Advanced R Syis sttt o
September 2024

Frédéric Schiutz

(Frederic.Schutz@sib.swiss)
Frédéric Burdet

(Frederic.Burdet@sib.swiss)

l.-
E.f?_).l’fr
SWTrIrNL AND

WWW.Sib.swisk

An introduction (or reminder)
about R data structures

Types

All objects Iin R have a type, which describes
the type of data stored in the object.

The typeof () command

To find the type of any object:

typeof (object)

> typeof(c(1,2,3))
[1] "double™"
> typeof(C("a", vvbn, vvcn))

[1] "character"

 logical

e Integer

« double

* closure

* builtin

e special

« complex
« character
° raw

* |ist

(and a few others)

Possible types in R

Types and modes

Sometimes, we also talk about the mode, a
simplified version of types.

The mode () command

To find the mode of any object:

mode (object)

> typeof(c(1,2,3))
[1] "double"
> typeof(C("a", "b", "c"))

[1] "character"

> mode(c(1,2,3))
[1] "numeric"
> mode< C("a", "b", "C"))

[1] "character"

Possible types in R

Type
logical
Integer
double
closure
builtin
special
complex
character
raw

list

Type
logical
Integer
double
closure
builtin
special
complex
character
raw

list

Possible types and modes in R

Mode
logical
numeric
numeric
function
function
function
complex
character
raw

list

An explanation for some abstruse error messages in R

> x <=1

> print (c(class (x), mode (x), typeof (x)))
[1] "numeric" "numeric" "double"

> x <- letters

> print(c(class(x), mode (x), typeof(x)))
[1] "character" "character" "character"
> x <- TRUE

> print(c(class(x), mode (x), typeof(x)))
[1] "logical" "logical" "logical"

> print(c(class(x), mode (x), typeof(x)))
[1] "logical" "logical" "logical"

> x <- cars|[1l]

> print (c(class (x), mode(x), typeof (x)))
[1] "data.frame" "list" "list"

> x <- cars[[1]]

> print(c(class(x), mode (x), typeof(x)))
[1] "numeric" "numeric" "double"

> x <- matrix (cars)

> print(c(class(x), mode (x), typeof(x)))
[1] "matrix" "array" "list" "list"

> x <- new.env ()

> print(c(class(x), mode (x), typeof(x)))
[1] "environment" "environment" "environment"
> x <— 1s

> print(c(class(x), mode (x), typeof(x)))

[1] "function" "function" "closure"

https://stackoverflow.com/questions/35445112/what-is-the-difference-between-mode-and-class-in-r

An explanation for some abstruse error messages in R

 logical logical

* integer numeric
« double numeric
* closure function

> f <- function () {}
> fSa

Error in fSa : object of type 'closure' is not subsettable

Vectors

Storing data into R

The simplest way to store data into R is the vector, which
contains an ordered collection of objects of the same type:

> x <- c¢c(1, 2, 3, 4); x

(1] 1 2 3 4
> typeof (x); mode (x)
[1] "double"

[1] "numeric"

Storing data into R

The simplest way to store data into R is the vector, which
contains an ordered collection of objects of the same type:

> x <- c¢(1, 2, 3, 4); x

(1] 1 2 3 4

> typeof (x); mode (x)
[1] "double"

[1] "numeric"

> x <- c(TRUE, FALSE, TRUE, TRUE)
> typeof (x); mode (x)

[1] "logical"

[1] "logical"

What happens if | store several types of objects in a vector ?

What happens if | store several types of objects in a vector ?

> x <- ¢(1, 2, TRUE, 3); x
(1] 1 2 1 3

> typeof (x)

[1] "double"

R will convert the objects to the type that is able to
accommodate all of them.

What happens if | store several types of objects in a vector ?

> x <- ¢(1, 2, TRUE, 3); x
(1] 1 2 1 3
> typeof (x)

[1] "double"

> x <- c¢(1, 2, "true", 4); x

What happens if | store several types of objects in a vector ?

> x <- ¢(1, 2, TRUE, 3); x
(1] 1 2 1 3

> typeof (x)

[1] "double"

> x <- c¢(1, 2, "true", 4); x
[1] "l" "2" "true" "4"

> typeof (x)

[1] "character"

With some surprises...

> x <= c¢c("a", TRUE, 3),; x
|: l :| 1A a" " TRUE 1) 1A 3 "
> typeof (x)

[1] "character"

With some surprises...

> x <= c¢c("a", TRUE, 3),; x
|: l :| 1A a" " TRUE 1) 1A 3 "
> typeof (x)

[1] "character"

> x <- c("a", c(TRUE, 3)); x
[1] g om . n3n

> typeof (x)

[1] "character"

Logical vs numeric

Logical values (TRUE/FALSE) can easily be converted to
numeric value (0/1) and back, as in most programming
languages:

> as.numeric(c (FALSE,
[1] 0 1
> as.logical(c(0,1))

[1] FALSE TRUE

> c(FALSE, 0, TRUE)
[1] O 0 1

Counting values using logicals

This is very useful, for example for counting purposes.

Example: count the number of elements of the vector
data that are larger than zero:

> data <- rnorm(10)
> data

[1] -0.61518461 -0.62574053 1.215860046 -1.42627945
[5] 0.06749257 0.59811401 0.25876230 -0.45936110
[9] -1.83171441 0.28693148

> data > 0

[1] FALSE FALSE TRUE FALSE TRUE
[6] TRUE TRUE FALSE FALSE TRUE

> sum(data > 0)
[1] 5

Logical vs numeric

Example: count the proportion of elements of the vector
data that are larger than zero:

> data <- rnorm(10)
> data

[1] -0.61518461 -0.62574053 1.215860046 -1.42627945
[5] 0.06749257 0.59811401 0.25876230 -0.45936110
[9] -1.83171441 0.28693148

> data > 0

[1] FALSE FALSE TRUE FALSE TRUE
[6] TRUE TRUE FALSE FALSE TRUE

> mean (data > 0)
[1] 0.5

Why do the two selection commands return different results ?

> vector <- 1:10

> vector|[c(0,1)]

[
> vector|[c (FALSE, TRUE)]
(1] 2 4 o 8 10

Difference between logical and numeric

> vector <- 1:10

> vector|[c(0,1)]
[1] 1

This selects elements 0 (which does not exist) and 1 (=1)

> vector|[c¢ (FALSE,TRUE)]

(1] 2 4 o 8 10

This applies to each element in turn; since the logical vector
IS not long enough, it is recycled to cover the full vector. At
the end, only elements at even positions are selected.

Difference between logical and numeric

> vector <- 1:10

> vector[c(0,1)]

[
> vector|[c (FALSE, TRUE)]
(1] 2 4 o 8 10

In contrast to other programming languages, logical and
numeric types can not be freely exchanged !

How to use this feature to your advantage

This behaviour can lead to bugs in your code. But if done
correctly, it can also help you.

How to use this feature to your advantage

This behaviour can lead to bugs in your code. But if done
correctly, it can also help you.

The following command is a simple way to select all
elements at even positions in the vector.

(for example, sampling one data point out of two)

> vector|[c (FALSE, TRUE)]

(1] 2 4 o 8 10

What could possibly go wrong ?

> sample(1:10, 10, replace=T)

(r] 8 4 9 110 3 9 6 3 9

When T does not mean TRUE

> A <_ Hal'; B <_ Hb"; C <_ "C"; T <_

> sample(1:10, 10, replace=T)

> A <- nan; B <- "b",' C <- "C",’ T <- "t"

> sample(1:10, 10, replace=T)

Error in sample(1:10, 10, replace = T) : invalid 'replace' argument

> A <- nan; B <- "b",' C <- "C",’ T <- "t"

> sample(1:10, 10, replace=T)

Error in sample(1:10, 10, replace = T) : invalid 'replace' argument

‘'T"and ‘F’ can be freely redefined by the user, something
Impossible with the full form:

> TRUE <- "t"

Error in TRUE <- "t" : invalid (do set) left-hand side to assignment

This will yield an error, or even worse...

If you are really vicious ...

> T <- FALSE

> sample(1:10, 10, replace=T)

[1] 7 6 3 410 1 8 5 9 2

If you are really vicious ...

> T <- FALSE

> sample(1:10, 10, replace=T)

[1] 7 6 3 410 1 8 5 9 2

Or, more likely:

> T <- complicated function(many, many, complicated, arguments, and
the, function, returns, FALSE, 1in, the,
end)

> sample(1:10, 10, replace=T)
[1] 7 6 3 410 1 8 5 9 2

Attributes

Attributes are arbitrary labels attached to the R objects.

Attributes

Attributes are arbitrary labels attached to the R objects.

> x <— rnorm(10)
> attributes (x)
NULL

Attributes

Attributes are arbitrary labels attached to the R objects.

> x <— rnorm(10)

> attributes (x)

NULL

> attr (x, "mylabel") <- "Random normal data"
> attr(x, "mylabel")

[1] "Random normal data"

Attributes

Attributes are arbitrary labels attached to the R objects.

> x <— rnorm(10)
> attributes (x)
NULL

> attr (x, "mylabel") <- "Random normal data"
> attr(x, "mylabel")

[1] "Random normal data"

> attributes (x)

smylabel

[1] "Random normal data"

Some important attributes in R

 names: allows naming the components of an
object

» class: alabel attached to the object, which
Indicates how actions can be performed on the

object

« dim: the dimensions of the objects (e.qg. for a
matrix or an array)

Adding a class

> x <— rnorm(10)

> attributes (x)

NULL

> attr (x, "mylabel") <- "Random normal data"
> attr(x, "mylabel")

[1] "Random normal data"

> attributes (x)

smylabel

[1] "Random normal data"

> class(x) <- "randomdata"

Adding a class

> x <— rnorm(10)

> attributes (x)

NULL

> attr (x, "mylabel") <- "Random normal data"
> attr(x, "mylabel")

[1] "Random normal data"

> attributes (x)

smylabel
[1] "Random normal data"
> class(x) <- "randomdata"

> attr(x, "class") <- "randomdata" # equivalent

Adding a class

> x <— rnorm(10)

> attributes (x)

NULL

> attr (x, "mylabel") <- "Random normal data"
> attr(x, "mylabel")

[1] "Random normal data"

> attributes (x)

smylabel

[1] "Random normal data"

> class(x) <- "randomdata"

> attr(x, "class") <- "randomdata" # equivalent

> class (x)

[1] "randomdata"

Adding names

> names (x) <- LETTERS[1:10]

> X
A B C D E
-0.93205027 -0.16194958 0.26727310 -0.07427123 1.54048877
F G H I J

-0.63579513 0.27141749 -2.03039854 -2.52658864 1.02263626
attr(,"mylabel")

[1] "Random normal data"

attr(,"class")

[1] "randomdata"

> attributes (x)
smylabel

[1] "Random normal data"

Sclass
[1] "randomdata"

Snames
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

Adding names

> names (x) <- LETTERS[1:10]

> X
A B C D E
-0.93205027 -0.16194958 0.26727310 -0.07427123 1.54048877
F G H I J

-0.63579513 0.27141749 -2.03039854 -2.52658864 1.02263626
attr(,"mylabel")

[1] "Random normal data"

attr(,"class")

[1] "randomdata"

> attributes (x)
smylabel

[1] "Random normal data"

Sclass
[1] "randomdata"

Snames
[1] "A" "Bll "Cll "Dll "Ell "Fll "Gll "Hll "Ill "Jll

Why names are important

Names allow you to create lookup tables

> names (x) <- LETTERS[1:10]

> X
A B C D E
-0.93205027 -0.16194958 0.26727310 -0.07427123 1.54048877
F G H T J

-0.63579513 0.27141749 -2.03039854 -2.52658864 1.02263626

> x["B"]
[1] -0.16194958

Reproducible i
/ P Why Names are |mportant

Research

Names allow you to create lookup tables

> names (x) <- LETTERS[1:10]

> X
A B C D E
-0.93205027 -0.16194958 0.26727310 -0.07427123 1.54048877
F G H T J

-0.63579513 0.27141749 -2.03039854 -2.52658864 1.02263626

> x["B"]
[1] -0.16194958

Matrices and arrays

Arrays and matrices

Matrices (in 2D) and arrays (in 2D or more) are extensions
of vectors, where two or more dimensions are specified.

> m <- matrix(1:30, ncol=0)

Arrays and matrices

In fact, a matrix (or array) is stored as a vector (column by
column) with additional information about its dimensions.

> m <- matrix(1:30, ncol=0)

> m

[,11 [,21 [,31 [,4] [,5] [,¢6]
[1,] 1 6 11 16 21 26
[2,] 2 '/ 12 17 22 277
[3,] 3 8 13 18 23 28
[4,] 4 9 14 19 24 29
[5,] 5 10 15 20 25 30
>

as.vector (m)
[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15
[16] 17 18 19 20 21 22 23 24 25 26 26 27 28 29 30

Arrays and matrices

Internally, matrices are just vectors, with indications of
dimensions.

> m <- matrix(1:30, ncol=0)

> m

[,11 [,21 [,3]1 [,4] [,5] [,6]
[1,] 1 6 11 16 21 26
[2,] 2 '/ 12 17 22 277
[3,] 3 8 13 18 23 28
[4,] 4 9 14 19 24 29
[5,] 5 10 15 20 25 30
>

as.vector (m)
[1] 1 2 3 4 5 o 7 8 9 10 11 12 13 14 15
[16] 17 18 19 20 21 22 23 24 25 26 26 27 28 29 30

Matrices and vectors

So you can also access matrices as If they were vectors.

> m <- matrix(1:30, ncol=0)

Equivalent

Matrices and vectors

They have both a length and dimensions.

> m <- matrix(1:30, ncol=0)

m[11l]; m[1l,3] # Equivalent
11
11

> dim (m)
[1] 5 6

> length (m)
[1] 30

Arrays are constructed in a similar way.

> a <- 1:24
> array(a, dim=c(4,3,2))

4 4 1

[,11 [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
14 4 2

[,1] [,2] [,3]
[1,] 13 17 21
[2,] 14 18 22
[3,] 15 19 23
[4,] 16 20 24

Transforming a vector into a matrix

You must specify the dimensions and change the class.

a <- 1:30
attr(a, "dim") <- c(5,0)

class(a) <- "matrix"

Creating a matrix row by row

A matrix can also be created row by row, using the byrow
parameter.

However, it will still be stored column by column.

> m <- matrix(l1:30, ncol=6, byrow=TRUE); m

(,11 0,21 [,31 [,4] [,5] [,¢6]
] 1 2 3 4 5 6
] 7 8 9 10 11 12
] 13 14 15 16 17 18
] 19 20 21 272 23 24
] 25 26 277 28 29 30

> as.vector (m)

(1] 1 7 1319 25 2 8 14 20 206 3 9 15 21 27
[16] 4 10 1o 22 28 5 11 17 23 29 o 12 18 24 30

Type of elements in a matrix

Since they are vectors, all elements of matrices must be of
the same type:

> m <- matrix(1l:30,
> typeof (m)
"Integer"

[1]
> m[3, 3]
> m

[,1]
(1,1 "1"
[2,] "2"
[3,]1 "3"
[4,] "4"
[S5,] "o"
> t
[1]

< -

"a"

[,2]
"6"
"'7"
"8"
"9"
"10"

[,3]
"11"
"12"
Ha"

"14"
"15"

ncol=o0)

[, 4]
"16"
"1'711
"18"
"19"
"20"

[,5]
l|21"
1122"
1123"
1124"
"25"

[, 6]
"2 6"
l'2'7"
"28"
"2 9"
"30"

selectcolumns <- function(m,

ml <- m [, cols]
m2 <- ml[rows,]
m?2

}

nrows <- 20

cols, rows) {

ml <- data.frame(a=runif (nrows), b=runif (nrows),

row.names (ml) <- pasteO ("row",

COlS <_ C("b", "C")

rows <- c¢("rowlO", "rowl2")

l:nrow(ml))

> selectcolumns (ml, cols, rows)

b C
rowlO 0.8578518 0.2864960
rowl2 0.3767570 0.7874534

c=runif (nrows)

)

selectcolumns <- function(m,

ml <-m [,

cols]

m2 <- ml[rows,]

m?2
}

nrows <- 20

ml <- data.frame (

row.names (ml)

cols <= "Db"

<- pastelO("row",

rows <- c¢("rowlO", "rowl2")

cols, rows) {

a=runif (nrows), b=runif (nrows),

l:nrow(ml))

> selectcolumns (ml, cols, rows)

c=runif (nrows)

)

selectcolumns <-

function(m, cols, rows) {

ml <- m [, cols]

m2 <- ml[rows,
m2

}

nrows <- 20

ml <- data.frame (

]

a=runif (nrows), b=runif (nrows), c=runif (nrows)

row.names (ml) <- pasteO("row", l:nrow(ml))

cols <= "Db"

rows <- c("rowlQ"

> selectcolumns (m

Error in ml[rows,

4

1,
]

"rowl2")

cols, rows)

incorrect number of dimensions

)

Subsetting a matrix

> m <- matrix(l:6, nrow=2)

> m

Subsetting a matrix

> m <- matrix(l:6, nrow=2)

> m
[, 1] [,2]1 [,3]
[1,] 3
[2,]
> m[,1:2]
[,1] [,2]
[1,] 1
[2,] 2

... ylelds a matrix.

Subsetting a matrix

> m <- matrix(l:6, nrow=2)

> m

[,11 [,2] [,3]
[1,] 3
[2,]

Subsetting a matrix

> m <- matrix(l:6, nrow=2)

> m

[, 11 [,2] [,3]
[1,] 3
[2,]
> m[, 1]
[1] 1 2

... ylelds a vector (instead of a 2 x 1 matrix).

By default, R removes all dimensions
that it deems not useful !

To avoid this, use the drop=FALSE option to the matrix
subsetting:

drop=FALSE]

drop=FALSE]

[,2] [,3]
3 5

It is not possible to set drop=FALSE as the default mode.

Doing this would mean that accessing one element in a
matrix would return a 1x1 matrix:

drop=FALSE]

... which is almost certainly not what you want.

Another possible consequence

> head (datal, 3)

identifier varl var?2

1 3862 0.87207 -2.0105
2 1577 0.01075 0.1970
3 5150 1.28249 -0.4650
> head (dataz, 3)
identifier var3 varé
1 3862 0.1383 -2.0165
2 1577 2.3219 0.6855
3 5150 0.6865 0.7783
> data <- cbind(datall, c("varl", "wvar2z2")],

data2[, c("var3", "vard")],
datal[, "identifier"])

Matrices converted to vectors lose their names !

> head (datal, 3)

identifier varl var?2

1 3862 0.87207 -2.0105
2 1577 0.01075 0.1970
3 5150 1.28249 -0.4650
> head (dataz, 3)
identifier var3 var4
1 3862 0.1383 -2.0165
2 1577 2.3219 0.6855
3 5150 0.6865 0.7783
> data <- cbind(datall, c("varl", "wvar2z2")],

data2[, c("var3", "vard")],
datal[, "identifier"])

> head (data, 3)

varl var?2 var3 vard datal[, "identifier"]
1 0.87207 -2.01057 0.13836 -2.0165 3862
2 0.01075 0.19709 2.32192 0.6855 1577
3 1.28249 -0.46507 0.68659 0.7783 5150

Matrices converted to vectors lose their names !

> head (datal, 3)

identifier varl var?2

1 3862 0.87207 -2.0105
2 1577 0.01075 0.1970
3 5150 1.28249 -0.4650
> head (dataz, 3)
identifier var3 var4
1 3862 0.1383 -2.0165
2 1577 2.3219 0.6855
3 5150 0.6865 0.7783
> data <- cbind(datall, c("varl", "wvar2z2")],

data2[, c("var3", "vard")],
datal[, "identifier", drop=FALSE])

> head (data, 3)

varl var?2 var3 vard4 identifier
1 0.87207 -2.01057 0.13836 -2.0165 3862
2 0.01075 0.19709 2.32192 0.6855 1577
3 1.28249 -0.46507 0.68659 0.7783 5150

What happens if | store several types of objects in a vector ?

> x <= c¢c(1, "a", c); x

What happens if | store several types of objects in a vector ?

> x <= c¢c(1, "a", e); x

What happens if | store several types of objects in a vector ?

> x <= c¢c(1, "a", c); x

[[3]]

function (...) .Primitive ("c")

> typeof (x)
[1] "list"

Lists allow the storage of several objects (with different
types) in a single R object.

> mylist <- list (ages=c (21, 32, 41, 45),
height=c (180, 176, 156, 165),
SeX:C("M", "M"’ "F", "M"))

Lists allow the storage of several objects (with different
types) in a single R object.

> mylist <- list (ages=c (21, 32, 41, 45),
height=c (180, 176, 156, 165),
sex=c ("M", "M", "E", "M"))

> mylist

Sages

[1] 21 32 41 45

Sheight
[1] 180 176 156 165

Ssex
[1] "M" "M" "w F" "M"

Lists allow the storage of several objects (with different
types) in a single R object.

> mylist <- list (ages=c (21, 32, 41, 45),
height=c (180, 176, 156, 165),
sex=c ("M", "M", "E", "M"))

> mylist

Sages

[1] 21 32 41 45

Sheight
[1] 180 176 156 165

Ssex
[1] "M" "M" "w F" "M\\

> class (mylist); typeof (mylist)

[1] "list"
[1] "list"

When accessing a list element,
what iIs the difference between
mylist[1l]
and
mylist[[1]] ?

Lists

The objects can be accessed either using their rank, or by

their name.
[x] returns part (one element) of the list

[[x]] returns what is inside this element

Lists

The objects can be accessed either using their rank, or by

their name.
[x] returns part (one element) of the list

[[x]] returns what is inside this element

> mylist[1]

Lists

The objects can be accessed either using their rank, or by

their name.
[x] returns part (one element) of the list

[[x]] returns what is inside this element

> mylist[1]

Sages

[1] 21 32 41 45

> typeof (mylist[1l])
[1] "list"

Lists

The objects can be accessed either using their rank, or by

their name.
[x] returns part (one element) of the list

[[x]] returns what is inside this element

> mylist[1]

Sages

[1] 21 32 41 45

> typeof (mylist[1l])
[1] "list"

> mylist[[1]]

[1] 21 32 41 45

> typeof (mylist[[1]])
[1] "double"

Lists

The objects can be accessed either using their rank, or by

their name.
[x] returns part (one element) of the list

[[x]] returns what is inside this element

> mylist[1]

Sages

[1] 21 32 41 45

> typeof (mylist[1l])
[1] "list"

> mylist[[1]]

[1] 21 32 41 45

> typeof (mylist[[1]])
[1] "double"

> mylist$height
[1] 180 176 156 165

Vectors vs lists

« Atomic vectors:
an ordered collection of data
of the same type

e Lists:
an ordered collection of data
that can be of different types.

Data frames

Data frames

Data frames are usually the preferred method for working
with datasets that consists of several observations (rows) on
several variables (columns).

> data <- as.data.frame(mylist)

> data
ages height sex
— 21 180 M
_ 32 176
4 observations — 41 156

45 165

3 variables

Data frames

> data <- as.data.frame(mylist)
> data
ages height sex
21 180 M
32 176

41 156
45 165

Data frames

> data <- as.data.frame(mylist)
> data
ages height sex
21 180 M
32 176 M

41 156 F
45 165 M
> class (data); typeof (data)

Data frames are lists that look like matrices

Data frames are actually lists in R.

> data <- as.data.frame(mylist)
> data

ages height sex
1 21 180 M
2 32 176 M
3

41 156 F
4 45 165 M
> class (data); typeof (data)
[1] "data.frame"
[1] "list"

Data frames are lists that look like matrices

They are easier to use than lists: you can access the
elements as in a matrix all elements, since they all have the
same length

> data <- as.data.frame(mylist)
> data

ages height sex
1 21 180 M
2 32 176
3

41 156
4 45 165
> data[2,2]
[1] 176

Data frames are lists that look like matrices

They are easier to use than lists: you can access the
elements as in a matrix all elements, since they all have the
same length

They are more flexible than matrices, as they allow columns
of differents types, while still making them easy to access.

> data <- as.data.frame(mylist)
> data

ages height sex
1 21 180 M
2 32 176 M
3

41 156 F
4 45 165 M
> typeof (data[,1]); typeof (data[, 3])
[1] "double"
[1] "character"

Data frames vs lists

To convert a list into a matrix, one only needs to:
 change the class to data.frame

> class (mylist) <- "data.frame"

Data frames vs lists

To convert a list into a matrix, one only needs to:
 change the class to data.frame

> class (mylist) <- "data.frame"
> mylist

[1] ages height sex

<0 rows> (or O-length row.names)

Data frames vs lists

To convert a list into a matrix, one only needs to:
 change the class to data.frame

« give (unique) names to the rows by setting the
row .names attribute

> class (mylist) <- "data.frame"

> mylist

[1] ages height sex

<0 rows> (or O-length row.names)

> row.names (mylist) <- l:length(mylist[[1]])

> mylist
ages height sex
21 180
32 176
41 156
45 165

Data frames: accessing columns

> data

ages height sex

21 180
32 176
41 156
45 165

S w N

\Y

datal[l]
ages
21
32
41
45

S w N

M

=< M=

Columns can be accessed just like a list

The result is a single-column dataframe.

Data frames: accessing columns

M

=< M=

> data
ages height sex
1 21 180
2 32 176
3 41 156
4 45 165
> datal, 1]

[1] 21 32 41 45

> datal[[1l]]
[1] 21 32 41 45

Alternatively, it Is possible to access the content of

a given column, yielding a vector.

Reproducible :
Research Data frames: accessing columns by names

Columns can also be accessed by name:

> dataSheight
[1] 180 176 156 165

> datal[, "height"]
[1] 180 176 156 165

This is usually better than accessing them by column

number, as the name is less likely to change than the
column number.

(also, if the name changes, it will yield an error)

Reproducible :
Research Data frames: accessing columns by names

You can shorten the name as long as there is no ambiguity:

> dataSheight
[1] 180 176 156 165

> data$h
[1] 180 176 156 165

This is not recommended: the code may break if your script
IS used on a dataset that includes a new column which
causes an ambiguity.

tidyverse is a collection of packages

R packages for data science

The tidyverse is an opinionated collection of R
packages designed for data science. All packages
share an underlying design philosophy, grammar,

and data structures.

% Install the complete tidyverse with:
stringr
y install.packages("tidyverse")

dplyr Is a grammar of data manipulation

Takes a data frame (or tibble) as the first argument
Several features available:

mutate() adds new variables that are functions of existing variables
select() picks variables based on their names.

filter() picks cases based on their values.

summarise() / reframe() reduce multiple values down to a single summary.
arrange() changes the ordering of the rows.

Features like connecting directly to a database, or work on data not
fully loaded in memory

Functions like bind_rows and bind_cols much more efficient than
rbind and chind !

https://dplyr.tidyverse.org/articles/dplyr.html

Naive data manipulation in base R

Take the iris data.frame, derive a new variable and calculate
an average by group

> data(iris)

> head(iris, n = 2)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
> irisSLength.Product <- iris$Sepal.Length * iris$Petal.Length
> iris <- iris[irisS$Length.Product >= 7,]
> iris <- 1iris|[, c("Species", "Length.Product")]
> sqgldf ("select Species, avg(Length.Product) as

avg length product from iris group by Species")
Species avg length product

1 setosa 7.922727
2 versicolor 25.46606600
3 virginica 36.873800

Now with dplyr

Take the iris data.frame, derive a new variable and calculate
an average by group

iris.modified <-
iris |>
mutate (Length.Product = Sepal.lLength * Petal.Length) |>
filter (Length.Product >= 7) |>
select (Species, Length.Product) |> # optional

reframe (avg.length.product = mean(Length.Product), .by =
Species)

Species avg.length.product

1 setosa 7.9227727
2 versicolor 25.4666000
3 wvirglinica 36.873800

Now with dplyr

Some useful features like everything() (see also relocate())

> data (iris)

> i1ris <- 1ris |> mutate(Length.Product = Sepal.Length *
Petal.Length)

> head(iris[, 1:4], n = 2)
Sepal.Length Sepal.Width Petal.Length Petal.Width
5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
iris <- 1iris |> select(Species, Length.Product, everything())
head (iris[, 1:4], n = 2)
Species Length.Product Sepal.Length Sepal.Width
1 setosa 7.14 5.1 3.5
2 setosa 6.86 4.9 3.0

vV VvV NN

Now with dplyr

Or range of columns using the names

> head(irls |> select (Sepal.Length:Petal.Width))
Sepal.Length Sepal.Width Petal.Length Petal.Width
5.1 3.5 1.4 0.

Getting information about R objects: summary ()

The summary () command gives some brief information
about an R object.

> summary (mylist)

Length Class Mode
ages 4 —none—- numeric
height 4 -none—- numeric

sex 4 —-none—- character

Getting information about R objects: summary ()

Its output depends on the type of object:

> summary (mylist)

Length Class Mode
ages 4 —none—- numeric
height 4 -none—- numeric

sex 4 —-none—- character

> summary(rnorm(100))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.02861 -0.49714 0.14360 0.05439 0.69587 2.11127

Getting information about R objects

The stxr () command gives detailed information about the
structure of an R object:

> str(mylist)
List of 3
$ ages : num [1:4] 21 32 41 45

$ height: num [1:4] 180 176 156 165
$ SeX : Chr [1 : "M" "M" " F" "M"

Getting information about R objects

The information provided by stx () can indeed be really
detailed; try the following commands :

> model <= 1Im(runif(l10) ~ rnorm(1l0))
> str (model)

rmation about R objects

Try this one if you don’t believe the word "detailed" above
> model <- 1m(runif (10) ~ rnorm(10))
> str(model)

List of 12
$ coefficients : Named num [1:2] 0.5486 0.0335
..— attr(*, "names")= chr [1:2] " (Intercept)" "rnorm(10)"
$ residuals : Named num [1:10] -0.255582 -0.192832 -0.000517 0.340288 -0.336684
..— attr(*, "names")= chr [1:10] "1" "2" "3" "4" .
$ effects : Named num [1:10] -1.744 -0.1102 0.0902 0.4255 -0.2811
..— attr(*, "names")= chr [1:10] " (Intercept)" "rnorm(lO0)" "™ ""
$ rank : int 2
$ fitted.values: Named num [1:10] 0.521 0.565 0.573 0.568 0.538
..— attr(*, "names")= chr [1:10] "1™ "2" "3" "4"
$ assign : int [1:2] 0 1
$ qr :List of 5
.8 ar : num [1:10, 1:2] -3.162 0.316 0.316 0.316 0.316
. .— attr(*, "dimnames")=List of 2
.$: chr [1:10] ™1™ "2"™ "3" "4" .
. .$: chr [1:2] "(Intercept)" "rnomm(10)"
.- attr(*, "assign")= int [1:2] 0 1
$ graux: num [1:2] 1.32 1.19
..$ pivot: int [1:2] 1 2
.$ tol : num le-07
$ rank : int 2
..- attr(*, "class")= chr "qgr"
$ df.residual : int 8
$ xlevels : Named list ()
$ call : language lm(formula = runif (10) ~ rnorm(10))
$ terms :Classes 'terms', 'formula' language runif (10) ~ rnorm(10)
.- attr(*, "variables")= language list (runif (10), rnomm(10))
.- attr(*, "factors")= int [1:2, 1] 0 1
.— attr(*, "dimnames")=List of 2
..$: chr [1:2] "runif (10)" "rnorm(10)"
. ..$: chr "rnorm (10)"
- attr(*, "term.labels")= chr "rnorm(10)"
- attr(*, "order")= int 1
- attr(*, "intercept")= int 1
- attr(*, "response")= int 1
- attr(*, ".Environment")=<enviromment: R _GlobalEnv>
- attr(*, "predvars")= language list (runif (10), rnorm(10))
.- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
e .- attr(*, "names")= chr [1:2] "runif (10)" "rnorm(10)"
$ model :'data.frame': 10 obs. of 2 variables:
..$ runif (10): num [1:10] 0.266 0.372 0.573 0.908 0.202
..$ rnom(10): num [1:10] -0.82 0.487 0.738 0.576 -0.305
.- attr(*, "terms")=Classes 'terms', 'formula' language runif (10) ~ rnomm(10)
.- attr(*, "variables")= language list (runif (10), rnomm(10))
.- attr(*, "factors")= int [1:2, 1] 01
.- attr(*, "dimnames")=List of 2
.$: chr [1:2] "runif (10)" "rnorm (10)"
. ..$: chr "rnom (10)"
- attr(*, "term.labels")= chr "rnorm (10)"
.— attr(*, "order")= int 1
- attr(*, "intercept")= int 1
- attr(*, "response")= int 1
- attr(*, ".Environment")=<enviromment: R GlobalEnv>
- attr(*, "predvars")= language list(runlf(lo), rnorm (10))
.— attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
e e .- attr(*, "names")= chr [1:2] "runif (10)" "rnorm(10)"
- attr(*, "class")= chr "1lm"

A question...

Simulate data for 3 groups
set.seed (1)
groups <- rep(1:3, each=10)

measure <- vector (length=30)

measure|[groups==1] <- 5
measure|[groups==2] <- 1
measure|[groups==3] <- 5

measure <- measure + rnorm(30)

Perform a one-way ANOVA on this data

boxplot (measure ~ groups)

summary (aov(measure ~ groups))

Perform a one-way ANOVA on this data

> boxplot (measure ~ groups)

> summary (aov(measure ~ groups))

Df Sum Sg Mean Sg F wvalue Pr (>F)
groups 1 0.09 0.088 0.018 0.893
Residuals 28 134.85 4.816

|C'CDODDOOC

Factors

Factors

Factors represent categorical variables in R.

They are vectors that can contain only values from a
(finite) predefined set.

Example

> hair <- factor(c("blond", "brown", "red", "blond"))

Example

> hair <- factor(c("blond", "brown", "red", "blond"))

> hair
[1] blond brown red blond
Levels: blond brown red

Example

> hair <- factor(c("blond", "brown", "red", "blond"))

> hair
[1] blond brown red blond
Levels: blond brown red

> hair[2] <- "blond"

> hair

[1] blond blond red blond
Levels: blond brown red

Example

> hair <- factor(c("blond", "brown", "red", "blond"))

> hair
[1] blond brown red blond
Levels: blond brown red

> hair[2] <- "blond"

> hair[2] <- "grey"

Warning message:

In " [<-.factor (*tmp* , 2, value = '"grey")
invalid factor level, NAs generated

Example

> hair <- factor(c("blond", "brown", "red", "blond"))

> hair
[1] blond brown red blond
Levels: blond brown red

> hair[2] <- "blond"
> hair[2] <- "grey"
Warning message:

In " [<-.factor (*tmp* , 2, value = "grey")
invalid factor level, NAs generated
> hair

[1] blond <NA> red blond
Levels: blond brown red

> class (hair)
[1] "factor"
> typeof (hair); mode (hair)
[1] "integer"
[1] "numeric"

> as.numeric (hair)

(1] 1 NA 3 1

> as.character (hair)

[1] "blond" NA "red" "blond"

Internally, R stores factors as integer numbers, along with
the correspondance between number and labels
(1=blond, 2=brown, 3=red).

Ordered factors

Use the ordered=TRUE option for ordinal (ordered) values:

> time <- factor(c(l,2,3,2,2,1), levels=c(l,2,3),
labels=c ("never", "sometimes", "always"),
ordered=TRUE)

> time

[1] never sometimes always sometimes

[5] sometimes never

Levels: never < sometimes < always

Some R functions respect ordered factors

Comparisons work as expected:

> time

[1] never sometimes always sometimes
[5] sometimes never

Levels: never < sometimes < always
> time[2] < time[3]
[1] TRUE

> "sometimes" < "always"
[1] FALSE

Some statistical modelling or plotting functions can adapt
their parameters for ordered factors.

Perform a one-way ANOVA on this data

> boxplot (measure ~ groups)

> summary (aov (measure ~ groups)

Df Sum Sg Mean Sg F value Pr (>F)
0.893

0.088
4.816

groups 1 0.09
Residuals 28 134.85
> groups <- as.factor (groups)
> groups

rt] 11111111112 2222222223333333333

Levels: 1 2 3

0.018

> summary (aov (measure ~ groups)

Df Sum Sg Mean Sg F wvalue

94.12 47.06
24.00 0.89

groups 2
Residuals 27

Signif. codes: 0 Y***" (0.001

52.95 4.53e-10 ***

Nk k7

0.01

Pr (>F)

AR 4

0.05

\

4

0.1

\

14

1

Recent changes with factors in R

Recent versions of R have introduced several

major changes with regards to how factors are
handled.

Concatenating factors: before R 4.1

> c(hair, hair)
(1] 1 2 3 1 12 31

Workaround #1

> factor(as.character (hair), as.character (hair))

Workaround #2
> unlist(list(hair, hair))

Simply concatenating factors was creating a vector
made out of the numeric values, which is almost
certainly not what you want.

SinceR4.1

This behaviour has changed starting in R version 4.1
(May 2021)

Changelog:

Using c() to combine a factor with other
factors now gives a factor, and specifically
an ordered factor when combining ordered
factors with i1dentical levels.

In R versions before 4.0.0, by default, data.frame () and
read.table () convert all non-numerical values into factors.

This can be useful, or (more often...) it can be annoying.

Options to change this behaviour:
— stringsAsFactors=FALSE, Or
— as.1is=TRUE (for read.table only)

It can also be set by default using

options (stringsAsFactors=FALSE)

But this Is not recommended, as your code may not work
anymore if someone else uses it without specifying the same
default option.

ducibl _
/ ﬁifj;’rc‘;‘“ ; Changelog for R 4.0.0, April 2020

CHANGES IN R 4.0.0
SIGNIFICANT USER-VISIBLE CHANGES

R now uses a stringsAsFactors = FALSE default,
and hence by default no longer converts
strings to factors 1n calls to data.frame()
and read.table().

A large number of packages relied on the
previous behaviour and so have needed/will
need updating.

Factors and memory size

In old versions of R, using factors for long vectors could
save memory :

> f1 <- sample(c("Homo Sapiens", "Mus Musculus"), 10000,
replace=TRUE)
> summary (f1)

Length Class Mode
10000 character character
> table (f1l)
fl
Homo Sapiens Mus Musculus
4945 5055

> object.size(fl)

> f2 <- factor (fl)
> object.size (f2)
40544 bytes

Factors and memory size

In recent versions of R (2.6+) it is not the case anymore, as
R stores only once each occurrence of a string in a vector:

> f1 <- sample(c("Homo Sapiens", "Mus Musculus"), 10000,
replace=TRUE)
> summary (f1)

Length Class Mode
10000 character character
> table (f1l)
fl
Homo Sapiens Mus Musculus
4945 5055

> object.size(fl)
40104 bytes
> f2 <- factor (fl)
> object.size (f2)
40312 bytes

What do these commands do ?

c=c (c=c)

c=cC (C—"C")

What do these commands do ?

c=c (c=c)

Let’s read from right to left

c=c (c=c)

Let’s read from right to left

c=c (c=g)

c=c (c=¢)

> C

function (...) .Primitive ("c")

The e () function,
as an object

c=c (c=¢)

> C

function (...) .Primitive ("c")

Let’s read (more or less)
from right to left

c=c (c=c)

Let’s read (more or less)
from right to left

c=c (c=c)

Calling the ¢ () function,
In order to create a vector

c=c(c=c)

Calling the ¢ () function,
In order to create a vector

c=ec (c=c)

The vector contains a single element:

(1P L)

the “c” object

c=c (c=c)

c=c (&c=c)

Giving the name «c» to
the element of the vector

c=c (&c=c)

c=c (c=c)

c=c (c=c)

Storing the vector
INn a new «ec» object

c=c (c=c)

The final result

c=c (c=c)

> c=c (c=c¢)
> C
Sc

function (...) .Primitive ("c")

What about the other one ?

c=c(c="¢c")

One more question...

One more question...

How does R store both the e () function
and the ¢ vector, and how does it
differentiate between them ?

We will come back to this later !

Reminder: getting information about R objects

The summary () command gives some brief information
about an R object; its output depends on the type of object:

> summary (mylist)

Length Class Mode
ages 4 -none- numeric
height 4 -none- numeric

sex 4 —-none—- character

> summary (aov (measure ~ groups))

Df Sum Sg Mean Sg F value Pr (>F)
groups 1 0.09 0.088 0.018 0.893
Residuals 28 134.85 4.816

Reminder: getting information about R objects

How does summary () know
what to print for different objects ?

> summary (mylist)

Length Class Mode

ages 4 -none- numeric
height 4 -none- numeric

sex 4 —-none- character

> summary (aov (measure ~ groups))

Df Sum Sg Mean Sg F value Pr (>F)
groups 1 0.09 0.088 0.018 0.893
Residuals 28 134.85 4.816

	Slide 1: Advanced R September 2024
	Slide 2: An introduction (or reminder) about R data structures
	Slide 3: Types
	Slide 4: The typeof() command
	Slide 5: Possible types in R
	Slide 6: Types and modes
	Slide 7: The mode() command
	Slide 8: Possible types in R
	Slide 9: Possible types and modes in R
	Slide 10: An explanation for some abstruse error messages in R
	Slide 11: An explanation for some abstruse error messages in R
	Slide 12: Vectors
	Slide 13: Storing data into R
	Slide 14: Storing data into R
	Slide 15: What happens if I store several types of objects in a vector ?
	Slide 16: What happens if I store several types of objects in a vector ?
	Slide 17: What happens if I store several types of objects in a vector ?
	Slide 18: What happens if I store several types of objects in a vector ?
	Slide 19: With some surprises…
	Slide 20: With some surprises…
	Slide 21: Logical vs numeric
	Slide 22: Counting values using logicals
	Slide 23: Logical vs numeric
	Slide 24: Why do the two selection commands return different results ?
	Slide 25: Difference between logical and numeric
	Slide 26: Difference between logical and numeric
	Slide 27: How to use this feature to your advantage
	Slide 28: How to use this feature to your advantage
	Slide 29: What could possibly go wrong ?
	Slide 30: When T does not mean TRUE
	Slide 31
	Slide 32
	Slide 33: If you are really vicious…
	Slide 34: If you are really vicious…
	Slide 35: Attributes
	Slide 36: Attributes
	Slide 37: Attributes
	Slide 38: Attributes
	Slide 39: Some important attributes in R
	Slide 40: Adding a class
	Slide 41: Adding a class
	Slide 42: Adding a class
	Slide 43: Adding names
	Slide 44: Adding names
	Slide 45: Why names are important
	Slide 46: Why names are important
	Slide 48: Matrices and arrays
	Slide 49: Arrays and matrices
	Slide 50: Arrays and matrices
	Slide 51: Arrays and matrices
	Slide 52: Matrices and vectors
	Slide 53: Matrices and vectors
	Slide 54: Arrays
	Slide 56: Transforming a vector into a matrix
	Slide 57: Creating a matrix row by row
	Slide 58: Type of elements in a matrix
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Subsetting a matrix
	Slide 64: Subsetting a matrix
	Slide 65: Subsetting a matrix
	Slide 66: Subsetting a matrix
	Slide 67
	Slide 68
	Slide 69: Another possible consequence
	Slide 70: Matrices converted to vectors lose their names !
	Slide 71: Matrices converted to vectors lose their names !
	Slide 72: What happens if I store several types of objects in a vector ?
	Slide 73: What happens if I store several types of objects in a vector ?
	Slide 74: What happens if I store several types of objects in a vector ?
	Slide 75: Lists
	Slide 76: Lists
	Slide 77: Lists
	Slide 78: When accessing a list element, what is the difference between mylist[1] and mylist[[1]] ?
	Slide 79: Lists
	Slide 80: Lists
	Slide 81: Lists
	Slide 82: Lists
	Slide 83: Lists
	Slide 84: Vectors vs lists
	Slide 86: Data frames
	Slide 87: Data frames
	Slide 88: Data frames
	Slide 89: Data frames
	Slide 90: Data frames are lists that look like matrices
	Slide 91: Data frames are lists that look like matrices
	Slide 92: Data frames are lists that look like matrices
	Slide 93: Data frames vs lists
	Slide 94: Data frames vs lists
	Slide 95: Data frames vs lists
	Slide 97: Data frames: accessing columns
	Slide 98: Data frames: accessing columns
	Slide 99: Data frames: accessing columns by names
	Slide 100: Data frames: accessing columns by names
	Slide 102: tidyverse is a collection of packages
	Slide 103: dplyr is a grammar of data manipulation
	Slide 104: Naive data manipulation in base R
	Slide 105: Now with dplyr
	Slide 106: Now with dplyr
	Slide 107: Now with dplyr
	Slide 108: Getting information about R objects: summary()
	Slide 109: Getting information about R objects: summary()
	Slide 110: Getting information about R objects
	Slide 111: Getting information about R objects
	Slide 112: Getting information about R objects
	Slide 113: A question…
	Slide 114
	Slide 115
	Slide 116: Factors
	Slide 117: Factors
	Slide 118: Example
	Slide 119: Example
	Slide 120: Example
	Slide 121: Example
	Slide 122: Example
	Slide 123
	Slide 125: Ordered factors
	Slide 127: Some R functions respect ordered factors
	Slide 128
	Slide 130: Recent changes with factors in R
	Slide 131: Concatenating factors: before R 4.1
	Slide 132: Since R 4.1
	Slide 134
	Slide 135: Changelog for R 4.0.0, April 2020
	Slide 136: Factors and memory size
	Slide 137: Factors and memory size
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157: One more question…
	Slide 158: One more question… How does R store both the c() function and the c vector, and how does it differentiate between them ?
	Slide 159: We will come back to this later !
	Slide 162: Reminder: getting information about R objects
	Slide 163: Reminder: getting information about R objects

