COGAATTGGCACATANCAAGTACTGCCTCGGTCCTTAAGCTGTATTGCACCATATGACES,
TECCTCOOTCCTTAAGCTGTATTGCACCATATGACGGATGCCGGAATTGGCACATAACAR

GGATGCCGGAATTGGCACATAACAAGTACTG
ATAAGAAGTACTGCCTCGGTCCTTAAGCTGTA
GGTCCTTAAGCTGTATTGCACCATATGACGGA

Snakemake for reproducible research
Making a more general-purpose Snakemake workflow
44

"] .,
N\ Centre hospitalier Antonin Thiébaut
\ antonin.thiebaut@chuv.ch Swiss Institute of
’ Bioinformatics

\\\\\\\ universitaire vaudois

mailto:antonin.thiebaut@unil.ch

Pop quiz

rule rename_file

input

output

shell

Pop quiz

rule rename_file

input
e Directives values:
o Object output
o String (file path)
o Instruction (command) shell

o Numeric values (seen later)
e Mystery syntax?

Building a Directed Acyclic Graph (DAG)

e Snakemake determines which jobs to run to

produce desired

split_uniprot
transpesonPSI transpesenPSI transposenPS| transposenPSI transposonP S| transpesonPSI
nr: 50 nr: 51 nr: 52 nr: 53 nr: 54 nr: 55
list_tePSI_hits
filter_uniprot_fasta RepeatModeler
filtered_blast_db symbolic_links atropos_sfror

sample: 17_L4 001

blast_repeat_library trim_reads
protexcluder hisat2 fastqe fastqe_trimmed
mask to_bam multigo

braker mapping_stats_gualimap_bamagc

eval mapping_stats_samtools

Building a Directed Acyclic Graph (DAG)

split_uniprot

e Snakemake determines which jobs to run to opagest| (gt) (raages | nmages | (s | [e
produce desired

° can appear more than once, with
d iffe rent Wi I dcards filter_uniprot_fasta RepeatModeler
o 1rule + 1 wildcard values = 1 job _

° = dependency between jobs

. . blast_repeat_library m_reads
o Snakemake runs jobs in any order that doesn't
break dependency

o) 5

Building a Directed Acyclic Graph (DAG)

Snakemake determines which jobs to run to
produce desired

can appear more than once, with
different wildcards

split_uniprot

trangpgsonPS| t trangposonPS| trangposonPSI trangpgsonPS| trangposonPSI
pr——-

list_tePSI_hits

filter_uniprot_fasta RepeatModeler

o 1rule + 1 wildcard values =1 job

= dependency between jobs
o Snakemake runs jobs in any order that doesn't
break dependency

DAG = work list, # flowchart

o No if/else decisions or loops
o Snakemake runs every job in the DAG exactly once

DAG # checking directives

o Shell commands are tested during execution
m Works? Produces expected outputs?

filtered_blast_db

atropos_error
symbolic_links sample: 17_L4 001

blast_repeat_library

protexcluder hisat2 fastqe

multiqe

mapping_stats_gualimap_bamagc

eval mapping_stats_samtools

o) 6

What is a DAG useful?

Skip parts of the DAG to avoid recomputing - Save time and resources (CPU,
memory, energy, money)

Change/add inputs to existing analyses without re-running everything

Resume running a workflow that failed part-way

What could we improve?

What could we improve?

e Using hard-coded file paths
e Having multiple / per rule

e (Checking Snakemake behaviour)

What could we improve?

e Using hard-coded file paths » Placeholders and wildcards

e Having multiple / per rule —— Numbered/named inputs/outputs

e (Checking Snakemake behaviour) » (Log files, benchmarks)

Avoiding hard-coded filepaths: placeholders

e Placeholder:
o A person or thing that occupies the position or place of another person or thing

o A symbol in a mathematical or logical expression that may be replaced by the name of any element of
a set

(From the Merriam-Webster dictionary)

11

Avoiding hard-coded filepaths: placeholders

rule rename_file:

input:

output:

shell:

12

Avoiding hard-coded filepaths: placeholders

rule rename_file:
input:

output:

shell:

rule rename_file:

input:

output:

shell:

13

Avoiding hard-coded filepaths: placeholders

{input} and {output} are placeholders
Used in directive

Similar to python f-string
Snakemake will replace them with

appropriate values before running the
command

Many directives can use placeholders:

{log}, {benchmark}, {params}...

rule rename_file:

input:

output:

shell:

14

Making more general-purpose rules: wildcards

e \Wildcards = "variables"
automatically inferred by
Snakemake

15

Making more general-purpose rules

rule rename_file:

input:
output:

e \Wildcards = "variables" shell:
automatically inferred by
Snakemake

: wildcards

} Defined paths

16

Making more general-purpose rules: wildcards

rule rename_file:

input:
output: } Defined paths

e \Wildcards = "variables" shell:
automatically inferred by
Snakemake

U

rule rename_file:
input:

Adaptable paths

tput:
outpu } with wildcards

shell:

17

Making more general-purpose rules: wildcards

rule rename_file:

input:

output: } Defined paths

e \Wildcards = "variables" shell:
automatically inferred by
Snakemake

U

e Enclose wildcard name with [ESERSETRETREIErY:
curly brackets i} input:

. Adaptable paths
output: } with wildcards

shell:

18

Making more general-purpose rules: wildcards

Wildcards are "resolved" from the
target and propagated to other

o Regular expression matching: I
m "1 or more occurrences of any
character except newline"
o Can be constrained

Using wildcards forces to ask for
: Snakemake doesn't

guess!
o Target rules cannot contain wildcards

rule rename file:

input:
output:

shell:

snakemake -—cores 1 results/renamed test.tx

&

{file} = "test"

_

19

Making more general-purpose rules: wildcards

Wildcards are "resolved” from the rule rename_file:
target and propagated to other input:

o Regular expression matching: I output:

hell:
Both a workflow and a can use =He

multiple wildcards

snakemake --cores 1 results/renamed test 1.txt

Y

{file} = "test"; {nb} = "1"

@

20

Making more general-purpose rules: wildcards

Wildcards are "resolved” from the rule rename_file:
target and propagated to other input:

o Regular expression matching: I output:

hell:
Both a workflow and a can use =He

multiple wildcards

snakemake -—cores 1 results/renamed test 1.txt

and files do not need to

share the same wildcards @

{file} = "test"; {nb} = "1"
All : ... created by a :
rule must have the same wildcards! @

21

Creating rules with multiple inputs/outputs

can use multiple /

22

Creating rules with multiple inputs/outputs

can use multiple /
o Separated by a comma
o values are unpacked (replaced by a

) rule gather files:
space-separated list) — -

23

o O

o O

Creating rules with multiple inputs/outputs

can use multiple /
Separated by a comma
values are unpacked (replaced by a
space-separated list)

rule gather files:

input:

can have multiple commands
Separated by a semicolon
Commands are concatenated

24

Creating rules with multiple inputs/outputs

can use multiple /
o Separated by a comma
o values are unpacked (replaced by a

) rule gather files:
space-separated list) -

input:

25

Creating rules with multiple inputs/outputs

can use multiple /
o Separated by a comma
o values are unpacked (replaced by a

) rule gather files:
space-separated list) -

input:

can be accessed by their positional

index: INpUt[A]

o Numbering starts at O

26

Creating rules with multiple inputs/outputs

can use multiple /
o Separated by a comma
o values are unpacked (replaced by a

) rule gather files:
space-separated list) -

input:
file 1=
file 2=
output:

. .. shell:
can be accessed by their positional

index: INpUt[A]

o Numbering starts at O

Named can be accessed by their

names: PURIRPUEIAEME

27

Creating rules with multiple inputs/outputs

rule gather files:

input:
file 1=
file 2=
° work like output:
o Separated by ', copy 1=

o Can be named copy 2=
o Can be accessed by positional Ll a
index or by name .

o Al need to be
created or the job will falil

snakemake -—cores 1 results/first step l.txt

Checking Snakemake behaviour

e Producing log files

e Benchmarking rules

29

Checking Snakemake behaviour: log files

'log'is a ; Its value is a path to

a log file for one
o Can be accessed with a placeholder in
{log} rule rename file:
input:

output:

log:

30

Checking Snakemake behaviour: log files

'log'is a ; Its value is a path to
a log file for one
o Can be accessed with a placeholder in
{log} rule rename file:
input: -
You need to manually redirect
messages to logs, but Snakemake output:

automatically creates the folder path

log:

31

Checking Snakemake behaviour: log files

'log'is a ; Its value is a path to
a log file for one
o Can be accessed with a placeholder in
{log} rule rename file:
input: -
You need to manually redirect
messages to logs, but Snakemake output:

automatically creates the folder path

log:

Log files must have the same
wildcards as the !

Good practice: put all logs in same
folder

32

Checking Snakemake behaviour: benchmarks

'‘benchmark’ is a , Its value is a
path to a benchmark results file for a

rule rename file:

input:

output:

benchmark:

shell:

33

Checking Snakemake behaviour: benchmarks

e 'benchmark’is a , Its value is a
path to a benchmark results file for a
rule rename file:
e Snakemake will measure runtime and input:
memory usage for the and save it
to the file

output:

benchmark:

shell:

34

Checking Snakemake behaviour: benchmarks

'‘benchmark’ is a , Its value is a
path to a benchmark results file for a

Snakemake will measure runtime and
memory usage for the and save it
to the file

Benchmark files must have the same
wildcards as the !

Best practice: put all benchmarks in
same folder

rule rename file:

input:

output:

benchmark:

shell:

35

Exercises

Through the day:
o Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes
(DEG)

For this session:
o Use placeholders and wildcards
o Use multiple inputs and outputs
o (Check workflow behaviour)
o Visualise a DAG

36

37

	Diapositive 1 Snakemake for reproducible research Making a more general-purpose Snakemake workflow
	Diapositive 2 Pop quiz
	Diapositive 3 Pop quiz
	Diapositive 4 Building a Directed Acyclic Graph (DAG)
	Diapositive 5 Building a Directed Acyclic Graph (DAG)
	Diapositive 6 Building a Directed Acyclic Graph (DAG)
	Diapositive 7 What is a DAG useful?
	Diapositive 8 What could we improve?
	Diapositive 9 What could we improve?
	Diapositive 10 What could we improve?
	Diapositive 11 Avoiding hard-coded filepaths: placeholders
	Diapositive 12 Avoiding hard-coded filepaths: placeholders
	Diapositive 13 Avoiding hard-coded filepaths: placeholders
	Diapositive 14 Avoiding hard-coded filepaths: placeholders
	Diapositive 15 Making more general-purpose rules: wildcards
	Diapositive 16 Making more general-purpose rules: wildcards
	Diapositive 17 Making more general-purpose rules: wildcards
	Diapositive 18 Making more general-purpose rules: wildcards
	Diapositive 19 Making more general-purpose rules: wildcards
	Diapositive 20 Making more general-purpose rules: wildcards
	Diapositive 21 Making more general-purpose rules: wildcards
	Diapositive 22 Creating rules with multiple inputs/outputs
	Diapositive 23 Creating rules with multiple inputs/outputs
	Diapositive 24 Creating rules with multiple inputs/outputs
	Diapositive 25 Creating rules with multiple inputs/outputs
	Diapositive 26 Creating rules with multiple inputs/outputs
	Diapositive 27 Creating rules with multiple inputs/outputs
	Diapositive 28 Creating rules with multiple inputs/outputs
	Diapositive 29 Checking Snakemake behaviour
	Diapositive 30 Checking Snakemake behaviour: log files
	Diapositive 31 Checking Snakemake behaviour: log files
	Diapositive 32 Checking Snakemake behaviour: log files
	Diapositive 33 Checking Snakemake behaviour: benchmarks
	Diapositive 34 Checking Snakemake behaviour: benchmarks
	Diapositive 35 Checking Snakemake behaviour: benchmarks
	Diapositive 36 Exercises
	Diapositive 37

