctb: contributors (people who have made smaller
contributions)

(note: there are many other possible roles available, see
https://www.loc.gov/marc/relators/relaterm.html)

The Authors@R field

You can specify several authors using a vector:

Authors@R: c(
person("Joe", "Developer", role = c("aut", "cre"),

email = "Joe.Developer@some.domain.net"),
person("A.", "User", role = "ctb",

email = "A.User@whereever.net")
)

(example taken from the R manual)

The License field

The package must specify under which
conditions it can be reused and distributed.

… even if you do not intend to distribute it.

This is done by specifying a License.

License

A license is a contract, which allows an author
to specify what a user is allowed to do (or not
do) with software that he created.

Specifying a license

R recognizes shortcuts for many common software
licenses, such as:

• GNU General Public Licence
GPL-2, GPL-3, GPL (>=2)

• BSD or MIT licenses
MIT, BSD_2_clause

• Creative Commons licenses
CC BY-SA 4.0, CC BY 4.0

• No restrictions
Unlimited, CC0

https://svn.r-project.org/R/trunk/share/licenses/license.db

Specifying a license

R is centred on the concept of free software,
which
• can be used by anyone without any limitation
• can be studied (e.g. you can read the code)
• can be modified
• can be redistributed (including the

modifications)

Specifying a license

R makes it easy to distribute your code as free
software.

R itself is distributed under the GPL

If you want to submit your package to the
CRAN repository, it must be distributed under a
recognized free software license.

Using a custom license

You can use a custom license by creating a file
called LICENSE that contains the terms of
your licenses and by specifying

License: file LICENSE

in the DESCRIPTION file.

Using a custom license

You can use the license file to indicate that a
package is proprietary (e.g. internal to your
group) and should not be distributed.

However, you should not try to go further and
write an actual license that you will distribute –
use a standard license or ask a lawyer first.

The Version field

At least two (often 3) integers, separated by
either "." or "-".

The canonical form is "1.0-1".

This is used to check for dependencies (for
example, for specifying minimum versions of
software to use)

The Version field

A version field does not represent a decimal
number – the parts must be considered
separately:

Version 0.9 < 0.75

Because 9 < 75

The 7 mandatory fields

Package: test
Version: 0.0.1
Title: What the Package Does (one line, title case)
Description: What the package does (one paragraph),

over one or more lines.
Author: John Smith
Maintainer: John Smith <john@smith.com>
License: What license is it under?

DESCRIPTION File format

The field names and the package name can
only contain ASCII characters:

A-Z, a-z, 0-9, plus a few signs

Ideally, the whole file should be written using
only ASCII characters.

DESCRIPTION File format

It is not always possible – e.g. if an author has
accents in his/her name, we need more than
ASCII.

In this case, the file must specify an encoding,
e.g.

Encoding: UTF-8

Encoding ?

How to make an R package out
of this directory ?

Using R as a batch utility

The R software can be used as a batch utility:
R CMD command …

Examples:
R CMD INSTALL package
R CMD REMOVE package
R CMD BATCH script.R
R CMD build directory

Creating a source package from the command line

Go to the directory which contains the package
directory (one directory up from the
DESCRIPTION file)

Call the R batch command:

R CMD build DIRECTORY

Creating a source package from the command line

This is relatively easy to do when using Linux
or Mac

Under Windows, it may be harder to call the
program. For example, the command may look
like:

C:\PROGRA~1\R\R-3.4.4\bin\R.exe
CMD build directory

Example of package build

schutz@laptop:~/packages$ R CMD build test
* checking for file 'test/DESCRIPTION' ... OK
* preparing 'test':
* checking DESCRIPTION meta-information ... OK
* checking for LF line-endings in source and

make files and shell scripts
* checking for empty or unneeded directories
* building 'test_0.01.tar.gz'

schutz@laptop:~/packages$ ls -l test_0.01.tar.gz
[...] 311 test_0.01.tar.gz

Installing the resulting package

• From the command line
R CMD INSTALL package.tar.gz

• From R
install.packages("package.tar.gz")
The argumet,

repos=NULL, type="source")
• (repos/source are now infered)
• Packages > Install package(s) from
local files

• From R Studio:
Tools > "Install packages"

Exercise

• Create the minimum R package, build it,
install it and load it

• Do the same with a package that is actually
useful: add an R function, and make sure
that you can use it after loading the package.

• If you need help finding R functions to
package, look at the Moodle website.

Congratulations !

More about
the DESCRIPTION file:

how to specify dependencies

Dependencies

Dependencies allow you to specify which other
packages your package need in order to do its
job.

Imports

You can specify hard dependencies using the
Imports keyword in the DESCRIPTION file:

Imports: kernlab, ggplot2

Packages specified this way will be installed at
the same time as your package.

Suggests

Packages indicated as "suggestions" can be
used by your package, but they are not
absolutely required to use it.

Suggests: kernlab, ggplot2

Your package should always check for the
presence of the suggested package before
relying on it.

Versions

Dependencies and suggestions can be
versioned.

Imports: ggplot2 (>=2.2.0)
Suggests: ggvis (>=0.2)

Always depend on a given version or higher.

Depends

Dependency on a particular version of R can be
specified using the Depends keyword:

Depends: R (>= 3.4.0)

Do not specify a version: Depends: R (==3.4.0)

"Depends" can also be used to specify
packages; however, they will be automatically
loaded and attached. "Imports" is usually the
best choice.

Example: the devtools package

You may even create
an "empty" R package,
which contains only the

dependencies for your code

Using better tools

How to build package

It is possible to build packages using the
command line.

However, this can be cumbersome –
especially if you use Windows.

RStudio allows you to manage packages (in
the form of projects) in a more convenient way.

Exercise

Build again the same package as before,
starting from an empty RStudio project.

Checking a package

Checking a package

R provides a large number of checks that can
be applied to a package.

These will yields errors, warnings or notes
about your package.

Checking a package

You should not distribute your package if it
does not come clean from a check.

Checking a package

From the command line:
R CMD check sourcepackage.tar.gz

From Rstudio:
Build > Check Package

Check for CRAN

If you plan on uploading your package to
CRAN, R can perform additional tests on it.

R CMD check --as-cran sourcepackage.tar.gz

You must not submit any package to CRAN if
it is does not come clean after this command.

Exercise

Check the package that you have created
before; try to understand any issue that the
check command may report.

Adding documentation

Documentation

Every function in a package should be
documented.
Documentation is stored as .Rd files in the
man/ subdirectory of your package.

The file format is similar to LaTeX.

Example of .Rd file for an add() command

\name{add}
\alias{add}
\title{Add together two
numbers}
\usage{
add(x, y)
}
\arguments{

\item{x}{A number}

\item{y}{A number}
}

\value{
The sum of \code{x} and
\code{y}
}
\description{
Add together two numbers
}
\examples{
add(1, 1)
add(10, 1)
}

Using roxygen2 for writing documentation

The roxygen2 and devtools packages offer
an easier way to write documention.
The documentation is written in the form of
literate programming: together with your
code.
In practice, you add comments (in a specific
format) to your R code.
They are then transformed into .Rd files

Example: Roxygen2 documentation

#' Add together two numbers.
#'
#' @param x A number.
#' @param y A number.
#' @return The sum of \code{x} and \code{y}.
#' @examples
#' add(1, 1)
#' add(10, 1)
add <- function(x, y) {

x + y
}

From the "R packages" book

Transforming the comments into .Rd files

To create the .Rd files: use the command

devtools::documents()

(or use the relevant shortcuts in Rstudio)

Format

• All lines start with
#'

in order to differentiate them from code and
regular comments

• The lines should form a single block before a
function

• Lines should not be over 80 characters long

Format

• The first sentence (on the first) line will the
title of the help page

• The second paragraph will contain the
introduction

• The next paragraphs will contain the details

Format

You can create arbitrary sections using the
@section tag:

#' @section Note:
#' The function has the same name, but a
#' different output, as the one provided in
#' the previous version of the package.

Documenting sections

Most functions will have at least 3 sections
defined by given tags:
• @param NAME description

to define the function parameters:
• @return to define the value(s) returned
• @examples to provide executable R code

as an example of use of the function

Example

#' A function for calculating XYZ
#'
#' The \code{XYZ} function computes XYZ.
#'
#' @param X a vector or matrix containing the X data
#' @param Y a vector containing the Y data (not needed
#' if the X parameter is a matrix)
#'
#' @return a vector containing the XYZ score(s).
#'
#' @examples
#' XYZ(1,1)

Managing your exports with roxygen2

roxygen2 can also manage your NAMESPACE
file for you:

#' … documentation

#' @export
skewness <- function(a, na.rm=FALSE) {

…
}

Principle: it is easier to manage exports close
to the function.

Adding data to a package

Several kinds of data in a package

• Data that will be called by the user using the
data() command

• Internal data (e.g. precomputed data tables
used by your method)

• Raw data used as example

Data available to the user

• The dataset should be provided in the data/
subdirectory

• They should be in .Rdata format, which you
can obtain using the save() command.

• Typically:

mydata <- read.csv("mydata.csv")
save(mydata, "data/mydata.Rdata")

Exporting data

Datasets are exported by default, so that you
do not need to export them explicitely.

Documenting data

You can document data using roxygen2, by
adding the documentation into the R/ directory
(for example, in a data.R file)
Specify the name of the dataset at the end of
the documentation (after the block):

#' Example of mydata
#' …
#' End of description
"mydata"

