Biodiversity Bioinformatics: from large -scale phylogenomics to gene families and functions

DAY 2: August 31st 2023

Robert M. Waterhouse

Department of Ecology & Evolution, University of Lausanne, Swiss Institute of Bioinformatics, Switzerland

⊠ robert.waterhouse@gmail.com

@ **y** @rmwaterhouse

www.rmwaterhouse.org

Robert M. Waterhouse

Instructor Biography - Introduction

- 2023- Director, Environmental Bioinformatics Group SIB Swiss Institute of Bioinformatics
- 2017-23 SNF Assistant Professor University of Lausanne
- 2015-16 Marie Curie Fellow & Maître assistant University of Geneva ZDOBNOV
- 2013-14 Marie Curie Outgoing Fellow Massachusetts Institute of Technology KELLIS
- 2009-12 Postdoctoral Researcher University of Geneva ZDOBNOV
- 2005-09 Wellcome Trust PhD Imperial College London CHRISTOPHIDES
- 2004-05 Wellcome Trust MSc Bioinformatics Imperial College London

2000-04 MBioch Biochemistry University of Oxford

ø

Teaching Assistants

Antonin Thiébaut

Giulia Campli

Goals for Today's Workshop

- Understand the principles of graph-based orthology delineation using OrthoDB as an example
- Learn how to browse and query OrthoDB
- Learn how to use BUSCO to assess genomics data
- Learn how to formulate comparative genomics questions, develop and apply approaches to address them (with a focus on using orthology data), and then critically interpret them, through case studies from arthropods

Comparative Genomics Hands -On: Concepts and Applications

Quick Quiz

https://forms.gle/ YwgAwDSsKwmJRRig7

Orthology Delineation

What is orthology?

How do we delineate orthologs?

And why do we need to? (species/gene trees/copy-number)

Sal.

Homology

"designates a relationship of **common descent** between any entities, without further specification of the evolutionary scenario"

Orthologs, Paralogs, and Evolutionary Genomics¹

Eugene V. Koonin

Annu. Rev. Genet. 2005. 39:309-38

"genes originating from a single ancestral gene in the last common ancestor of the compared genomes"

Orthology

Orthologs, Paralogs, and Evolutionary Genomics¹

Eugene V. Koonin

Annu. Rev. Genet. 2005. 39:309-38

"paralogs are genes related via duplication"

Orthologs, Paralogs, and Evolutionary Genomics¹

Eugene V. Koonin

Annu. Rev. Genet. 2005. 39:309-38

Paralogy

ß

Sequence Homology – what is it?

Homology between protein or DNA sequences is typically inferred from their sequence similarity

Sequence homology search tools, e.g. BLAST, attempt to detect '**excess**' similarity i.e. greater similarity or identity than expected by chance => statistically significant similarity

Sequence Homology – what is it?

"the link between **similarity** and **homology** is often misunderstood"

An Introduction to Sequence Similarity ("Homology") Searching

William R. Pearson¹ ¹University of Virginia School of Medicine, Charlottesville, VA

A pair of sequences can have **high** or **low** sequence similarity But this does not translate to **strong** or **weak** homology! Homology is the **conclusion**, i.e. given the level of similarity the sequences are likely to have arisen from a common ancestor

Sequence Homology – what is it?

"the link between **similarity** and **homology** is often misunderstood"

N

Orthology – simple scenario

A

N

Single-Copy Orthologs

ø

ß

Single-Copy Orthologs with Losses

A

ø

Homology

Recognizing similarities as evidence of shared ancestry

Orthology

Orthologues arise by vertical descent from a single gene of the last common ancestor

Hierarchy

Orthology is relative to the species radiation under consideration

Orthologous Groups

All genes descended from a single gene of the last common ancestor

OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011

⁸ Robert M. Waterhouse^{1,2}, Evgeny M. Zdobnov^{1,2,3}, Fredrik Tegenfeldt^{1,2}, Jia Li^{1,2} and Evgenia V. Kriventseva^{1,2,*}

Orthology Delineation

What is orthology?

How do we delineate orthologs?

And why do we need to? (species/gene trees/copy-number)

Orthology Delineation

ø

How do we delineate Orthology?

Single-Copy Orthologs

Graph-based best -reciprocal -hits

TANK

© Robert M. Waterhouse

Within -clade duplications

THOM.

Real-world data can be messy!

Real example:

POP3 missing from 10 vertebrates

POP2 missing from 4 vertebrates

Two orthologous groups start to merge into one

How do we delineate Orthology?

Single-Copy Orthologs

Orthology Delineation

What is orthology?

How do we delineate orthologs?

And why do we need to? (species/gene trees/copy-number)

Quick Quiz

https://forms.gle/ 1nAyRyriwTNtuwvW6

© Robert M. Waterhouse

Orthology – why do we need it?

Tracing the Evolutionary Histories of all genes in extant species
 Building Hypotheses on Gene Function informed by evolution

THE REAL

Orthology ≠ Function ··· BUT ···

By tracing the **Evolutionary Histories** of all genes in extant species We can build **Hypotheses on Gene Function** informed by evolution

"validity of the conjecture on **functional equivalency** of orthologs is crucial for reliable annotation of newly sequenced genomes and, more generally, for the progress of functional genomics.

The huge majority of genes in the sequenced genomes will **never be studied experimentally**, so for most genomes **transfer of functional information** between orthologs is the only means of detailed functional characterization."

Annu. Rev. Genet. 2005. 39:309-38

Evolutionary histories: classes

N
Evolutionary histories: classes

ø

Clade-specific & variable count orthologues

Species Tree Estimation

Phylogenomics with single -copy orthologues

TANK

Gene Family Tree Building

All Ionotropic Receptors OrthoGroups in three species: conserved and dynamic IR OGs

ø

Ancestral Copy -Number Reconstruction

Bumblebee Odorant Receptors : two major gene loss events

N

Dynamically evolving families

Many of the most biologically interesting genes and gene families show highly dynamic evolutionary histories

REPRODUCTION

CHEMOSENSATION

DETOXIFICATION

Goals for Today's Workshop

- Understand the principles of graph-based orthology delineation using OrthoDB as an example
- Learn how to browse and query OrthoDB
- Learn how to use BUSCO to assess genomics data
- Learn how to formulate comparative genomics questions, develop and apply approaches to address them (with a focus on using orthology data), and then critically interpret them, through case studies from arthropods

Assessing genomics data quality: BUSCO

What is BUSCO?

How does BUSCO work?

Why do we need BUSCO? (BUSCO in action)

Genomics for Everyone!

ø

Rapidly increasing numbers of genomes

STALL STALL

Ś

Rapidly increasing numbers of cool genomes

s

BioGenome Projects producing new data

European Reference Genome Atlas (ERGA)

Ś

1.00G

© Robert M. Waterhouse

How can we gauge the quality of these resources?

1) Does the assembly size match the expected genome size?

2) How fragmented is the assembly?

Assembly contig or scaffold N50 size: half the assembly is found on contigs/scaffolds of length N50 or greater

3) How 'gappy' is the assembly?

4) Does the assembly contain all the genes it is expected to?How much of a multi-life-stage transcriptome maps back to the assembly?How many of the 'expected' genes are actually in the assembly?

BUSCO: evolutionarily expected genes

Widespread genes in extant species from a given taxa should be present in any newly sequenced species

Features in common: 6 legs 2 compound eyes 1 pair of wings Etc.

Therefore we EXPECT: 6 legs 2 compound eyes 1 pair of wings Etc.

Ś

BUSCO: evolutionarily expected genes

Widespread genes in extant species from a given taxa should be present in any newly sequenced species

THE REAL

© Robert M. Waterhouse

BUSCO: looking for widespread & unique genes

Drosophila melanogaster orthology with genes from 80 insects

From mostly single-copy to mostly multi-copy

From present universally to present sparsely

Orthology Landscape

A maturing understanding of the composition nsect Science 2015, 7:15-23 Robert M Waterhouse^{1,2,3,4}

ø

BUSCO: looking for widespread & unique genes

Benchmarking Universal Single-Copy Orthologues

QUEST FOR UALITY

"BUSCO CALIDAD"

"BUSCO QUALIDADE"

Genome analysis

Applications Note Bioinformatics

BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs

Felipe A. Similo*, Robert M. Waterhouse*, Panagiotis loannidis, Evgania V. Kriventseva, Evgany M. Zdobnov

Orthology Landscape

http://busco.ezlab.org

ø

BUSCO: looking for widespread & unique genes

Ortho-Groups with genes found in the majority of species as single-copy orthologues

Evolutionary Expectation for them to be found in any newly-sequenced genome

Implemented Assessments Gene Content Completeness # genome assemblies # annotated gene sets # assembled transcriptomes

Bonus Features

genes for phylogenomics
gene predictor training

Orthology Landscape

http://busco.ezlab.org

BUSCO completeness assessments

THE REAL

BUSCO completeness assessments

TANK

Identify and classify orthologues – HOW?

Species filtering to select best representatives from each clade - Avoiding biasing the alignments with closely-related species

Sale I

N

BUSCO completeness assessments

For each clade/lineage ...

E.g. vertebrates, arthropods, or fungi

Filter OrthoGroups to retain those:

Present in >90% speciesSingle-Copy in >90% species

To obtain lineage datasets of

Benchmarking Universal Single-Copy Orthologues

Building BUSCO lineage datasets

1) Multiple protein sequence alignments for each orthologous group

2) HMM profiles from alignments for searching protein sequences

3) Consensus sequences for searching genome assemblies

4) Consensus sequence variants for searching genome assemblies

5) Augustus block profiles for predicting gene models

Building BUSCO lineage datasets

Filtering of initial BUSCO sets

HMM profiles run against all proteins from all input species

Score and length cut-offs fine-tuned for each BUSCO to maximise sensitivity and specificity

> Only BUSCO profiles with high sensitivity and specificity are kept

Testing of BUSCO profiles on non-input species remove BUSCOs whose Augustus/MetaEuk step fails

N N N N

BUSCO completeness assessments

TANK

Quick Quiz

https://forms.gle/ Wd7ZZTfUqpoVsPsB9

and the

Ś

Assessing genomics data quality: BUSCO

What is BUSCO?

How does BUSCO work?

Why do we need BUSCO? (BUSCO in action)

A

 \triangleleft

BUSCO in action: insect gene sets

N

BUSCO in action: Anopheles gene sets

- Most remarkably complete in terms of genes
- Missing: An. maculatus fragmented assembly
- Duplicates: An. melas assembly haplotypes (fixed)

TO COL

Ś

BUSCO utilities beyond Quality Control

➢ Comparative Genomics

Gene Predictor Training

Phylogenomic Analyses

BUSCO in Comparative Genomics

Analyses sensitive to incomplete datasets

Quantitative assessments with BUSCO offer logical selection criteria to help focus on the most complete genomic resources available

ø

BUSCO in Gene Predictor Training

BUSCOs, being generally widely- and well-conserved genes, offer ideal predefined sets for such training procedures, even without the need to first perform RNAseq

Sale I

BUSCO in Phylogenomic Analyses

Complete, found in all species in single-copy, retained to build the phylogeny Complete single-copy, but not found in all species, unused

Complete duplicated, unused

Estimating true phylogenetic relationships among organisms is a prerequisite to almost any evolutionary study

BUSCOs represent predefined sets of reliable markers where assessments of genomes, annotated gene sets, and/or transcriptomes can identify shared subsets from different types of genomic data for phylogenomics studies

A

BUSCO utilities – BUSCO in action

Quality Control

Comparative Genomics

Gene Predictor Training

Phylogenomic Analyses
Goals for Today's Workshop

- Understand the principles of graph-based orthology delineation using OrthoDB as an example
- Learn how to browse and query OrthoDB
- Learn how to use BUSCO to assess genomics data
- Learn how to formulate comparative genomics questions, develop and apply approaches to address them (with a focus on using orthology data), and then critically interpret them, through case studies from arthropods

