
Snakemake for reproducible research
Decorating and optimising a Snakemake workflow

Antonin Thiébaut & Rafael Riudavets Puig
antonin.thiebaut@chuv.ch

Rafael.RiudavetsPuig@empa.ch

mailto:antonin.thiebaut@unil.ch

2

● Avoiding hard-coded parameters

● Processing list of files

● Optimising resource usage

What could we improve? (again)

3

config file

expand() syntax

threads directive

What could we improve? (again)

● Avoiding hard-coded parameters

● Processing list of files

● Optimising resource usage

4

config file

expand() syntax

threads directive

What could we improve? (again)

● Avoiding hard-coded parameters

● Processing list of files

● Optimising resource usage

5

● Snakemake can use configuration files to render
workflows more flexible

○ Change config instead of code!

● 2 possible formats: JSON and YAML
○ Personal opinion: YAML is easier to write, understand and

can be commented

● Imported file with configfile keyword in Snakefile
○ configfile: 'path/to/config.yaml' (relative to working directory)

● Accessed via global variable config
○ Imported as a Python dictionary (use keys to access values):

config['samples']

Avoiding hard-coded parameters: config file

6

● Snakemake can use configuration files to render
workflows more flexible

○ Change config instead of code!

● 2 possible formats: JSON and YAML
○ Personal opinion: YAML is easier to write, understand and

can be commented

● Imported file with configfile keyword in Snakefile
○ configfile: 'path/to/config.yaml' (relative to working directory)

● Accessed via global variable config
○ Imported as a Python dictionary (use keys to access values):

config['samples']

Avoiding hard-coded parameters: config file

retries: 5 # Single value
samples: # Multiple values
 - file1
 - file2
resources: # Nested parameters
 threads: 8
 memory: 500M YAML

{
 "retries": 5,
 "samples": [
 "file1",
 "file2"
],
 "resources": {
 "threads": 8,
 "memory": "500M"
 }
} JSON

7

● Snakemake can use configuration files to render
workflows more flexible

○ Change config instead of code!

● 2 possible formats: JSON and YAML
○ Personal opinion: YAML is easier to write, understand and

can be commented

● Imported file with configfile keyword in Snakefile
○ configfile: 'path/to/config.yaml' (relative to working directory)

● Accessed via global variable config
○ Imported as a Python dictionary (use keys to access values):

config['samples']

configfile: 'config.yaml'

Snakefile

Avoiding hard-coded parameters: config file

8

● Question 5

Config file?

9

● Ideally, everything that should not be hard-coded:
○ File locations
○ Sample names and associated information
○ Rule computing resources
○ Etc…

● But it is preferable to use paths to other smaller config files
○ Same as Snakefile and snakefiles
○ Example:

■ Table containing the sample names and information: config/samples_info.tsv
● Tab-separated format is easy to write, read and parse

■ In the config file: samples: 'config/samples_info.tsv'
■ Add a function in a Snakefile to parse the table

What should appear in a config file?

10

● Ideally, everything that should not be hard-coded:
○ File locations
○ Sample names and associated information
○ Rule computing resources
○ Etc…

● But it is preferable to use paths to other smaller config files
○ Same as Snakefile and snakefiles
○ Example:

■ Table containing the sample names and information: config/samples_info.tsv
● Tab-separated format is easy to write, read and parse

■ In the config file: samples: 'config/samples_info.tsv'
■ Add a function in a Snakefile to parse the table

What should appear in a config file?

11

● Credentials: access tokens, passwords…

⇒ Use environment variables (envvars)

What should NOT appear in a config file?

12

config file

expand() syntax

threads directive

What could we improve? (again)

● Avoiding hard-coded parameters

● Processing list of files

● Optimising resource usage

13

● expand(): Snakemake function to expand a wildcard expression to several values
○ Useful to define multiple inputs or outputs with a common pattern

Processing list of files: the expand syntax

14

● expand(): Snakemake function to expand a wildcard expression to several values
○ Useful to define multiple inputs or outputs with a common pattern
○ Syntax: expand('{wildcard_name}', wildcard_name=<values>)

■ <values>: iterable (i.e. list, tuple, set) containing the wildcard values

➢ The rule merge_files uses all three input files to generate a single output file
➢ expand() does not apply the rule three times, once per input!

rule merge_files:
 input:
 'data/test_1.txt',
 'data/test_2.txt',
 'data/test_3.txt'
 output:
 'results/total.txt'
 shell:
 'cat {input} > {output}'

rule merge_files:
 input:
 expand('data/test_{file}.txt', file=[1, 2, 3])
 output:
 'results/total.txt'
 shell:
 'cat {input} > {output}'

Processing list of files: the expand syntax

15

● When there are several wildcards, expand() creates all possible combinations

Processing list of files: the expand syntax

16

● When there are several wildcards, expand() creates all possible combinations

files = ['test_A','test_B']
nbs = [1, 2]

rule merge_files:
 input:
 expand('data/{file}_{nb}.txt', file=files, nb=nbs)
 output:
 'results/total.txt'
 shell:
 'cat {input} > {output}'

input:
 ['data/test_A_1.txt', 'data/test_A_2.txt',
 'data/test_B_1.txt', 'data/test_B_2.txt']

Processing list of files: the expand syntax

17

● The wildcards in expand() are independent from wildcards in the rule

➢ In this case, the value of the {sample} wildcard will NOT be propagated to the input

Processing list of files: the expand syntax

18

● The wildcards in expand() are independent from wildcards in the rule

➢ Here, {file} value will NOT be propagated to the input

files=['test_A','test_B']
nbs = [1, 2]

rule merge_files:
 input:
 expand('data/{file}_{nb}.txt', file=files, nb=nbs)
 output:
 'results/{file}.txt'
 shell:
 'cat {input} > {output}'

Processing list of files: the expand syntax

19

config file

expand() syntax

threads directive

What could we improve? (again)

● Avoiding hard-coded parameters

● Processing list of files

● Optimising resource usage

20

● 'threads' is a directive; its value is the number of threads to allocate to each job
spawned by a rule

○ New type of value: numeric (integer)
○ When executed locally, '--cores' controls the total number of threads allocated to Snakemake; threads

is automatically decreased if it's lower than '--cores'
○ Check whether software can actually multithread!

rule example:
 input:
 'data/test.txt'
 output:
 'results/modified_test.txt'
 threads: 4
 shell:
 'command --threads {threads} {input} > {output}'

Optimising resource usage: threads

21

● Through the day:
○ Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes

(DEG)

● For this session:
○ Use a config file
○ Modularise a workflow
○ Process list of inputs
○ Aggregate outputs in a target rule
○ (Optimise CPU usage)

Exercises

