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Advanced statistics: 
Statistical modeling

• Introductory statistics course: models and tools (such as linear regression) to 
analyze “simple” datasets (not appropriate for all types of data)

• Goal of the course: learn beyond classical linear modelling
• Program of the course:

• Review of the basics of linear regression (LM), uni- and multi-variable
• Extensions of LM:  complex functional relations (non-linear), polynomial / spline 

regression
• Generalized linear models (GLMs) : logistic / Poisson regression

• Mixed-effects models (fixed and random effects components)
• Analysis of longitudinal data (application of mixed-effects models)
• Generalized Additive Models (GAMs)



Books



Statistical models



What is a statistical model ?

Modeling:
- process of developing / applying
mathematically-formalized way to represent 

certain aspects of “reality” 
(the machinery that generates the data),

- in a simplifying approximate fashion, 
- in order to describe and “understand” certain relations
and (potentially) to make predictions from the model about future events

Statistical:
Based on principles and methods developed in 
statistical / data analysis sciences



What is a statistical model ?

A statistical model is a set of equations involving random variables, 
with associated distributional assumptions, 

devised in the context of a question and a body of data concerning some 
phenomenon, 

with which tentative answers can be derived, along with measures of 
uncertainty concerning these answers.

questions + data answers + measures of uncertainty
model



Type / Role of variables:

Dependent variables (or responses): variables we 
want to describe, understand, explain, model, predict

Explanatory variables 
(or independent variables or predictors or covariates): 
variables we use to explain, to describe or to predict the 
dependent variable(s)

Both variables may be quantitative or qualitative

Height = 
intercept  +  slope * soil water content



What is a model parameter ?

Statistical model: refers to the equations used with quantities 
called model parameters

“Model”: includes or not a specific set of values estimated for the parameters 

Statistical modeling
1. Estimation of model parameter
2. Prediction of the dependent variable(s)

Height = 
intercept +  
slope * soil water content



What is a model residual ?

Model residuals (or “errors”): distances between data points and the expected 
values based on the model (equation with fitted parameters)

Model residuals represents the part of variability in the data the model was
unable to capture



Modeling overview

Want to capture important features of the relationship between a (set of) 
variable(s) and one or more response(s)

Many simple models are of the form

Y= f(x) + error  ,     or g(Y) = f(x) + error

with differences in the form of g and f 
and distributional assumptions about the error term



Modeling overview revised

Given a response   g(Y) or Y
that (might) depend on a variable X

X à ?   à individual values   Yi

X à E(Y | X) the expected value for Y 
given a value for X (“conditional on the X”) à individual values   Yi 

( for the same X we can have several points with different Y values)



Model formulas in R

A simple model formula in R looks something like:

yvar ~ xvar1 + xvar2 + xvar3

Can read ~ as “described (or modeled) by”.

We could write a model (algebraically) as
Y = b0 + b1 x1 + b2 x2 + b3 x3



Model formulas in R

By default, an intercept is included in the model – you don’t have to include a 
term in the model formula

If you want to leave the intercept out:
yvar ~ -1 + xvar1 + xvar2 + xvar3

Amodel with only the intercept (the overall mean)
yvar ~ 1



Model formulas in R

The generic form is response ~ predictors

The predictors can be numeric or factor

Other symbols to create formulas with combinations of variables (e.g. 
interactions)

+ to add more variables (a + b)
: to introduce interactions between two terms (a:b)

• to include both interactions and the terms (a*b is the same as a + b + a:b)
- to leave out variables (a*b - a:b is the same as a + b)

^n to add variables to the power of n

I() treats what’s in () as a mathematical expression (a + b versus  I(a + b) )



Linear models



Can we predict the height of
a teenager using his age ?



Example: scatterplot of age vs height in teenagers
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(Simple) Linear Regression

Simple linear regression refers to drawing a (particular, special) line through a scatterplot

It is used for 2 broad purposes: explanation and prediction.

The equation for a line to predict y knowing x (in slope- intercept form) looks like

y = a + b x

where a is called the intercept and b is the slope.



(Simple) Linear Regression

What is the “best” line which fits this data ?

Can we use it to summarize the relation between x and y ?



Linear regression: least-squares fitting



Linear regression: least-squares fitting (LS)



Linear regression: least-squares fitting (LS)



(Simple) Linear Regression: interpretation of parameters

The regression line has two parameters: the slope and the intercept

The regression slope is the average change in Y when X increases by 1 unit

The intercept is the predicted value for Y when X = 0

If the slope = 0, then X does not help in predicting Y (linearly, in the linear model)



(Simple) Linear Regression: residuals

There is an error in making a regression prediction:

error = observed Y – predicted Y = y – (a + bX)

These errors are called residuals

The regression equation by LS has this property:
the sum of the residuals is 0 ó the mean of the residuals is 0

Ideally, we want the regression to include all the predictable variance, 
so than the distribution of the residuals is “pure random” 

and does not depend on X nor on the predicted Y.



Linear models (general case)



Linear models: matrix form



Linear models: parameter estimation



Linear models: parameter estimation



Linear models: linearity



A concrete example in R
Using the CLASS dataset, from the program SAS
(units have been modified from imperial to metric)



Use statistical models to answer the question:

"Can we predict the height of a teenager, using his age, 
sex and weight ?"



The CLASS dataset from SAS



The CLASS dataset



The CLASS dataset from SAS



The CLASS dataset from SAS



The CLASS dataset from SAS



The CLASS dataset from SAS

plot( Age, Height, xlim=range(0,Age), 
ylim=range(coef(model)[1], Height) ) 

abline(model, col="red", lwd=2)



The CLASS dataset from SAS

plot( Age, Height )

abline(model, col="red", lwd=2)



The CLASS dataset from SAS

These statistical tests tell us if the parameters are significantly different from 0.

Estimate and Std. Error are used for hypothesis testing
t-value = Estimate / Std. Error (of this estimate) follows a t-distribution

(under assumptions: the residuals should follow a normal distribution)



The CLASS dataset from SAS

The residual standard error is the standard deviation of the residuals

It is not exactly equal to what the sd command would return:
> sd(residuals(model)) [1] 7.611075
> sqrt(sum(residuals(model)^2)/18)
[1] 7.611075

Here, we must divide by the number of degrees of freedom to get the same 
number:

> sqrt(sum(residuals(model)^2)/17) [1]

7.831732



The CLASS dataset from SAS

The number of degrees of freedom indicates the number of independent
pieces of data that are available to estimate the error

While we have 19 residuals here, they are not all independent: for example,
the last one is constrained because the sum of all residuals must be 0.

The number of DF is
total observations – number of parameters estimated

Two parameters are estimated (intercept + coefficient), so 19-2 = 17



The CLASS dataset from SAS

R2 is the proportion of the total variance in the response data that is explained by
the model (if R2=1, the data fits perfectly on a straight line).

In the case of simple regression, it is equal to the square of the correlation
coefficient between the two variables.

R2 = SSR / SST ∑!"#$ (𝑌! − %𝑌)2 =  ∑!"#$ (&𝑌! − %𝑌)2 + ∑!"#$ (𝑌! − &𝑌!)2
SST                   SSR                   SSE



SST = SSR + SSE
Total sum of squares = regression SS + residual SS 

R2 = SSR / SST ∑!"#$ (𝑌! − %𝑌)2 = ∑!"#$ (&𝑌! − %𝑌)2 + ∑!"#$ (𝑌! − &𝑌!)2
SST                   SSR                   SSE

HEURISTIC REPRESENTATION

observed 
values

fitted 
values 

average 
of YSSRegression

SST

SSError



The CLASS dataset from SAS

Source of variation Degrees of freedom Sum of squares Mean squares (or variance) F

Regression Model p=1 𝑆𝑆𝑅 = ∑!"#$ (&𝑌! − )𝑌)2 𝑀𝑆𝑅 =
𝑆𝑆𝑅
1

𝑀𝑆𝑅
𝑀𝑆𝐸

Error n-2 𝑆𝑆𝐸 = ∑!"#$ (𝑌! − &𝑌!)2 𝑀𝑆𝐸 =
𝑆𝑆𝐸
𝑛 − 2

Total n-1 𝑆𝑆𝑇 = ∑!"#$ (𝑌! − )𝑌)2 𝑀𝑆𝑇 =
𝑆𝑆𝑇
𝑛 − 1

Analysis of variance: 
∑!"#$ (𝑌! − )𝑌)2 = ∑!"#$ (&𝑌! − )𝑌)2 + ∑!"#$ (𝑌! − &𝑌!)2

SST                   SSR                   SSE

MSR : mean sum of squares of the regression  
MSE : mean sum of squares of the errors

RATIO: MSR / MSE  is high if the regression reduces the errors considerably compared to 
what could be expected (by random fitting) given the degrees of freedom
It should follow (given assumptions) a F-distribution 



The CLASS dataset from SAS



CONFIDENCE INTERVALS FOR THE FITTED PARAMETER VALUES 

Usual method  

Estimate  ± coefficient  *  Std- Error 

coefficient from t-distribution and degrees of freedom
and for desired coverage 

for 95% coverage coefficient ~ 1.96 

Example
Beta (Age)  :  Point Estimate = 7.079 ;   ± which interval width  ? 

DF = 17, for 95% coverage :
qt(0.975,17) =  2.109816

Width = 2.110 * 1.237 = 2.610 

Beta (Age)  7.079 ± 2.610 ;  [4.469, 9.689]

> confint(mm)
2.5 %    97.5 %

(Intercept) 29.119381 99.017952
Age          4.470168  9.688499



The CLASS dataset from SAS



Multiple regression:
assessing the effect of several 

variables together



Two separate simple regressions

What happens if both,
age and weight variables

were included in the same model ?



One multiple regression with two variables

While both age and weight seem significant by themselves, age is much less significant 
when weight is already included.

It is not surprising that a lot of the information provided by the age is also provided by 
the weight, so that there may be little need to have both terms in the model.



One multiple regression with two variables

As before, R2 is the proportion of the total variance in the 
response data that is explained by the model.

Adding a new variable in the model will always increase R2, up to
1 when there the number of degrees of freedom is 0 (number of
parameters to estimate = number of observations).

lm(formula = Height ~ Age)
Multiple R-squared: 0.658,Adjusted R-squared: 0.6383
lm(formula = Height ~ Age + Weight)
Multiple R-squared: 0.828,Adjusted R-squared: 0.8065



One multiple regression with two variables

The adjusted R-squared adjusts for the number of variables in the
model and does not necessarily increase when the number of 
variables increase.

It is always equal or smaller than R2 ;  for large n ( n >> p)  about 
the same. 

Multiple R-squared: 0.828,Adjusted R-squared: 0.8065



One multiple regression with n variables



One multiple regression with two variables

The F-statistic allows us to test if the whole regression (adding all 
variables vs having only the intercept in) is significant.

If any of the tests for the individual variables is significant, the F-test will 
generally be significant as well.

However, even if no individual variable is significant (e.g. p < 0.05), the 
F-test can still be significant.



Categorical variables, 
dummy variables

and contrasts



Categorical variables

We’d like to use categorical variables in a linear model, as in:

Height = b0  + b1  Age +   b2  « Gender »      +   error

Intuitively, we want to estimate a « Male » and a « Female » effect.

In practice, categorical variables (factors in R) are turned (by default, based on 
alphabetical order) into dummy variables of the form.

and the model can be interpreted as follows:

–b0 is the baseline for height among women (at Age = 0) 
–b2 represent the increase/decrease of this baseline for men.

– .

• Gender = 0 if Female
1 if Male



Categorical variables

baseline for
height among
Female

The factor 
GenderM
corresponds to
the difference in 
baseline for Males
compared to 
females



Categorical variables

The model specifies 2 straight lines, with the
same slope but different y-intercepts:

For women: 
For men:

Height = 62.29 + 6.93 Age (in black) 
Height = 69.49 + 6.93 Age (in red)

7.20



Interaction

So far, we have assumed a difference between the lines, but the same
slope; that is, for both men and women, the effect of age is the same.

If this assumption is incorrect, it means that there is an interaction 
between the factors « age » and « gender », that is, the effect of age is
different depending on the gender.

Interactions are modeled in R in the following way:

lm(formula = Height ~ Age + Gender + 
Age:Gender)

which is equivalent to

lm(formula = Height ~ Age * Gender)



Interaction

baseline for
height among
Female

difference in 
baseline for Males
compared to females

age effect only for 
males

Height = 56.26 + 7.38*Age + 17.13 (only for males) – 0.75*Age (only for males)



Interaction

No interaction With interaction



What if my variable has more than 2 levels ?

The interpretation was straightforward with two levels: one 
was the baseline, and we estimated the difference between 
the second one and the baseline.

With more than two levels, there are different ways, termed 
contrasts, of looking at the coefficients. 

The most common one is called treatment contrasts and
corresponds to taking the first level as the baseline (as a 
control), and all the other coefficients correspond to
differences of each level with the control (treatments).



Diagnostic tools



Basic model checking

It is always possible to fit a linear model and find a slope and intercept
… but it does not mean that the model is “meaningful” or “optimal” !

Model checking questions:
- How good is the fitting , could it be improved ? 
- Are there outliers, which might “disturb” during fitting ?
- Are there points that have a high impact and might decrease the model 

quality ? 

- Does the the model fir look “perfect”: the residuals are “normal” 
(“Gaussian”) and have “constant variance” ? And are independent 
from each other ? 

technically  E i ~  i.i.d N(0,  sigma constant | i)
Note: the statistical tests (p-values) and confidence intervals are

calculated using this assumptions, they are unreliable if this is not at
least approximately satisfied.



Basic model checking

Examination of Residuals:

- If they show a pattern => maybe can improve the model, there is still a
systematic trend that could be captured by a better model

- If they have variable variance:
Is the model missing something compared to reality (is miss-specified):
another explanatory variable ?, a data transformation?,
Or maybe there are some outliers that impact the parameter estimation?

- If they are NOT normally distributed: same questions

- If they are NOT independent: were the data collected in a “good way” ?

- If there are Outliers: which points (is OK? eliminate ? Can be verified ?)
(or consider using “robust regression” methods instead of regular LS ?)



Residuals

Types of Residuals:

- Raw residuals Ri = Observed - Fitted (Expected) = Y - Yi

- Rescaled (specifically to each data point) to have expected sd = 1 :
Studentized Residuals

- Should follow about a t-distribution (resp. approx. N(0,1))



Basic model checking

Examination of Influence:

– Are there “overly influential points” ?, which / why ? Bad “design” ?
– Repeat / eliminate ? 

– Detection of influential observations: Hat matrix
(potential influence, leverage)

LEVERAGE: Hat 

OUTLIERS / WEIRDNESS: (Stud.) Residuals 

INFLUENCE:
Leverage x Weirdness Cook’s d.



influencePlot

library(car)

influencePlot(model, 
xlab="Hat-Values", 
ylab="Studentized 
Residuals")

Description
This function creates a “bubble” plot of Studentized residuals versus hat values, 
areas of the circles  proportional to the value “Cook's distance”. 

Vertical reference lines are drawn at twice and three times the average hat value, 
horizontal reference lines at -2, 0, and 2 on the Studentized-residual scale.

Value
If points are identified, returns a data frame with the hat values, Studentized residuals 
and Cook's distance of the identified points. If no points are identified, nothing is 
returned. This function is primarily used for its side-effect of drawing a plot.



Hat values

High leverage (‘influential’) : example : 
points far from the center, have potentially greater influence (“leverage 
effect”)

One way to identify these points is through the hat values
(obtained from the hat matrix H):

hij: contribution of the ith observation to the jth fitted value

Most informative are the diagonal values of the hat matrix
Hi = hii: “leverage” of the ith observation to the fitted values  (via the fitted 

model parameters) 

Average value of h = nb of predictors p / nb of points n  ( p / n )

Cutoff typically 2*p/n to 3*p/n: 
points beyond are considered worthy of a careful examination 



Hat values

hat <- lm.influence(model)
plot(hat$hat)

library(car)
influencePlot(model, xlab="Hat-Values", ylab="Studentized Residuals")

id Name Gender Age Height Weight
1 JOYCE F 11 130.302 22.877
2THOMAS M 11 146.050 38.505
3 JAMES M 12 145.542 37.599
4 JANE F 12 151.892 38.279
5 JOHN M 12 149.860 45.074
6 LOUISE F 12 143.002 34.881
7ROBERT M 12 164.592 57.984
8ALICE F 13 143.510 38.052
9BARBARA F 13 165.862 44.394
10 JEFFREY M 13 158.750 38.052
11CAROL F 14 159.512 46.433
12HENRY M 14 161.290 46.433
13ALFRED M 14 175.260 50.963
14 JUDY F 14 163.322 40.770
15 JANET F 15 158.750 50.963
16MARY F 15 168.910 50.736
17RONALD M 15 170.180 60.249
18WILLIAM M 15 168.910 50.736
19PHILIP M 16 182.880 67.950



Confidence bands

Narrow bands:

 Wide bands:

describe the uncertainty about the regression line

describe where most (95% by default) predictions 
would fall, assuming normality and constant 
variance.

Confidence interval

Prediction interval

predict.lm(model, newdata=data.frame(Age=new_age), interval="confidence")
predict.lm(model, newdata=data.frame(Age=new_age), interval="prediction")



CONFIDENCE INTERVALS FOR SINGLE VALUES, CURVE AND PREDICTIONS

1) What is the “precision” of the fitted values E[ Y | X] ?

2) What is the “precision” of the regression line E[ Y | X]  “as a whole” ? 

3) If new values are sampled: 
where are they likely to fall into ? Where should we expect them to be ? 



CONFIDENCE INTERVALS FOR SINGLE VALUES, CURVE AND PREDICTIONS

“precision” of the estimated values E[ Y | X]  (the regression line)

1) Let’s define (separately) at each value of X 
a (vertical) confidence interval CI , such that 
the true value E[ Y | X] lies within the CI in 95% of the times
(times we do the fitting with such kind of data resampled from the same distribution)
Positions-specific “error” of the estimation. 
E[ Y | X] being the mean of the Y (given the X): the more data we have the more precise the 
estimate, the narrower the CI. 
Width of the CI   ->  0   as  n ->  ∞

Pointwise / single  CI  (together they form a band around the regression line) 
The width comes from the imprecision in the estimate of the parameters

2) Let’s define (together, simultaneously) a band around the regression line 
Around the regression line such that the true curve of the E[ Y | X]  values lies completely 
within the defined band, simultaneously for all positions, at no position it is outside.
For this we need a larger band than for 1) as we are asking for more.
The width comes from the imprecision in the estimate of the parameters and here also:
Width of the band  ->  0   as  n ->  ∞



CONFIDENCE INTERVALS FOR SINGLE VALUES, CURVE AND PREDICTIONS

“precision” of the estimated values E[ Y | X]  (the regression line)

1) Pointwise  

2) Simultaneously for all position points



CONFIDENCE INTERVALS and CONFIDENCE BANDS 

Confidence bands are closely related to confidence intervals, which represent the uncertainty 
in an estimate of a single numerical value. 

A confidence band is used to represent the uncertainty in an estimate of a curve .

"As confidence intervals, by construction, only refer to a single point, they are narrower (at this 
point) than a confidence band which is supposed to hold simultaneously at many points."

Similarly, a prediction band is used to represent the uncertainty about the 
value of a new data-point on the curve, subject to sampling variability. 

[https://en.wikipedia.org/wiki/Confidence_and_prediction_bands]

https://en.wikipedia.org/wiki/Confidence_intervals


CONFIDENCE FOR THE  CURVE AND FOR NEW VALUES (PREDICTIONS)

A prediction band is used to represent the uncertainty about the value of a new data-point on the 
curve, subject to sampling variability. 

[https://en.wikipedia.org/wiki/Confidence_and_prediction_bands]

Predict a new value:

Given a value of X,
a) consider the imprecision about the difference between the true value of E[Y|X]

and the one estimated by the fitting, take a draw from this distribution
(the one that gives us the confidence interval of E[Y|X] at the position X)

b) now with this for this E[Y|X] generate a new point using the (estimation of the)
underlying distribution (that is the standard deviation of the residuals, the scatter of 
the single points)

In b) we have the variability due to the data-generation process we are studying, it is something that 
exists “outside” of the modeling and is given.

Only for a) : standard deviation ->  0   as  n ->  ∞
Also: most of the given data points must be inside the “prediction band”, while only a 
few might be within the the “confidence intervals band”.



CONFIDENCE INTERVALS FOR SINGLE VALUES, CURVE AND PREDICTIONS

Analogy
Data ~ N ( µ, sigma)

Estimate µ with a ^µ 
confidence interval for ^µ  to include real µ :
this gets smaller with increasing sample size  (standard errors) 
and is smaller than sigma  (usually  ~ sigma / sqrt(n) } 

New data are ~ N ( ^µ, sigma)
scattering width is due to  ( imprecision in ^µ )   +  sigma 



Confidence bands

Narrow bands:

 Wide bands:

describe the uncertainty about the regression line

describe where most (95% by default) predictions 
would fall, assuming normality and constant 
variance.

Confidence interval

Prediction interval

predict.lm(model, newdata=data.frame(Age=new_age), interval="confidence")
predict.lm(model, newdata=data.frame(Age=new_age), interval="prediction")



What if the data is not linear ?



What if the data is not linear ?

Use a polynomial regression
y = b0 + b1 x + b2 x2

This is still linear for bi; it is as if we had added a new variable.



What if the data is not linear ?

Consider transforming the data (log)
log(y)  = a + b x
y = a + b log(x)



Linear model predicting Concentration from Diameter

> model <- lm( conc ~ diameter, data=hellung 
)
> abline(model)

Conc = 2019576 –
80663 ´ Diameter

R2 = 0.61



Example: predicting cell concentration

The hellung dataset

" Diameter and concentration of 
Tetrahymena cells with and without glucose 

added to growth medium."

> library(ISwR); data(hellung)



Can we predict the concentration of cells 
using the diameter and the 

presence/absence of glucose ?



The Hellung data in R

> hellung

glucose conc diameter

1 1 631000 21.2

2 1 592000 21.5

3 1 563000 21.3

4 1 475000 21.0

5 1 461000 21.5

[...]

33 2 630000 19.2

34 2 501000 19.5

35 2 332000 19.8

36 2 285000 21.0

37 2 201000 21.0



Hellung dataset:  Diameter vs Concentration

> plot(hellung$diameter, hellung$conc, 
xlab="Diameter", 
ylab="Concentration")



Can we predict the concentration given the diameter of the cells ?



Residuals and hat values



Transforming the data to improve the fit



Linear model predicting log(Concentration) from Diameter

log(conc) = 25.7 – 0.62 ´ Diameter

R2 = 0.78



Details of the linear model



Diagnostic plots



Predicting Concentration from diameter

We have a linear model for predicting the log of the concentration:

log(concentration) = 25.7 – 0.63 ´ diameter

We have a function that links this prediction to our value of interest 
(concentration):

log / exponential

This allows us to make predictions for the concentration:

Concentration = 148 x 109 x e -0.63 x Diameter



Predicting Concentration from diameter



The Hellung data in R

> hellung

glucose conc diameter

1 1 631000 21.2

2 1 592000 21.5

3 1 563000 21.3

4 1 475000 21.0

5 1 461000 21.5

[...]

33 2 630000 19.2

34 2 501000 19.5

35 2 332000 19.8

36 2 285000 21.0

37 2 201000 21.0



Concentration according to Diameter and Glucose



Log(concentration) according to diameter and glucose



Reminder: using categorical variables as explanatory variables

We would like to use categorical variables in a linear model, as in:

Concentration = b0 + b1 Diameter + b2 « Glucose » + error 

Intuitively, we want to estimate a « No glucose » and a
« Glucose » effect.



Prediction of log Concentration according to Diameter and Glucose



Prediction of Concentration according to Diameter and Glucose


