
Snakemake for reproducible research
Snakemake, package managers and containers

Antonin Thiébaut
antonin.thiebaut@unil.ch

mailto:antonin.thiebaut@unil.ch

Config file?

● Question 5

2

What should appear in a config file?

● Ideally, everything that should not be hard-coded:
○ File locations

○ Sample names and associated information

○ Rule computing resources

○ Etc…

● But it is preferable to use paths to other smaller config files
○ Same as Snakefile and snakefiles

○ Example:

■ Table containing the sample names and information: config/samples_info.tsv

■ In the config file: samples: 'config/samples_info.tsv'

■ Add a function in a Snakefile to parse the table

3

Several problems…

4

Several problems… (again)

● Using scripts from other languages

● Using unknown number of inputs/outputs

● Being reproducible

5

… that can be solved! (again)

● Using scripts from other languages

● Using unknown number of inputs/outputs

● Being reproducible

6

New directives: run and script

input/output functions, checkpoint

conda/mamba, Docker/Singularity

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

7

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

8

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
run:

input_file = open(input[0])
output_file = open(output[0], ‘w’)
for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

9

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
run:

input_file = open(input[0])
output_file = open(output[0], ‘w’)
for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

10

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/singularity directive!!!

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
run:

input_file = open(input[0])
output_file = open(output[0], ‘w’)
for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

11

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/singularity directive!!!

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
run:

input_file = open(input[0])
output_file = open(output[0], ‘w’)
for i in range(params.lines):

output_file.write(input_file.readline())

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
script:

'first_step.py'

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

12

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/singularity directive!!!

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
script:

'first_step.py'

● Execute Python/R/R Markdown/Julia/Rust/bash from
an external script

● Replaces shell/run

● Access to directive values and variables, like in shell

● Value = path to the script relative to the rule's snakefile

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
run:

input_file = open(input[0])
output_file = open(output[0], ‘w’)
for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

13

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/singularity directive!!!

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
script:

'first_step.py'

● Execute Python/R/R Markdown/Julia/Rust/bash from
an external script

● Replaces shell/run

● Access to directive values and variables, like in shell

● Value = path to the script relative to the rule's snakefile

● Advantages:
○ Great for long code
○ Can use conda/singularity directive!!!

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
run:

input_file = open(input[0])
output_file = open(output[0], ‘w’)
for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

14

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/singularity directive!!!

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
script:

'first_step.py'

Retrieve information from Snakemake
input_file = open(snakemake.input[0])
output_file = open(snakemake.output[0], 'w')
n_lines = snakemake.params.lines

Process file
for i in range(n_lines):

output_file.write(input_file.readline())

first_step.py

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
run:

input_file = open(input[0])
output_file = open(output[0], ‘w’)
for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

15

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/singularity directive!!!

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
script:

'first_step.R'

library(readr)

Retrieve information from Snakemake
input_path <- snakemake@input[[1]]
output_path <- snakemake@output[[1]]
n_lines <- snakemake@params$lines[1]

Process file
data <- read_delim(input_path, '\t', n_max=n_lines)

first_step.R

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
params:

lines=5
run:

input_file = open(input[0])
output_file = open(output[0], ‘w’)
for i in range(params.lines):

output_file.write(input_file.readline())

Working with an unknown number of inputs/outputs

● When:
○ Input files depend on wildcards in a non-trivial

way
○ The number of input files is not easy to

determine manually

● How to use an input function?
○ Define function above the rule
○ Use syntax input: <function_name>
○ No parentheses, no argument

● Input functions = Python functions
○ Single argument: “wildcards”
○ Return a file or list of files
○ Can also return a dictionary with input names

as keys
➢ Use input: unpack(<function_name>) to

obtain named inputs

● Functions are evaluated before
executing the workflow ⇒ can’t list
output files!

16

Working with an unknown number of inputs/outputs

● When:
○ Input files depend on wildcards in a non-trivial

way
○ The number of input files is not easy to

determine manually

● How to use an input function?
○ Define function above the rule
○ Use syntax input: <function_name>
○ No parentheses, no argument

● Input functions = Python functions
○ Single argument: “wildcards”
○ Return a file or list of files
○ Can also return a dictionary with input names

as keys
➢ Use input: unpack(<function_name>) to

obtain named inputs

● Functions are evaluated before
executing the workflow ⇒ can’t list
output files!

17

def first_step_input(wildcards):
sample = wildcards.sample
if sample == 'sample1':

return 'data/data1.txt'
else:

return 'data/data2.txt'

rule example:
input:

first_step_input
output:

'results/{sample}.txt'
shell:

'cp {input} {output}'

snakemake --cores 1 results/sample2.txt

Working with an unknown number of inputs/outputs

● When:
○ Input files depend on wildcards in a non-trivial

way
○ The number of input files is not easy to

determine manually

● How to use an input function?
○ Define function above the rule
○ Use syntax input: <function_name>
○ No parentheses, no argument

● Input functions = Python functions
○ Single argument: ‘wildcards’
○ Return a file or list of files
○ Can also return a dictionary with input names

as keys
➢ Use input: unpack(<function_name>) to

obtain named inputs

● Functions are evaluated before
executing the workflow ⇒ can’t list
output files!

18

def first_step_input(wildcards):
sample = wildcards.sample
if sample == 'sample1':

return 'data/data1.txt'
else:

return 'data/data2.txt'

rule example:
input:

first_step_input
output:

'results/{sample}.txt'
shell:

'cp {input} {output}'

snakemake --cores 1 results/sample2.txt

Working after an unknown number of outputs

● aka ‘Data-dependent conditional execution’ aka checkpoint (instead of rule)

● When:
○ An unknown number of files is generated by a rule

○ The output files are unknown before execution

● Conditional reevaluation of the DAG of jobs based on the content outputs
○ Since DAG is re-evaluated, you won’t see the whole pipeline at the beginning of a run

● Very complicated!

19

Being reproducible with Snakemake and Conda

● What is conda?

○ Conda/mamba: open-source package and

environment manager (Windows, macOS, linux)

○ Channels: repository of software, packaged and

maintained

■ Conda-forge: lots of general software, often

used

■ Bioconda: specifically for bioinformatics

software

○ Great tool to manage software in general

○ Environments can be defined in YAML files

20

Being reproducible with Snakemake and Conda

● What is conda?

○ Conda/mamba: open-source package and

environment manager (Windows, macOS, linux)

○ Channels: repositories of software, packaged and

maintained

■ Conda-forge: lots of general software, often

used

■ Bioconda: specifically for bioinformatics

software

○ Great tool to manage software in general

○ Environments can be defined in YAML files

21

https://conda-forge.org/
https://bioconda.github.io/

Being reproducible with Snakemake and conda

● What is conda?

○ Conda/mamba: open-source package and

environment manager (Windows, macOS, linux)

○ Channels: repositories of software, packaged and

maintained

■ Conda-forge: lots of general software, often

used

■ Bioconda: specifically for bioinformatics

software

○ Great tool to manage software in general

○ Environments can be defined in YAML files

22

name: python_env

channels:

- conda-forge

- bioconda

dependencies:

- python >= 3.10

- pandas == 1.4.3

py.yaml

https://conda-forge.org/
https://bioconda.github.io/

Being reproducible with Snakemake and conda

23

● Using conda in Snakemake

○ Snakemake provides a Conda integration: it

automatically deploys a conda environment

for a rule

○ Directive conda

■ Value = path to the environment file

relative to the rule's snakefile

○ Execution parameter “--use-conda”

Being reproducible with Snakemake and conda

24

● Using conda in Snakemake

○ Snakemake provides a Conda integration: it

automatically deploys a conda environment

for a rule

○ Directive conda

■ Value = path to the environment file

relative to the rule's snakefile

○ Execution parameter --use-conda
snakemake --cores 1 --use-conda results/first_step.txt

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
conda:

'../envs/py.yaml'
shell:

'cp {input} {output}'

Being reproducible with Snakemake and Docker

● What is Docker?

○ Snakemake provides a Conda integration: it

automatically deploys a conda environment

for a rule

○ Directive conda

■ Value = path to the environment file

relative to the rule's snakefile

○ Execution parameter --use-conda

25

Being reproducible with Snakemake and Docker

● What is Docker?

○ Snakemake provides a Conda integration: it

automatically deploys a conda environment

for a rule

○ Directive conda

■ Value = path to the environment file

relative to the rule's snakefile

○ Execution parameter --use-conda

26

Being reproducible with Snakemake and Docker

● Using Docker in Snakemake

○ Snakemake provides a Docker integration: it
automatically spawns a container created from
the given image

○ Directive container
■ Value = URL/path to the image location
■ Handles Docker and Singularity images

○ Execution parameter --use-singularity

○ Can be combined with --use-conda
■ Pull the image
■ Create the conda env from within the

container

○ Create Dockerfile from workflow with conda env
27

Being reproducible with Snakemake and Docker

● Using Docker in Snakemake

○ Snakemake provides a Docker integration: it
automatically spawns a container created from
the given image

○ Directive container
■ Value = URL/path to the image location
■ Handles Docker and Singularity images

○ Execution parameter --use-singularity

○ Can be combined with --use-conda
■ Pull the image
■ Create the conda env from within the

container

○ Create Dockerfile from workflow with conda env
28

snakemake --cores 1 --use-singularity
results/first_step.txt

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
container:

'docker://geertvangeest/deseq2:v1'
shell:

'cp {input} {output}'

Being reproducible with Snakemake and Docker

● Using Docker in Snakemake

○ Snakemake provides a Docker integration: it
automatically spawns a container created from
the given image

○ Directive container
■ Value = URL/path to the image location
■ Handles Docker and Singularity images

○ Execution parameter --use-singularity

○ Can be combined with --use-conda
■ Pull the image
■ Create the conda env from within the

container

○ Create Dockerfile from workflow with conda env
29

snakemake --cores 1 --use-singularity
results/first_step.txt

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
container:

'docker://geertvangeest/deseq2:v1'
shell:

'cp {input} {output}'

snakemake --cores 1 --containerize >
Dockerfile

Snakemake environments

● Question 6

30

What is the best setting for Snakemake environments?

● Use package and container managers!

● Same as Snakefile and config files: split things reasonably
○ 1 .smk file ≈ 1 ‘thematic’ module ≈ 1 environment

● Always check for version conflicts

31

Exercises

● Through the day:
○ Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes

(DEG)

● For now:
○ Create and use an input function

○ Run R and Python scripts

○ Deploy a conda environment

○ Deploy a Docker/Singularity container

32

Concluding remarks

● Reproducibility:

○ Workflow ⇒ steps clearly defined, commands saved

○ Conda integration ⇒ perfect handling of software installation and versions

○ Self-contained workflow archive ⇒ other people can easily reproduce your analyses (with almost no
programming knowledge)

● Practical use:

○ Once workflow is build, can be applied to any number of samples

○ Snakemake does a lot for you !
■ Create directory structure
■ Check job completion, restart if needed
■ Fully handles parallelization of jobs
■ Easy handling of logs and benchmarks

○ Portability and scalability: run on the cloud, on HPCs, and on any UNIX machine

○ Beautiful DAG in one command, no more powerpoint ! 33

34

