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Moving Beyond Linearity

• Linear models are relatively simple to describe, and have 
advantages over other approaches in terms of interpretation 
and inference

• However, the linearity assumption is often an approximation
• Extending linear models to describe the relationship between 

a response Y and a single predictor X in a flexible way
– Polynomial regression
– Step functions
– Splines
– Local regression



Local Regression
• Most common method: LOESS (locally estimated scatterplot smoothing)

• LOESS: non-parametric method for fitting a smooth curve between two 
variables

• Main steps in the loess algorithm:
1. Choose a smoothing parameter s ∈ (0,1] that represents the 

proportion of observations to use for local regression
2. Find the k nearest neighbors to xi

3. Assign weights to the nearest neighbors
4. Perform local weighted (polynomial (often quadratic)) regression



Local Regression



Local Regression
• Advantages

§ The process of fitting a model to the data do not begin with the 
specification of a function

§ Very flexible

• Disadvantages
§ Requires large, densely sampled data sets for good models
§ Does not produce a simple mathematical function
§ Computationally intensive



Parametric vs non parametric



Polynomial Regression

• The standard way to extend linear models by adding extra 
predictors, obtained by raising the original predictor to a 
power

• For example
– A quadratic regression uses two variables: X and X2

– A cubic regression uses three variables: X, X2, and X3

• Unusual to use powers beyond 3 or 4
– for large powers, the polynomial can become overly 

flexible and take on some strange shapes, especially 
near the boundaries of X



Janka dataset
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Polynomial degree 3

Polynomial degree 4

Polynomial degree 10



• The estimated pointwise standard error is the square-root of the variance
• This computation is repeated at each reference point x0, and we plot the 

fitted curve, as well as twice the standard error on either side of the fitted 
curve

Pointwise Confidence Intervals

• What is the variance of the fit?
• Least squares returns variance estimates for each of the fitted 

coefficients, as well as the covariances between pairs of coefficient 
estimates. We can use these to compute the estimated variance of fitted 
values

We plot twice the standard error because, for normally 
distributed error terms, this quantity corresponds to an 

approximate 95 % confidence interval



Pointwise Confidence Intervals

Narrow bands: 
Wide bands:

describe the uncertainty about the regression line
describe where most (95% by default) predictions would 
fall, assuming normality and constant variance.

Confidence 
interval

Prediction
interval



Issues with Polynomial Regression

• Overfitting

• Inherently non-local



Step Functions
• Using polynomials of the predictor imposes a global 

structure on the non-linear function of X

• We can instead use step functions in order to avoid 
imposing such a global structure

– We create cut-points (aka knots) c1, c2, . . . , cK in the range of X, and 
then construct K+1 new variables

– Notice that for any value of X, C0(X)+C1(X)+...+CK(X) = 1, since X 
must be in exactly one of the K + 1 intervals

Where I is an indicator 
function that returns a 1 if 
the condition is true, and 

returns a 0 otherwise



Step Functions
• We then use least squares to fit a linear model using C1(X), 

C2(X), . . . , CK(X) as predictors

• For a given value of X, at most one of C1,...,CK can be non-zero
• Note that when X < c1, all of the predictors are zero, so β0 can 

be interpreted as the mean value of Y for X < c1

• By comparison, the above regression model predicts a 
response of β0+βj for cj ≤ X < cj+1, so βj represents the average 
increase in the response for X in cj ≤ X < cj+1 relative to X < c1



Step Functions

Clearly, unless there are natural breakpoints in the 
predictors, piecewise-constant functions can miss the trends



Basis Functions

• Polynomial and piecewise-constant regression models are in 
fact special cases of a basis function approach

• The idea is to have at hand a family of functions or 
transformations that can be applied to a variable X, e.g.

b1(X), b2(X), ..., bK(X)

• Instead of fitting a linear model in X, we fit a linear model 
with b1(X),b2(X),...,bK(X) as predictors, i.e.



Basis Functions

• For polynomial regression, the basis functions are
bj(xi) = (xi)j

• For piecewise constant functions they are
bj(xi) = I(cj ≤ xi < cj+1)

• Basis functions come in various forms and shapes …



Regression Splines



Regression Splines

• More flexible than polynomial and step functions, in fact an 
extension of the two

• Instead of fitting a high-degree polynomial over the entire 
range of X, piecewise polynomial regression involves fitting 
separate low-degree polynomials over different regions of X
– Dividing the range of X into K distinct regions
– Within each region, a polynomial function is fit to the data
– The polynomials are typically constraint to join smoothly at the 

cut-points or behave linearly beyond boundaries

• Provided that the interval is divided into enough regions, 
this can produce an extremely flexible fit

• “Splines”: series of local polynomial functions



Regression Splines

• For example, a piecewise cubic polynomial works by fitting a 
cubic regression model of the form

	

• Where the coefficients β0, β1, β2, and β3 differ in different 
parts of the range of X

• The points at which the coefficients change are called knots
• For example, a piecewise cubic polynomial with a single knot 

at a point c takes the form



Regression Splines

• Using more knots leads to a more flexible piecewise 
polynomial

• In general, if we place K different knots throughout the 
range of X, then we will end up fitting K + 1 different 
polynomials
– Since each cubic polynomial has four parameters, for a piecewise cubic 

polynomial with a single knot we are using a total of eight degrees of 
freedom

– Constraints reduce the degrees of freedom, for example down to only
one additional DF for each added knot

• Note that we do not need to use a cubic polynomial
– For example, we can instead fit piecewise linear functions



Piecewise linear fit 
with 1 knot

Piecewise cubic fit 
with 1 knot

discontinuous

discontinuous



Constraints & Splines

• How to address discontinuity?
–  By adding additional constraint on the model that the fitted curve 

must be continuous at the knots

Piecewise linear fit 
with 1 knot & 

continuity constraint



Constraints & Splines

• How to address discontinuity?
–  By adding additional constraint on the model that the fitted curve 

must be continuous at the knots

Piecewise cubic fit 
with 1 knot & 

continuity constraint
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Constraints & Splines
• To smoothen the polynomials at the knots, we add extra constraints: the first and 

second derivatives of both the polynomials must be same.



Regression Splines

• How to choose the number and locations of the knots ?
– The regression spline is most flexible in regions that contain a lot of 

knots, because in those regions the polynomial coefficients can 
change rapidly.

– Hence, one option is to place more knots in places where we feel the 
function might vary most rapidly, and to place fewer knots where it 
seems more stable.

– While this option can work well, in practice it is common to place 
knots in a uniform fashion.

Can we avoid having to choose the knots ?? 



Smoothing Splines
• Mathematically more challenging than regression splines 

but they are more smoother and flexible as well
• Typically uses polynoms of degree 3

• Does not require the selection of the number of Knots, 
every (unique) value of (xi) acts like a Knot => they have a 
very high flexibility (and risk of “overfitting” to the data 
like passing precisely through each point (resp.  mean of y 
for each unique x) => they can be very Rough

• The flexibility is controlled by a Roughness Penalty which 
controls the “roughness” and the (excessive) flexibility the 
model would otherwise have
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Constraints & Splines
• Continuity level 0: the function f has no discontinuity (no “jumps”) … 

• Continuity level 1: the derivative function f’ has no discontinuity (no “jumps”) … 

• Continuity level 2: the second derivative f’’ has no discontinuity (no “jumps”) …

…  at the knot points.  
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Constraints & Splines
Polynomials are continuous and all its derivatives are continuous over their domain, the 
problem is only at the know where we abruptly change from one polynomial function to 
another one.

f’  : slope of f
f’(x) > 0  ó graph is rising in the position x
f’(x) < 0  ó graph is falling

f’(x) = 0  ó graph might have a maximal or minimal point at x
A polynomial of degree 3 cannot have more than 2 such points (f’ is quadratic)

f’’ : curvature of f  :  
f’’(x) > 0  ó graph is locally (around x) convex (“left-turning”)
f’’(x) < 0  ó graph is locally concave (“right-turning”)

f’(x) = 0  ó graph might have an inflection point at x

A polynomial of degree 3 cannot have more than 1 inflection point (f’’ has degree 1)



Smoothing Splines
• In the last section we discussed regression splines, where we 

specified a set of knots, produced a sequence of basis 
functions, and used least squares to estimate the spline 
coefficients

• We now introduce a somewhat different approach that also 
produces a spline:

• Minimize a residual sum of squares criterion subject to a 
roughness penalty, penalty which is smaller if the function is 
smoother



Smoothing Splines
• Aim: minimize the error function which is modified by adding a 

Roughness Penalty which penalizes it for Roughness 
(Wiggliness) and high variance.

λ: tuning parameter

𝑦! = µ 𝑥! + 𝜖!



34

Constraints & Splines
f’’ : curvature of f  :  

f’’(x) > 0  ó graph is locally (around x) concave (“left-turning”)
f’’(x) < 0  ó graph is locally convex (“right-turning”)

f’(x) = 0  ó graph might have an inflection point at x

The penalty limits the variation in the curvature

(As f’’ is also the slope of f’ ) this means it limits also the change of slope of f, f tends to 
continue with the same slope that is locally tends to be a straight line)
The constraints imposed at the knots additionally do not allow for discontinuity in the 
slope or curvature at the knots, where a new polynomial takes over.



Smoothing Splines

• It can be shown that the solution of the above 
minimization have some special properties:
– it is a piecewise cubic polynomial,
– with knots at unique values of x1, . . . , xn,
– and continuous first and second derivatives at each knot
– furthermore, it is linear in the regions outside of the extreme knots
– in other words, the solution is a cubic spline with knots at x1,...,xn



Smoothing Splines

• What value of lambda ? 
– User defined
– Optimisation criteria, f.ex. cross-validation best fitting
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Smoothing Splines
• Summary

– Excellent for fitting in certain situations

– Test for significance of parameters, best model etc. : possible

– Use for inference, identification of important explanatory variables: work in 
progress


