
Snakemake for reproducible research
Making a more general-purpose Snakemake workflow

Antonin Thiébaut
antonin.thiebaut@unil.ch

mailto:antonin.thiebaut@unil.ch


Pop quiz

2

rule second_step:
input:

rules.first_step.output
output:

'results/first_step.txt'
shell:

'cp {input} {output}'



Pop quiz

3

● Snakemake keyword

● Rule name (user-defined)

● Snakemake directives

● Directives values:

○ Object

○ String (file path)

○ Instruction (command)

○ Numeric values (seen later)

● Mystery syntax?

rule second_step:
input:

rules.first_step.output
output:

'results/first_step.txt'
shell:

'cp {input} {output}'



Building a Directed Acyclic Graph (DAG)

● Snakemake determines which jobs to run to 
produce desired outputs

○ DAG depends on Snakefile, requested target outputs, and 
files already present

● Rule can appear more than once, with different 
wildcards

○ 1 rule + 1 wildcard values = 1 job

● Arrows = dependency between jobs
○ Snakemake runs jobs in any order that doesn’t break 

dependency

● DAG = work list, ≠ flowchart
○ No if/else decisions or loops
○ Snakemake runs every job in the DAG exactly once

● DAG does not check shell directives
○ Shell commands are tested during execution (1. Works? 2. 

Produces expected outputs?)
4



Building a Directed Acyclic Graph (DAG)

● Snakemake determines which jobs to run to 
produce desired outputs

○ DAG depends on Snakefile, requested target outputs, and 
files already present

● Rule can appear more than once, with different 
wildcards

○ 1 rule + 1 wildcard values = 1 job

● Arrows = dependency between jobs
○ Snakemake runs jobs in any order that doesn’t break 

dependency

● DAG = work list, ≠ flowchart
○ No if/else decisions or loops
○ Snakemake runs every job in the DAG exactly once

● DAG does not check shell directives
○ Shell commands are tested during execution (1. Works? 2. 

Produces expected outputs?)
5



Building a Directed Acyclic Graph (DAG)

● Snakemake determines which jobs to run to 
produce desired outputs

○ DAG depends on Snakefile, requested target outputs, and 
files already present

● Rule can appear more than once, with different 
wildcards

○ 1 rule + 1 wildcard values = 1 job

● Arrows = dependency between jobs
○ Snakemake runs jobs in any order that doesn’t break 

dependency

● DAG = work list, ≠ flowchart
○ No if/else decisions or loops
○ Snakemake runs every job in the DAG exactly once

● DAG does not check shell directives
○ Shell commands are tested during execution (1. Works? 2. 

Produces expected outputs?)
6



DAG (re-)run policy

● Snakemake runs a job if:
○ Target file explicitly requested is missing
○ Intermediate file is missing and needed to create target file
○ Input file is newer than an output file (timestamps comparison)
➢ Can skip parts of the DAG

● Allows to:
○ Change/add inputs to existing analysis without re-running everything
○ Resume running a workflow that failed part-way

● Altering DAG (re-)run policy:
○ -f, --force <target_name>
○ -F, --forceall
○ -R, --forcerun <rule_name>
○ --rerun-triggers {mtime,params,input,software-env,code}
○ --touch

7



DAG (re-)run policy

● Snakemake runs a job if:
○ Target file explicitly requested is missing
○ Intermediate file is missing and needed to create target file
○ Input file is newer than an output file (timestamps comparison… but not only)
➢ Can skip parts of the DAG

● Allows to:
○ Change/add inputs to existing analysis without re-running everything
○ Resume running a workflow that failed part-way

● Altering DAG (re-)run policy:
○ -f, --force <target_name>
○ -F, --forceall
○ -R, --forcerun <rule_name>
○ --rerun-triggers {mtime,params,input,software-env,code}
○ --touch

8



Several problems…

9



Several problems…

● Hard-coded file paths

● Processing list of files

● Only one input/output per rule

● Resources are not optimised

10



… that can be solved!

● Hard-coded file paths

● Processing list of files

● Only one input/output per rule

● Resources are not optimised

11

Placeholders and wildcards

expand() syntax

Numbered/named inputs/outputs

log, benchmarks, threads, memory…



Avoiding hard-coded filepaths: placeholders

● Placeholder:

○ A person or thing that occupies the position or place of another person or thing

○ A symbol in a mathematical or logical expression that may be replaced by the name of any element of 

a set

From the Merriam-Webster dictionary

12



Avoiding hard-coded filepaths: placeholders

13

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
shell:

'cp data/first_step.tsv results/first_step.txt'



Avoiding hard-coded filepaths: placeholders

14

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
shell:

'cp {input} {output}'

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
shell:

'cp data/first_step.tsv results/first_step.txt'



Avoiding hard-coded filepaths: placeholders

● {input} and {output} are placeholders

● Used in shell directive

● Similar to python f-string

● Snakemake will replace them with 

appropriate values before running the 

command

● Many directives can used in placeholders: 

{log}, {benchmark}, {params}…

15

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
shell:

'cp {input} {output}'



Making more general-purpose rules: wildcards

● Wildcards ≈ Snakemake "variables"

16



Making more general-purpose rules: wildcards

● Wildcards ≈ Snakemake "variables"

17

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
shell:

'cp {input} {output}'

“Hard-coded” input and output files



Making more general-purpose rules: wildcards

● Wildcards ≈ Snakemake "variables"

18

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
shell:

'cp {input} {output}'

rule example:
input:

'data/{sample}.tsv'
output:

'results/{sample}.txt'
shell:

'cp {input} {output}'

“Hard-coded” input and output files “General” input/output files 

with wildcards



Making more general-purpose rules: wildcards

● Wildcards ≈ Snakemake "variables"

● Enclose wildcard name with curly brackets { }

● How does Snakemake execution work when there are wildcards?
19

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
shell:

'cp {input} {output}'

rule example:
input:

'data/{sample}.tsv'
output:

'results/{sample}.txt'
shell:

'cp {input} {output}'

“Hard-coded” input and output files “General” input/output files 

with wildcards



Making more general-purpose rules: wildcards

● Wildcards ≈ Snakemake "variables"

● Wildcards are “resolved” from the 

target and propagated to other 

directives
○ Regular expression matching: .+

■ ‘1 or more occurrences of any 

character except newline’

■ Can be constrained

○ Using wildcards forces to ask for 

output(s): Snakemake doesn’t guess!

■ Target rules may not contain 

wildcards.

20

snakemake --cores 1 results/first_step.txt

Snakemake interpretation:

{sample} = "first_step"

rule example:
input:

'data/{sample}.tsv'
output:

'results/{sample}.txt'
shell:

'cp {input} {output}'



Making more general-purpose rules: wildcards

● Wildcards ≈ Snakemake "variables"

● Wildcards are “resolved” from the 

target and propagated to other 

directives
○ Regular expression matching: .+

● Both a workflow and a rule can use 

multiple wildcards

21

rule example:
input:

'data/{sample}_{treatment}.tsv'
output:

'results/{sample}_{treatment}.txt'
shell:

'echo {wildcards.sample};'
'cp {input} {output}'

snakemake --cores 1 results/first_step.txt

Snakemake interpretation:

{sample} = "first"
{treatment} = "step"



Making more general-purpose rules: wildcards

● Wildcards ≈ Snakemake "variables"

● Wildcards are “resolved” from the 

target and propagated to other 

directives
○ Regular expression matching: .+

● Both a workflow and a rule can use 

multiple wildcards

● Input and output files do not have to 

share the same wildcards

● All outputs/logs… created by a 

rule must have same wildcards! 22

Snakemake interpretation:

input = ‘data/first.tsv’

snakemake --cores 1 results/first_step.txt

rule example:
input:

'data/{sample}.tsv'
output:

'results/{sample}_{treatment}.txt'
shell:

'echo {wildcards.sample};'
'cp {input} {output}'



Creating a rule with multiple inputs/outputs

● Rules can use multiple 

inputs/outputs

● Don’t forget the comma!

● Inputs can be accessed by their 

positional index: input[n]
○ Numbering starts at 0

● Named input can be accessed by 

their names: input.input_name
○ You cannot mix named and unnamed 

inputs

23



Creating a rule with multiple inputs/outputs

● Rules can use multiple 

inputs/outputs

● Don’t forget the comma!

● Inputs can be accessed by their 

positional index: input[n]
○ Numbering starts at 0

● Named input can be accessed by 

their names: input.input_name
○ You cannot mix named and unnamed 

inputs

24

rule example:
input:

'data/first_step1.tsv',
'data/first_step2.tsv'

output:
'results/first_step.txt'

shell:
'cat {input} > {output}'



Creating a rule with multiple inputs/outputs

● Rules can use multiple 

inputs/outputs

● Don’t forget the comma!

● Inputs can be accessed by their 

positional index: input[n]
○ Numbering starts at 0

● Named input can be accessed by 

their names: input.input_name
○ You cannot mix named and unnamed 

inputs

25

rule example:
input:

'data/first_step1.tsv',
'data/first_step2.tsv'

output:
'results/first_step.txt'

shell:
'cat {input} > {output}'

shell:
cat data/first_step_1.tsv data/first_step_2.tsv > results/first_step.txt

Input directive values are 

unpacked (replaced by 

a space-separated list)



Creating a rule with multiple inputs/outputs

● Rules can use multiple 

inputs/outputs

● Don’t forget the comma/semicolon!

● Inputs can be accessed by their 

positional index: input[n]
○ Numbering starts at 0

● Named input can be accessed by 

their names: input.input_name
○ You cannot mix named and unnamed 

inputs

26

rule example:
input:

'data/first_step1.tsv',
'data/first_step2.tsv'

output:
'results/first_step.txt'

shell:
'cat {input[0]} > {output};'
'cat {input[1]} >> {output}'

Commands are 

concatenated



Creating a rule with multiple inputs/outputs

● Rules can use multiple 

inputs/outputs

● Don’t forget the comma!

● Inputs can be accessed by their 

positional index: input[n]
○ Numbering starts at 0

● Named input can be accessed by 

their names: input.input_name
○ You cannot mix named and unnamed 

inputs

27

rule example:
input:

'data/first_step1.tsv',
'data/first_step2.tsv'

output:
'results/first_step.txt'

shell:
'''
cat {input[0]} > {output}
cat {input[1]} >> {output}
'''



Creating a rule with multiple inputs/outputs

● Rules can use multiple 

inputs/outputs

● Don’t forget the comma!

● Inputs can be accessed by their 

positional index: input[n]
○ Numbering starts at 0

● Named input can be accessed by 

their names: input.input_name
○ You cannot mix named and unnamed 

inputs

28

rule example:
input:

input_1='data/first_step1.tsv',
input_2='data/first_step2.tsv'

output:
'results/first_step.txt'

shell:
'''
cat {input.input_1} > {output}
cat {input.input_2} >> {output}
'''



Creating a rule with multiple inputs/outputs

● Outputs work just like inputs
○ Separated by ‘,’

○ Can be named

○ Can be accessed by positional 

index or by name

● All outputs need to be 

generated or the job will fail

29

rule example:
input:

input_1='data/first_step1.tsv',
input_2='data/first_step2.tsv'

output:
output_1='results/first_step1.txt',
output_2='results/first_step2.txt'

shell:
'''
cat {input.input_1} > {output.output_1}
cat {input.input_2} > {output.output_2}
'''snakemake --cores 1 results/first_step_1.txt 

results/first_step_1.txt, results/first_step_2.txt



Processing list of files: the expand syntax

● expand(): Snakemake function to automatically expand a wildcard expression to 

several wildcard values
○ Useful to define multiple inputs or outputs with a common pattern

30



Processing list of files: the expand syntax

● expand(): Snakemake function to automatically expand a wildcard expression to 

several wildcard values
○ Useful to define multiple inputs or outputs with a common pattern

○ Syntax: expand('{wildcard_name}', wildcard_name=<values>)

■ <values>: iterable (i.e. list, tuple, set) containing the wildcard values

➢ The rule example uses all three input files to generate a single output file. expand() 

does not apply the rule separately to the three inputs! 
31

rule example:
input:

'data/A.tsv',
'data/B.tsv',
'data/C.tsv'

output:
'results/total.tsv'

shell:
'cat {input} > {output}'

rule example:
input:

expand('data/{sample}.tsv', sample=[‘A,‘B’,‘C’])
output:

'results/total.tsv'
shell:

'cat {input} > {output}'



Processing list of files: the expand syntax

● When there are several wildcards, expand() creates all possible combinations

➢ input = 'data/A_1.tsv data/A_2.tsv data/B_1.tsv data/B_2.tsv'

32



Processing list of files: the expand syntax

● When there are several wildcards, expand() creates all possible combinations

➢ input = 'data/A_1.tsv data/A_2.tsv data/B_1.tsv data/B_2.tsv'

33

samples=[‘A,‘B’]
replicates = [1, 2]

rule example:
input:

expand('data/{sample}_{replicate}.tsv', sample=samples, replicate=replicates)
output:

'results/total.tsv'
shell:

'cat {input} > {output}'



Processing list of files: the expand syntax

● The wildcards in expand are INDEPENDENT from any other wildcard in the rule

➢ In this case, the value of the {sample} wildcard will NOT be propagated to the input

34



Processing list of files: the expand syntax

● The wildcards in expand are INDEPENDENT from any other wildcard in the rule

➢ In this case, the value of the {sample} wildcard will NOT be propagated to the input

35

samples=[‘A,‘B’]
replicates = [1, 2]

rule example:
input:

expand('data/{sample}_{replicate}.tsv', sample=samples, replicate=replicates)
output:

'results/{sample}.tsv'
shell:

'cat {input} > {output}'



Optimising workflow performances

● Producing log files

● Benchmarking rules

● Multi-threading and controlling resource usage

36



Optimising workflow performances: log files

● ‘log’ is a directive; its value is a path to 

a log file for a rule
○ Can be accessed with a placeholder in 

‘shell’: {log}

● Logs still need to be handled manually 

for each command, but Snakemake 

automatically creates the directory in 

the log file path

● Log files must have the same 

wildcards as the output!

● Best to regroup logs in a “logs” folder
37



Optimising workflow performances: log files

● ‘log’ is a directive; its value is a path to 

a log file for a rule
○ Can be accessed with a placeholder in 

‘shell’: {log}

● Logs still need to be handled manually 

for each command, but Snakemake 

automatically creates the directory in 

the log file path

● Log files must have the same 

wildcards as the output!

● Best to regroup logs in a “logs” folder
38

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
log:

'logs/first_step.log'
shell:

'cp {input} {output} 2> {log}'



Optimising workflow performances: log files

● ‘log’ is a directive; its value is a path to 

a log file for a rule
○ Can be accessed with a placeholder in 

‘shell’: {log}

● Logs still need to be handled manually 

for each command, but Snakemake 

automatically creates the directory in 

the log file path

● Log files must have the same 

wildcards as the output!

● Best to regroup logs in a ‘logs’ folder
39

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
log:

'logs/first_step.log'
shell:

'cp {input} {output} 2> {log}'



Optimising workflow performances: benchmarks

● ‘benchmark’ is a directive; its value is a 

path to a benchmark results file for a rule

● Snakemake will automatically measure 

runtime and memory usage for the rule 

and save it to the file

● Benchmark files must have the same 

wildcards as the output!

● Best to regroup benchmarks in a 

‘benchmarks folder

40



Optimising workflow performances: benchmarks

● ‘benchmark’ is a directive; its value is a 

path to a benchmark results file for a rule

● Snakemake will automatically measure 

runtime and memory usage for the rule 

and save it to the file

● Benchmark files must have the same 

wildcards as the output!

● Best to regroup benchmarks in a 

‘benchmarks folder

41

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
benchmark:

'benchmarks/first_step.txt'
shell:

'cp {input} {output}'



Optimising workflow performances: benchmarks

● ‘benchmark’ is a directive; its value is a 

path to a benchmark results file for a rule

● Snakemake will automatically measure 

runtime and memory usage for the rule 

and save it to the file

● Benchmark files must have the same 

wildcards as the output!

● Best to regroup benchmarks in a 

‘benchmarks folder

42

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
benchmark:

'benchmarks/first_step.txt'
shell:

'cp {input} {output}'



Optimising workflow performances: threads

● ‘threads’ is a directive; its value is the number of threads to allocate to each job 

spawned by a rule
○ New kind of directive value: numeric (integer)

○ Check whether software can actually multithread!

○ In local mode, total number of threads allocated to Snakemake is constrained by the execution 

parameter ‘--cores’

43



Optimising workflow performances: threads

● ‘threads’ is a directive; its value is the number of threads to allocate to each job 

spawned by a rule
○ New kind of directive value: numeric (integer)

○ Check whether software can actually multithread!

○ In local mode, total number of threads allocated to Snakemake is constrained by the execution 

parameter ‘--cores’

44

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
threads: 4
shell:

'command --threads {threads} {input} > {output}'



Optimising workflow performances: resources

● ‘resources’ is a directive; its values aim 

to set the resources available for a job
○ New kind of directive value: pair of 

<key>=<value>

● mem_<unit>
○ Amount of memory needed by the job

○ <unit>: mb, gb, tb…

● runtime_<unit>
○ Amount of wall clock time a job needs to run

○ <unit>: s, m, h, d… 

45



Optimising workflow performances: resources

● ‘resources’ is a directive; its values aim 

to set the resources available for a job
○ New kind of directive value: pair of 

<key>=<value>

● mem_<unit>
○ Amount of memory needed by the job

○ <unit>: mb, gb, tb…

● runtime_<unit>
○ Amount of wall clock time a job needs to run

○ <unit>: s, m, h, d… 

46

rule example:
input:

'data/first_step.tsv'
output:

'results/first_step.txt'
resources:

mem_gb=1,
runtime_s=3600

shell:
'command {input} > {output}'



Exercises

● Through the day:
○ Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes 

(DEG)

● For now:
○ Session 2:

■ Use multiple inputs and outputs

■ Use placeholders and wildcards

■ Optimise workflow performance

■ Visualise a DAG

○ Session 3:

■ Use non-file parameters

■ Manage non-conventional outputs

■ Process list of inputs

■ Modularise a workflow

47



48


