
Snakemake for reproducible research
Decorating and optimising a Snakemake workflow

Antonin Thiébaut
antonin.thiebaut@chuv.ch

mailto:antonin.thiebaut@unil.ch

What could we improve? (again)

● Avoiding hard-coded parameters

● Processing list of files

● (Optimising resource usage)

● (Using non-conventional outputs)

2

What could we improve? (again)

● Avoiding hard-coded parameters

● Processing list of files

● (Optimising resource usage)

● (Using non-conventional outputs)

3

config file

expand() syntax

(Directives resources and threads)

(temp(), directory()…)

Avoiding hard-coded parameters: config file

● Snakemake can use configuration files to render

workflows more flexible
○ Change config instead of code!

• Import file with configfile keyword
• configfile: 'path/to/config.yaml' (relative to working directory)

• Accessed via global variable config
• Imported as a Python dictionary (use keys to access values):

config['sample']

• 2 possible formats: JSON and YAML
• Personal take: YAML is easier to write, understand and can

be commented

4

Avoiding hard-coded parameters: config file

● Snakemake can use configuration files to render

workflows more flexible
○ Change config instead of code!

● Imported file with configfile keyword in Snakefile
○ configfile: 'path/to/config.yaml' (relative to working directory)

● 2 possible formats: JSON and YAML
○ Personal opinion: YAML is easier to write, understand and

can be commented

• Accessed via global variable config
• Imported as a Python dictionary (use keys to access values):

config['sample']

5

retries: 5 # Single value

samples: # Multiple values

- file1

- file2

resources: # Nested parameters

threads: 8

memory: 500M YAML

{

"retries": 5,

"samples": [

"file1",

"file2"

],

"resources": {

"threads": 8,

"memory": "500M"

}

} JSON

Avoiding hard-coded parameters: config file

● Snakemake can use configuration files to render

workflows more flexible
○ Change config instead of code!

● Imported file with configfile keyword in Snakefile
○ configfile: 'path/to/config.yaml' (relative to working directory)

● 2 possible formats: JSON and YAML
○ Personal opinion: YAML is easier to write, understand and

can be commented

● Accessed via global variable config
○ Imported as a Python dictionary (use keys to access values):

config['samples']

6

retries: 5 # Single value

samples: # Multiple values

- file1

- file2

resources: # Nested parameters

threads: 8

memory: 500M YAML

{

"retries": 5,

"samples": [

"file1",

"file2"

],

"resources": {

"threads": 8,

"memory": "500M"

}

} JSON

Config file?

● Question 5

7

What should appear in a config file?

● Ideally, everything that should not be hard-coded:
○ File locations

○ Sample names and associated information

○ Rule computing resources

○ Etc…

• But it is preferable to use paths to other smaller config files
• Same as Snakefile and snakefiles

• Example:

• Table containing the sample names and information: config/samples_info.tsv

• Tab-separated format is easy to write, read and parse

• In the config file: samples: 'config/samples_info.tsv'

• Add a function in a Snakefile to parse the table

8

What should appear in a config file?

● Ideally, everything that should not be hard-coded:
○ File locations

○ Sample names and associated information

○ Rule computing resources

○ Etc…

● But it is preferable to use paths to other smaller config files
○ Same as Snakefile and snakefiles

○ Example:

■ Table containing the sample names and information: config/samples_info.tsv

● Tab-separated format is easy to write, read and parse

■ In the config file: samples: 'config/samples_info.tsv'

■ Add a function in a Snakefile to parse the table

9

What should NOT appear in a config file?

● Credentials: access tokens, passwords…

➔ Use environment variables (envvars)

10

Processing list of files: the expand syntax

● expand(): Snakemake function to expand a wildcard expression to several values
○ Useful to define multiple inputs or outputs with a common pattern

11

Processing list of files: the expand syntax

● expand(): Snakemake function to expand a wildcard expression to several values
○ Useful to define multiple inputs or outputs with a common pattern

○ Syntax: expand('{wildcard_name}', wildcard_name=<values>)

■ <values>: iterable (i.e. list, tuple, set) containing the wildcard values

➢ The rule merge_files uses all three input files to generate a single output file
➢ expand() does not apply the rule three times, once per input!

12

rule merge_files:

input:

'data/test_1.txt',

'data/test_2.txt',

'data/test_3.txt'

output:

'results/total.tsv'

shell:

'cat {input} > {output}'

rule merge_files:

input:

expand('data/test_{file}.txt', file=[1, 2, 3])

output:

'results/total.tsv'

shell:

'cat {input} > {output}'

Processing list of files: the expand syntax

● When there are several wildcards, expand() creates all possible combinations

13

Processing list of files: the expand syntax

● When there are several wildcards, expand() creates all possible combinations

14

files = ['test_A', 'test_B']

nbs = [1, 2]

rule merge_files:

input:

expand('data/{file}_{nb}.tsv', file=files, nb=nbs)

output:

'results/total.tsv'

shell:

'cat {input} > {output}'

input:

['data/test_A_1.tsv', 'data/test_A_2.tsv',

'data/test_B_1.tsv', 'data/test_B_2.tsv']

Processing list of files: the expand syntax

● The wildcards in expand() are independent from wildcards in the rule

➢ In this case, the value of the {sample} wildcard will NOT be propagated to the input

15

Processing list of files: the expand syntax

● The wildcards in expand() are independent from wildcards in the rule

➢ Here, {file} value will NOT be propagated to the input

16

files = ['test_A', 'test_B']

nbs = [1, 2]

rule merge_files:

input:

expand('data/{file}_{nb}.tsv', file=files, nb=nbs)

output:

'results/{file}.tsv'

shell:

'cat {input} > {output}'

Optimising resource usage: threads

● 'threads' is a directive; its value is the number of threads to allocate to each job

spawned by a rule
○ New type of value: numeric (integer)

○ When executed locally, '--cores' controls the total number of threads allocated to Snakemake; threads

is automatically decreased if it's lower than '--cores'

○ Check whether software can actually multithread!

17

rule example:

input:

'data/test.txt'

output:

'results/modified_test.txt'

threadsh: 4

shell:

'command --threads {threads} {input} > {output}'

Optimising resource usage: memory and runtime

● 'resources' is a directive; its values set

the resources available for a job
○ New kind of directive value: pair of

<key>=<value>

● mem_<unit>
○ Amount of memory needed by the job

○ <unit>: mb, gb, tb…

● runtime_<unit>
○ Amount of wall clock time a job needs to run

○ <unit>: s, m, h, d…

18

Optimising resource usage: memory and runtime

● 'resources' is a directive; its values set

the resources available for a job
○ New kind of directive value: pair of

<key>=<value>

● mem_<unit>
○ Amount of memory needed by the job

○ <unit>: mb, gb, tb…

● runtime_<unit>
○ Amount of wall clock time a job needs to run

○ <unit>: s, m, h, d…

19

rule example:

input:

'data/test.txt'

output:

'results/modified_test.txt'

resources:

mem_gb = 1,

runtime_h = 1

shell:

'command {input} > {output}'

Using non-conventional outputs

● Snakemake has built-in utilities to assign properties to 'special' outputs

20

Property Syntax Function

Temporary temp('path/to/file.txt')
File is deleted as soon as it is not required by any future

jobs

Protected protected('path/to/file.txt')

File cannot be overwritten after the job ends (useful to

prevent erasing a file by mistake, for example files

requiring heavy computation)

Ancient ancient('path/to/file.txt')

Ignore file timestamp and assume file is older than any

outputs: file will not be re-created when re-running the

workflow, except when --force parameters are used

Directory directory('path/to/directory')
Output is a directory instead of a file (better to use 'touch'

instead if possible)

Touch touch('path/to/file.txt')
Create an empty flag file 'file.txt' regardless of the shell

command (if the command finished without errors)

Exercises

● Through the day:
○ Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes

(DEG)

● For this session:
○ Use a config file

○ Process list of inputs

○ Modularise a workflow

○ Aggregate outputs

○ (Optimise resource usage)

○ (Manage non-conventional outputs)

21

22

	Diapositive 1 Snakemake for reproducible research Decorating and optimising a Snakemake workflow
	Diapositive 2 What could we improve? (again)
	Diapositive 3 What could we improve? (again)
	Diapositive 4 Avoiding hard-coded parameters: config file
	Diapositive 5 Avoiding hard-coded parameters: config file
	Diapositive 6 Avoiding hard-coded parameters: config file
	Diapositive 7 Config file?
	Diapositive 8 What should appear in a config file?
	Diapositive 9 What should appear in a config file?
	Diapositive 10 What should NOT appear in a config file?
	Diapositive 11 Processing list of files: the expand syntax
	Diapositive 12 Processing list of files: the expand syntax
	Diapositive 13 Processing list of files: the expand syntax
	Diapositive 14 Processing list of files: the expand syntax
	Diapositive 15 Processing list of files: the expand syntax
	Diapositive 16 Processing list of files: the expand syntax
	Diapositive 17 Optimising resource usage: threads
	Diapositive 18 Optimising resource usage: memory and runtime
	Diapositive 19 Optimising resource usage: memory and runtime
	Diapositive 20 Using non-conventional outputs
	Diapositive 21 Exercises
	Diapositive 22

