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Statistical Models

X: independent/ 
explanatory variable(s) 
(grouping variable, 
predictor)

Are used for explanation and prediction

Statistical models predicts the mean Y for any 
combination of predictors.

General form: g(Y) = f(X) (+ Error)

with a stochastic process (ó errors)

Y: dependent variable 
(response variable, 
observed outcome)



• binary (2 groups)
(e.g. yes/no, passed/failed, male/female, ill/healthy, responder/NR, ...)

• categorical (k groups)
(e.g. phenotype, genotype, degree of physical activity, ...)

• continuous (i.e. pot. infinite number of groups)
(e.g. weight, blood pressure, gene expression value, ...)

• Censored data (e.g. survival data for 

patients, living beings, technical devices, 

...)

Types of response and predictors variables



Response variable’s type determines the suitable regression 
method(s) :

Types of variables

continuous response -> Linear regression

binary response -> Logistic regression

count response    -> Poisson regression



Logistic regression



What is Logistic Regression?
Form of regression that allows the prediction of 
discrete variables 
by a mix of continuous and discrete predictors.

Discrete ~ continuous / discrete

Example:      Responder status ~ dosis



Y = Binary response, ex. Responder status (1 / 0)
X = Quantitative predictor, ex. Dose, genotype for gene G, …

π = Proportion / Probability of »event 1» at any X

Given π we assume that a (always identical) stochastic 
process “determines” the event(s) observed outcome. 

For a group with the same configurations of X, the same π: 
there is a binomial distribution B(n,p) of  »event 1»

n = number of observations at this X, 
p = prob. of event 1 and 

Binary Logistic Regression Model



In linear regression the model predicts the mean Y for any 
combination of prediction (the E [Y | X] ) resp. E [P(Y=1) | X] ) .
What’s the mean of a 0/1 indicator variable?
The Proportion of “cases 1” among n  observations.

Proportion of “success”

p = y = å yi

n
Goal of logistic regression: Predict the “true” probability of 
success, π, at any value of the predictor(s).



Modeling overview revised

X à E(Y) the expected value of Y     à individual values   Yi

stochastic error
(lm: normal; log: binomial)

now a prob. [0,1]

Deterministic function
( lm: Linear / affine function or polynomial etc. , linear in parameters

glm a new approach, linear in parameters, but with a transformation 
linking it to the E(Y) )



odds = p
1- p 1+ odds

Û p =
odds

Relation probability – odds

π  in [0 , 1]  ,   odds in ( 0, + ∞),    
π  = 0.5 odds = 1 
π  = 0.9 odds = 9
π  = 0.1 odds = 1/9 = 0.111

not symmetric



Logistic curve

Logit is the logarithm of the odds
(log=ln=loge)

p = 0.50 ó logit =  0

p = 0.70  ó logit =  0.84

p = 0.30 ó logit = -0.84

p -> 1 ó logit ->  inf

p -> 0 ó logit -> - inf

Symmetric, range (-inf, +inf)
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Probability of success
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https://en.wikipedia.org/wiki/Logit



Binary Logistic Regression Model
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The predictors acts at the level of the log odds
 

X à logit    à E(Y)   à individual values   Yi
prob. [0,1]

Deterministic function, 
Linear in the parameters describing the effects of the expl. Vars. 

The logit is called a link function,  links the level of the observed events 
(response level) to the level at which the predictors effects are acting (link 
level)



GLM  LOGISTIC
Predictors X  => E( logit(π) | X)  => observations Yi 

=>  The assumed
model of effects

=> The assumed underlying
stochastic process
(generating the data)

Þex. Logit 
is linear in ß’s

=> ex. Binomial distribution



Binary Logistic Regression Model

p = eb0 + b1 X

1 + eb0 + b1 X

Logit form Probability form
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Link - Level Response - Level

odds = p
1- p 1+ odds 1+1 / odds

Û p =
odds

= 
1

1
=

1+ e- (b 0 +b1X)



The logistic function

Change in probability is not 
constant (linear) with 
constant changes in X

Linear part 
of logistic fit

p = eb0 + b1 X

1 + eb0 + b1 X



  odds = eβ0+β1X

  odds = eβ0+β1( X+1)

  

eβ0+β1( X+1)

eβ0+β1X = eβ0+β1( X+1)−(β0+β1X ) = eβ1

Odds for X:

Odds for X+1:

Odds ratio (odds for X+1 / odds for X):   

We increase X1 by one unit (+1, additive) 
The log odds is increased by ß1 (additive)

The odds is increased by a factor exp(ß1) (multiplicative)

The probaility is increased by ?  (question! )



The logistic model assumes a linear relationship 
between the predictors and the log(odds).
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odds =

π
1− π

= eβ0 +β1 X

Assumptions



is a special case of a
Generalized Linear Model

GLM 

Logistic regression

Ordinary Least Squares regression provides linear models 
of continuous variables. However, much data of interest to 
statisticians and researchers are not continuous and so 
other methods must be used to create useful predictive 
models.



GLM  LOGISTIC
Predictors X  => E( logit(π) | X)  => observations Yi 

=>  The assumed
model of effects

=> The assumed underlying
stochastic process
(generating the data)

Þex. Logit 
is linear in ß’s

=> ex. Binomial distribution



GLM Poisson
Predictors X  => E( link(Y) | X)  => observations Yi 

=>  The assumed
model of effects

Þ stochastic process

Data Yi ~  Poisson distribution
Poi (mean λ =E[Y])  
Stdev = sqrt (λ)

The dispersion is the one expected for a »pure 
random sampling» that is without any factor of
variability increasing the dispersion.

Stddev = sqrt(mean)

Log (λi) linear in ß’s

ML-estimation, deviance, LRT,
Wald test on coefficients etc:
Like Logistic Regression 



• Basic standard model used for Count data
• Distribution: Poisson,  (Restriction: mean = variance : E(Y)=V(Y)=λ)

• Default Link Function: log link:

Þ λ(X ,..., X )= e 0 1 1 k k...+b Xb +b X +
1 k

ln(λ) = b0 + b1 X1 + ... + bk X k

Tests are conducted as in Logistic regression

Poisson regression



Poisson regression - assumptions
• Poisson at the Response Level : the response variable is a 

count per unit of time or space, described by a Poisson 
distribution.

• Linearity at Link Level : the log of the mean rate, log(λ), is be 
a linear function of the predictor x.

• Independence: the observations are independent of one 
another.

• Mean=Variance: the mean of a Poisson random variable is 
equal to its variance.



Generalized Linear Models



How to find the »best fit»
Standard method: maximum likelihood estimation MLE
Probability of observations
(Likelihood of the model given the data) = maximum 

The MLE is the preferred method for statisticians in many
situations. It has a series of good properties (best method given
some criteria). 

The t-test for example is the maximum likelihood-based test to
compare the mean of two normal distributions. 

The MLE estimate for lm models leads to the same solution like 
the least squares (under given assumptions).



How to find the »best fit»
Solution:
Generally there is no closed solution (formula) for the
parameters in function of the data

The point estimates are determined by a multi-step iterative 
algorithms



GLM diagnostic 1: Hat and Cook
• Detection of influential observations and poor fitting

1) Hat values hi In analogy to LM  there is a definition of a hat matrix 
for logistic regression fits and large diagonal values suggest a 
potential high influence (leverage) of a point on the obtained fit. 
Limit ~ 2p / n or  3p / n.

2) Cook’s distance Cdi is a measure of a change in estimated 
coefficients when the observation i is ignored.  Large values (> ~ 4/n) 
suggest a large influence, pointing to observations one might want to 
“investigate”.

3) (The square of the) individual deviance residuals or studentized
residuals can also indicate single observation points with potential 
high influence or outlying character.

Plots: influencePlot (model); 
residualPlot(model2, type = "response")
residualPlot(model2, type = "pearson")
residualPlot(model2, type = "deviance")



GLM diagnostic 2: analysis of residuals

• Deviance residuals vs fitted values 

• Missing patterns: Deviance residuals vs each of the available 
covariates

• Dispersion check: Quantile Residuals

Many more checking procedures are known, but interpretation and 
recommended actions rarely straightforward



Quantile Residuals QRi

GLM diagnostic 3: analysis of residuals

Example: (Poisson GLM QRs)

Several excessively extreme (larger 
and smaller than expected) QRs in 
this checking

suggests overdispersion of data 

might suggest the use of a quasi-
Poisson or a Negativ Binomial 
approach instead of the Poisson, 
as these have higher variances 



Quantile Residuals QRi

One can generate faked simulated data from the fitted model, like 
distribution of predicted new values and compare to the observed values 
(for each data point, each xi). 
The nb of fakes < obs, yi is called quantile residual Qri . 

If the data are distributed as specified by the model these follow a 
uniform U[0,1] distribution.

A Q-Q plot of calculated vs. expected quantile residuals can detect 
significant departures and suggest modifications to the model. 

GLM diagnostic 4: analysis of residuals



“Raw Residuals” RRi =   Yi - fitted E [Y | X)     ,    where Yi = 0 or 1 

Pearson Residuals PRi :  
are adjusted for expected variance (given X) and are expected to follow approximately a 
normal distribution at each Xi (under assumptions).
Can reveal potential outliers. 
Large residuals (in absolute value) are “somewhat strange” compared to their “neighbour 
points”, but not necessarily to be considered outliers (in general some large residuals have 
to be expected). 

A (linear) trend in a plot of PRi against covariates might identify predictors that have been 
omitted in the model but should maybe be included. 
Trend: add a loess to the graph

A curved trend might indicate that adding a higher order term of the covariate could be 
useful (ex. x2). 

GLM diagnostic 5: analysis of residuals



A quick test if there is any obvious evidence of non-independence of
the observations: 

Check for «autocorrelation», function acf() 

GLM diagnostic 6: autocorrelation



Using the babies dataset
• Fit a logistic regression to find parameters 

explaining the probability of prematurity ?
• What is the effect of birth weight on the 

probability of prematurity ?
• What about parity ?

Challenge 1



Solution



How to test »significance» and determine CI ? 

Given standard errors SE of ß :
test-statistics =  estimate / SE =  z

approx. Normal  (under the null hypothesis) 
called a Wald-test

CI width = approx. 1.96 * SE 

CI symmetric for ß and the log odds scale
Þ not symmetric for the multiplicative effect exp(ß) on the odds scale
Þ not symmetric for the effect on the probability π



SST = SSR + SSE
Total sum of squares = regression SS + residual SS 

R2 = SSR / SST =  1 – (SSE / SST) 

HEURISTIC REPRESENTATION

observed 
values

fitted 
values 

average 
of YSSRegression

SSR

SST

SSError SSE



Deviance : difference in 2* Log Lik

Do   = ED + D;     ED = Do  - D

observed values,
Saturated model  

fitted , current
proposed, Model

“Null model” ,
only 1 parameter

Null Deviance Do 

Explained Deviance ED (Residual) Deviance D 

(log) likelihood if data 
from a fixed distribution 
with no individual 
observation-predictors

Highest  (log) likelihood 
possible, predictors best 
adapted to each Yi

MLE likelihood and deviance

R2   =>   ED / Do   = (Do – D) / Do )    = 1  - (D / Do ) = called a pseudo- R2  

Notes:    log Lik ≤ 0 ;     good Log Lik is close to 0;   
Deviance  > 0  :   a  measure of ”lack of fitting”,  
good is small positive close to 0
Parameter Optimization:    Maximal (Log)  Likelihood  ~   Minimal Deviance  



q Null deviance: how well (or bad) the response variable is predicted by a model 

that includes only the intercept (overall mean, logistic: binomial with fixed p) 

compared to the best possible model

q Residual deviance: how much deviance is missing compared to the best model 

after including the proposed set of independent variables (residual lack of fit)

Deviance



Solution



Multiple Logistic Regression

Extension to more than one predictor variable (either 
numeric or dummy variables).
With k predictors, the model is written:

eb0 +b1x1 + .. +bk xk

p =
1+ eb0 +b1x1 + .. +bk xk

Adjusted Odds ratio for raising xi by 1 unit, holding all other 
predictors constant:

iOR = ei
b



Solution



model comparison tests

saturated Model 1 Null

Deviance D1 

Model 2

Deviance D2 

Likelihood Ratio Test  LRT 

Nested models 
- the smaller model 1 is a special case of the larger model 2;
- larger model 2 has all predictors of model 1 and some additional predictors

Comparison of nested models:
- we can test if the improvement of model 2 over model 1 is statistically 
significant with a  likelihood ratio test  (LRT)  =  deviance test  = Wilks test 



model comparison tests
Likelihood Ratio Test  LRT 
Test statistic = 2 x Log Lik Ratio =   Deviance D1  - Deviance D2 

~   chi2 distribution    with degrees of freedom =   df for smaller model (higher df) 
- df for larger model 

Example R code :
anova (model1, model2, test = "Chisq")

The same function encodes the analogous model comparison test for LM models 
Example for the class data :

anova(model.0, model.3)
Model 1: Height ~ Age
Model 2: Height ~ Age + Weight

Res.Df RSS Df Sum of Sq F   Pr(>F)   
1     17 1042.71                                
2     16  524.94  1   517.77 15.781 0.0011 **



Analogous of R2 in  LM     
R2   =   ED / Do   = (Do – D) / Do )    = 1  - (D / Do )

called a pseudo- R2  

Model quality indices

Many different R-Squared and adjusted R-Squared have been proposed for GLM
Some are fairly widely used but generally model selection is best done with LRT

• allows to assess the quality of a model through comparison of related models 
• based on the Deviance, but penalizes for the number of parameters  (like adjusted R-

squared, it’s intent is to correct for irrelevant predictors)

Akaike Information Criterion (AIC)

R squared



Solution



Nested Models:  LRT !!!!

Otherwise: complicated 
¿ Nothing simple works reliably ?

Multiple data methods (separate datasets learning-testing, 
cross-validation, bootstraps)

Some methods incorporate cross-validation for optimization:
(ex. penalized regression, f.ex. package glmnet)

(See  statistical learning / machine learning literature) 

Model selection



Other Questions 1
Does another link function give a better fit ?
(example: binomial family regression: logit or complementary log-log 
which can better fit cases asymmetric about 0.5 ,  …) 

For the Binomial Model 

- There is the Probit link function, but very close to the Logit 

- There is an asymmetric link function:
Complementary Log-Log transformation (cloglog)

log {-log [1- π(x) ] }  linear in X , =Xß
π(x) = 1 – exp (- exp (Xß) ) 

Results are frequently close to the Logit results



Other Questions 2
Is the model appropriate ? 

Does another model type («family»)  give a better fit ?
(example: binomial vs. Poisson vs. Quasi Poisson) 


