GECGGAATTGECACATANCAAGTACTGCCTCGGTCCTTAAGETGTATTGCACCATATGACSS,
ACTECCTCGOTCCTTAAGCTGTATTGCACCATATGACGGATGCCGGAATTGGCACATAACAA]

GGATGCCGGAATTGGCACATAACAAGTACTEE
ATAAGAAGTACTGCCTCOGTCCTTAAGCTGTAT
GGTCCTTANGCTGTATTGCACCATATGACGGAT

Snakemake for reproducible research

Making a more general-purpose Snakemake workflow

Antonin Thiébaut : ,
Swiss Institute of

antonin.thiebaut@unil.ch Bioinformatics

UNIL | Université de Lausanne

mailto:antonin.thiebaut@unil.ch

Pop quiz

rule second_step:
rules.first_step.output
'results/first_step.txt'

‘cp {input} {output}’

Snakemake keyword
Rule name (user-defined)

Directives values:

o Object

o String (file path)

o Instruction (command)

o Numeric values (seen later)
Mystery syntax?

Pop quiz

rule second_step:
rules.first_step.output

'results/first_step.txt'

‘cp {input} {output}’

Building a Directed Acyclic Graph (DAG)

split_uniprot

e Snakemake determines which jobs to run to e N e iy oo o e e f———

produce desired outputs L e o
o DAG depends on Snakefile, requested target outputs, and S—
files already present st 1ePS1_pie

. detect_adapters atropos_error
filtered blast_db symbolic._links sample: 17_L4 001 sample: 17_L4 001
blast_repeat_library build_hisat2_index trim_reads

protexcluder hisat2 fastqe fastqe_trimmed
mask to_bam multigo
braker mapping_stats_gualimap_bamagc
eval mapping_stats_samtools

Y

all

Building a Directed Acyclic Graph (DAG)

split_uniprot

Snakemake determines which jobs to run to

produce desired outputs
o DAG depends on Snakefile, requested target outputs, and

transpesonPSI transpesenPSI transposenPS| transposenPSI transposonP S| transpesonPSI
nr: 50 nr: 51 nr: 52 nr: 53 nr: 54 nr: 55

files already present e ersL e
Rule can appear more than once, with different i) S N
wildcards _ r—
o 1lrule + 1 wildcard values = 1 job R e sampie, 17 L4 001
= dependency between jobs e
o Snakemake runs jobs in any order that doesn’t break
dependency protexcluder hisat2 fastqo fastqe_trimmed

Y

all

Building a Directed Acyclic Graph (DAG)

split_uniprot

Snakemake determines which jobs to run to e N Ny e e N

produce desired outputs
o DAG depends on Snakefile, requested target outputs, and
files already present

list_tePSI_hits

filter_uniprot_fasta RepeatModeler

Rule can appear more than once, with different

wildcards
o 1lrule + 1 wildcard values = 1 job

filtered_blast_db symbolic_links

atropos_error
sample: 17_L4 001

= dependency between jobs e
o Snakemake runs jobs in any order that doesn’t break
dependency protexcluder hisat2 fastqe fastqc_trimmed
DAG = work list, # flowchart e
o No if/else decisions or loops
o Snakemake runs every job in the DAG exactly once braker | | mapping_stats_qualimap_bama
DAG does not check shell directives e st sl

o Shell commands are tested during execution (1. Works? 2.
Produces expected outputs?) —

all

DAG (re-)run policy

e Snakemake runs a job if:
o Target file explicitly requested is missing
o Intermediate file is missing and needed to create target file
o Input file is newer than an output file (timestamps comparison)
> Can skip parts of the DAG

e Allows to:
o Change/add inputs to existing analysis without re-running everything
o Resume running a workflow that failed part-way

DAG (re-)run policy

e Snakemake runs a job if:
o Target file explicitly requested is missing
o Intermediate file is missing and needed to create target file
o Input file is newer than an output file (timestamps comparison... but not only)
> Can skip parts of the DAG

e Allows to:
o Change/add inputs to existing analysis without re-running everything
o Resume running a workflow that failed part-way

e Altering DAG (re-)run policy:
o -f, --force <target_name>
-F, --forceall
-R, --forcerun <rule_name>
--rerun-triggers {mtime,params,input,software-env,code}

@)
O
@)
o --touch

Several problems...

Several problems...

Hard-coded file paths
Processing list of files
Only one input/output per rule

Resources are not optimised

10

... that can be solved!

Hard-coded file paths

\ 4

Processing list of files
Only one input/output per rule

Resources are not optimised

v

\ 4

\ 4

Placeholders and wildcards
expand() syntax
Numbered/named inputs/outputs

log, benchmarks, threads, memory...

11

Avoiding hard-coded filepaths: placeholders

e Placeholder:
o A person or thing that occupies the position or place of another person or thing

o A symbol in a mathematical or logical expression that may be replaced by the name of any element of
a set

From the Merriam-Webster dictionary

12

Avoiding hard-coded filepaths: placeholders

rule example:
‘data/first_step.tsv'

'results/first_step.txt'

'‘cp|data/first_step.tsv

results/first_step.txt|

13

Avoiding hard-coded filepaths: placeholders

rule example:
‘data/first_step.tsv'

'results/first_step.txt'

cp|data/first_step.tsv||results/first_step.txt

rule example:
‘data/first_step.tsv'

'results/first_step.txt'

‘cp {input}| {output}|

14

Avoiding hard-coded filepaths: placeholders

{input} and {output} are placeholders
Used in shell directive

Similar to python f-string
Snakemake will replace them with

appropriate values before running the
command

Many directives can used in placeholders:

rule example:

‘data/first_step.tsv'

'results/first_step.txt'

‘cp {input} {output}'

15

Making more general-purpose rules: wildcards

e \Wildcards = Snakemake "variables"

16

Making more general-purpose rules: wildcards

e \Wildcards = Snakemake "variables"

rule example:
‘data/first_step.tsv'

'results/first_step.txt'

‘cp {input} {output}'

“Hard-coded” input and output files

17

Making more general-purpose rules: wildcards

e \Wildcards = Snakemake "variables"

rule example:

‘data/first_step.tsv'

‘cp {input} {output}'

'results/first_step.txt'

“Hard-coded” input and output files

rule example:
‘data/{sample}.tsv'’
'results/{sample}.txt’

‘cp {input} {output}’

“General” input/output files
with wildcards

18

Making more general-purpose rules: wildcards

e \Wildcards = Snakemake "variables"

rule example:
‘data/first_step.tsv'
'results/first_step.txt'

‘cp {input} {output}'

“Hard-coded” input and output files

rule example:
‘data/{sample}.tsv'’
'results/{sample}.txt’

‘cp {input} {output}’

“General” input/output files
with wildcards

e Enclose wildcard name with curly brackets { }

e How does Snakemake execution work when there are wildcards?

19

Making more general-purpose rules: wildcards

Wildcards = Snakemake "variables"

Wildcards are “resolved” from the
target and propagated to other

directives
o Regular expression matching: .+
m ‘1 or more occurrences of any
character except newline’
m Can be constrained
o Using wildcards forces to ask for
output(s): Snakemake doesn’t guess!
m Target rules may not contain
wildcards.

rule example:
‘data/{sample}.tsv'’
'results/{sample}.txt’

‘cp {input} {output}’

snakemake --cores 1 results/first_step.txt

Snakemake interpretation:
{sample} = "first_step"

20

Making more general-purpose rules: wildcards

e \Wildcards = Snakemake "variables"

e \Wildcards are “resolved” from the
target and propagated to other

directives
o Regular expression matching: .+

e Both a workflow and a rule can use
multiple wildcards

snakemake --cores 1 results/first_step.txt

Snakemake interpretation:
{sample} = "first"
{treatment} = "step"

rule example:

‘data/{sample}_{treatment}.tsv'

'results/{sample}_{treatment}.txt'

‘echo {wildcards.sample};"
‘cp {input} {output}'

21

Making more general-purpose rules: wildcards

Wildcards = Snakemake "variables"

Wildcards are “resolved” from the
target and propagated to other

directives
o Regular expression matching: .+

Both a workflow and a rule can use
multiple wildcards

Input and output files do not have to
share the same wildcards

All outputs/logs... created by a
rule must have same wildcards!

rule example:

‘data/{sample}.tsv'’

'results/{sample}_{treatment}.txt'

‘echo {wildcards.sample};"
‘cp {input} {output}'

snakemake --cores 1 results/first_step.txt

Snakemake interpretation:
input = ‘dataffirst.tsv’

22

Creating a rule with multiple inputs/outputs

e Rules can use multiple
inputs/outputs

23

Creating a rule with multiple inputs/outputs

e Rules can use multiple
inputs/outputs

e Don’t forget the commal

rule example:

‘data/first_stepl.tsv T]
‘data/first_step2.tsv'

'results/first_step.txt'

‘cat {input} > {output}'

24

Creating a rule with multiple inputs/outputs

Input values are
unpacked (replaced by

a space-separated list)
4

e Rules can use multiple

inputs/outputs rule example:

e Don’t forget the commal 'data/first_stepl.tsv]
‘data/first_step2.tsv'

'results/first_step.txt'

‘cat {input} > {output}'

shell:

cat data/first_step_1.tsv data/first_step_2.tsv > results/first_step.txt

25

Creating a rule with multiple inputs/outputs

Rules can use multiple
inputs/outputs

Don’t forget the comma/semicolon!
Inputs can be accessed by their

positional index: input[n]
o Numbering starts at 0

rule example:

‘data/first_stepl.tsv 3
‘data/first_step2.tsv'

'results/first_step.txt'

'éat {input[0]} > {output)i]

///////"cat {input[1]} >> {output}’

Commands are
concatenated

Creating a rule with multiple inputs/outputs

Rules can use multiple
inputs/outputs

Don’t forget the comma!
Inputs can be accessed by their

positional index: input[n]
o Numbering starts at 0

rule example:

‘data/first_stepl.tsv 3
‘data/first_step2.tsv'

'results/first_step.txt'

cat {input[©]} > {output}
cat {input[1]} >> {output}

27

Creating a rule with multiple inputs/outputs

Rules can use multiple
inputs/outputs

Don’t forget the comma!

Inputs can be accessed by their
positional index: input[n]
o Numbering starts at 0

Named input can be accessed by

their names: input.input_name
o You cannot mix named and unnamed
inputs

rule example:

input_1='data/first_stepl.tsv',
input_2="'data/first_step2.tsv'

'results/first_step.txt'

cat {input.input_1} > {output}
cat {input.input_2} >> {output}

28

Creating a rule with multiple inputs/outputs

rule example:
e Outputs work just like inputs ;
o Separated by ‘, input_1='data/first_step1.tsvT]

o Can be named N input_2="data/first_step2.tsv'
o Can be accessed by positional .

index or by name output_1="results/first_stepl.txt]

output_2='results/first_step2.txt'
e All outputs need to be :

generated or the job will falil
cat {input.input_1} > {output.output_1}
cat {input.input_2} > {output.output_2}

snakemake --cores 1 results/first_step_1.txt U

N results/first_step_1.txt, results/first_step_2.txt

29

Processing list of files: the expand syntax

e expand(): Snakemake function to automatically expand a wildcard expression to

several wildcard values
o Useful to define multiple inputs or outputs with a common pattern

30

Processing list of files: the expand syntax

e expand(): Snakemake function to automatically expand a wildcard expression to

several wildcard values

o Useful to define multiple inputs or outputs with a common pattern
o Syntax: expand({wildcard_name}', wildcard_name=<values>)
m <values>: iterable (i.e. list, tuple, set) containing the wildcard values

rule example:
‘data/A.tsv’,
‘data/B.tsv’,
‘data/C.tsv’

‘results/total.tsv’

‘cat {input} > {output}’

rule example:
expand('data/{sample}.tsv', sample=[‘A, ‘B’,‘'C’])
'results/total.tsv’

‘cat {input} > {output}'

> The rule example uses all three input files to generate a single output file. expand()
does not apply the rule separately to the three inputs!

31

Processing list of files: the expand syntax

e When there are several wildcards, expand() creates all possible combinations

32

Processing list of files: the expand syntax

e When there are several wildcards, expand() creates all possible combinations

samples=[‘A, ‘B’]
replicates = [1, 2]

rule example:
expand('data/{sample}_{replicate}.tsv', sample=samples, replicate=replicates)

'results/total.tsv'

‘cat {input} > {output}'

> input = 'data/A_1.tsv data/A 2.tsv data/B_1.tsv data/B_2.tsv'

33

Processing list of files: the expand syntax

e The wildcards in expand are INDEPENDENT from any other wildcard in the rule

34

Processing list of files: the expand syntax

e The wildcards in expand are INDEPENDENT from any other wildcard in the rule

samples=[‘A, ‘B’]
replicates = [1, 2]

rule example:
expand('data/{sample}_{replicate}.tsv', sample=samples, replicate=replicates)
'results/{sample}.tsv’

‘cat {input} > {output}'

> In this case, the value of the {sample} wildcard will NOT be propagated to the input

35

Optimising workflow performances

e Producing log files
e Benchmarking rules

e Multi-threading and controlling resource usage

36

Optimising workflow performances: log files

log’ is a ; Its value is a path to
a log file for a rule

37

Optimising workflow performances: log files

log’ is a ; Its value is a path to

a log file for a rule
o Can be accessed with a placeholder in

" {log}

Logs still need to be handled manually
for each command, but Snakemake
automatically creates the directory in
the log file path

rule example:
'&ata/first_step.tsv'
'résults/first_step.txt'
'logs/first_step.log’

‘cp {input} {output} 2> {log}'

38

Optimising workflow performances: log files

log’ is a ; Its value is a path to

a log file for a rule
o Can be accessed with a placeholder in

" {log}

Logs still need to be handled manually
for each command, but Snakemake
automatically creates the directory in
the log file path

Log files must have the same
wildcards as the output!

Best to regroup logs in a ‘logs’ folder

rule example:
‘data/first_step.tsv'
'results/first_step.txt'

'logs/first_step.log’

‘cp {input} {output} 2> {log}'

39

Optimising workflow performances: benchmarks

‘benchmark’ is a ; its value is a
path to a benchmark results file for a rule

40

Optimising workflow performances: benchmarks

‘benchmark’ is a ; its value is a
path to a benchmark results file for a rule

Snakemake will automatically measure
runtime and memory usage for the rule
and save it to the file

rule example:
'éata/first_step.tsv'
'résults/first_step.txt'
'bencharks/first_step.txt'

‘cp {input} {output}’

41

Optimising workflow performances: benchmarks

‘benchmark’ is a ; its value is a
path to a benchmark results file for a rule

Snakemake will automatically measure
runtime and memory usage for the rule
and save it to the file

Benchmark files must have the same
wildcards as the output!

Best to regroup benchmarks in a
‘benchmarks folder

rule example:
'éata/first_step.tsv'
'résults/first_step.txt'
'bencharks/first_step.txt'

‘cp {input} {output}’

42

Optimising workflow performances: threads

‘threads’ is a ; Its value is the number of threads to allocate to each job
spawned by a rule

(@)
(@)

New kind of directive value: numeric (integer)
Check whether software can actually multithread!

43

Optimising workflow performances: threads

‘threads’ is a ; Its value is the number of threads to allocate to each job
spawned by a rule

(@)
(@)

©)

New kind of directive value: numeric (integer)
Check whether software can actually multithread!

rule example:
‘data/first_step.tsv'

'results/first_step.txt'
4

'command --threads {threads} {input} > {output}'

In local mode, total number of threads allocated to Snakemake is constrained by the execution
parameter ‘--cores’

44

Optimising workflow performances: resources

‘resources’ is a - its values aim

to set the resources available for a job
o New kind of directive value: pair of
<key>=<value>

45

Optimising workflow performances: resources

‘resources’ is a ; its values aim
to set the resources available for a job

©)

New kind of directive value: pair of
<key>=<value>

mem_ <unit>

@)
@)

Amount of memory needed by the job
<unit>: mb, gb, tb...

runtime_<unit>

@)
@)

Amount of wall clock time a job needs to run
<unit>:s, m, h, d...

rule example:
‘data/first_step.tsv'
'results/first_step.txt'

mem_gb=1,
runtime_s=3600

‘command {input} > {output}'

46

Exercises

e Through the day:
o Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes
(DEG)

e For now:

o Session 2:
m Use multiple inputs and outputs
m Use placeholders and wildcards
m Optimise workflow performance
m Visualise a DAG

o Session 3:
m Use non-file parameters
m Manage non-conventional outputs
m Process list of inputs
m Modularise a workflow

47

48

