
Snakemake for reproducible research
Running Snakemake in an HPC environment

Antonin Thiébaut & Rafael Riudavets Puig
antonin.thiebaut@chuv.ch

Rafael.RiudavetsPuig@empa.ch

mailto:antonin.thiebaut@unil.ch

2

● Are you familiar with HPC environments?

3

● Are you familiar with SLURM?

4

● Aggregated computing resources to gain
performance greater than that of a single
workstation, server, or computer

● Used to run computationally heavy processes

● Commonly used simultaneously by multiple
users

● Job schedulers (i.e. SLURM) manage jobs sent
by all users to ensure a safe and efficient use
of the resources

● Extra configuration required:
○ RAM usage, CPUs, run time, …

HPC environments

Statistical Computing and Communication
https://ekatsevi.github.io/statistical-computing/hpc-basics.html

https://ekatsevi.github.io/statistical-computing/hpc-basics.html

5

python myscript.py

sbatch \
 --account=account_name \
 --partition=partition_name \
 --cpus-per-task=4 \
 --time=00:00:30 \
 python myscript.py

Local Remote

Local versus remote execution

6

python myscript.py

Local Remote

#!/bin/bash
#SBATCH --job-name=test
#SBATCH --account=account_name
#SBATCH --partition=partition_name
#SBATCH --cpus-per-task=4
#SBATCH --time=00:00:30

python myscript.py

sbatch jobscript.sh

jobscript.sh

Local versus remote execution

7

Running Snakemake in HPC environments

● Snakemake can interact with multiple schedulers to run on clusters and cloud:
○ AWS
○ Azure
○ Flux
○ Google Batch
○ HTCondor
○ Kubernetes
○ LSF
○ Slurm

● Almost no changes required to the rules
○ Scheduler command can take job information from rule definition
○ One key parameter: maximum number of jobs running in parallel: -j / --jobs

● Implemented with:
○ v7 and before: --cluster "<scheduler_name>" in the Snakemake command
○ v8+: install plugins then --executor "<scheduler_name>" in the Snakemake command

https://snakemake.github.io/snakemake-plugin-catalog/

8

● Checking rule resource requirements

● Resource optimisation

Benchmark directive

Resources directive

Towards HPC execution

9

● Checking rule resource requirements

● Resource optimisation

Benchmark directive

Resources directive

Towards HPC execution

10

● 'benchmark' is a directive; its value is a
path to a benchmark results file for a rule

• Snakemake will measure runtime and
memory usage for the rule and save it
to the file

• Benchmark files must have the same
wildcards as the output!

• Best practice: put all benchmarks in
same folder

rule rename_file:
 input:
 'data/test.txt'
 output:
 'results/renamed_file.txt'
 benchmark:
 'benchmarks/renaming.txt'
 shell:
 'mv {input} {output}'

Checking rule resource requirements: benchmarks

11

● 'benchmark' is a directive; its value is a
path to a benchmark results file for a rule

● Snakemake will measure runtime and
memory usage for the rule and save it
to the file

• Benchmark files must have the same
wildcards as the output!

• Best practice: put all benchmarks in
same folder

rule rename_file:
 input:
 'data/test.txt'
 output:
 'results/renamed_file.txt'
 benchmark:
 'benchmarks/renaming.txt'
 shell:
 'mv {input} {output}'

Checking rule resource requirements: benchmarks

12

● 'benchmark' is a directive; its value is a
path to a benchmark results file for a rule

● Snakemake will measure runtime and
memory usage for the rule and save it
to the file

● Benchmark files must have the same
wildcards as the output!

● Best practice: put all benchmarks in
same folder

rule rename_file:
 input:
 'data/test.txt'
 output:
 'results/renamed_file.txt'
 benchmark:
 'benchmarks/renaming.txt'
 shell:
 'mv {input} {output}'

Checking rule resource requirements: benchmarks

13

● Checking rule resource requirements

● Resource optimisation

Benchmark directive

Resources directive

Towards HPC execution

14

● 'resources' is a directive; its values set
the resources available for a job

○ New kind of directive value: pair of
<key>=<value>

● mem_<unit>
○ Amount of memory needed by the job
○ <unit>: mb, gb, tb…

● runtime_<unit>
○ Amount of wall clock time a job needs to run
○ <unit>: s, m, h, d…

Optimising resource usage: memory and runtime

15

● 'resources' is a directive; its values set
the resources available for a job

○ New kind of directive value: pair of
<key>=<value>

● mem_<unit>
○ Amount of memory needed by the job
○ <unit>: mb, gb, tb…

● runtime_<unit>
○ Amount of wall clock time a job needs to run
○ <unit>: s, m, h, d…

rule example:
 input:
 'data/test.txt'
 output:
 'results/modified_test.txt'
 resources:
 mem_gb = 1,
 runtime_h = 1
 shell:
 'command {input} > {output}'

Optimising resource usage: memory and runtime

16

● Job resources are determined as follows:
○ Specifying them by using the resources directive
○ Using default values when no resources specified:

■ RAM: max(2*input.size_mb, 1000)
■ Disk space: max(2*input.size_mb, 1000)
■ Temporary directory: system's tempdir

● Default resources can also be extended when
calling Snakemake (i.e. slurm account)

rule myrule:
 input:
 'input_{file}.txt'
 output:
 'output_{file}.txt'
 resources:
 mem_mb = 100
 shell:
 'cat {input} > {output}'

Specifying job resources in Snakemake

17

● Some jobs are so small that it would be
wasteful (and would take longer) to execute on
an HPC

● You can define local execution rules using:
● localrules keyword
● localrule directive

localrules: light

rule light:
 input: 'input.txt'
 output: 'light_output.txt'
 resources:
 mem_mb = 100
 shell:
 'bash light.sh –i {input} -o {output}'

rule heavy:
 input: light.output
 output: 'heavy_output.txt'
 resources:
 mem_mb = 40000
 shell:
 'bash heavy.sh –i {input} -o {output}'

Rule-specific settings in the Snakefile

18

● Some jobs are so small that it would be
wasteful (and would take longer) to execute on
an HPC

● You can define local execution rules using:
● localrules keyword
● localrule directive

rule light:
 input: 'input.txt'
 output: 'light_output.txt'
 resources:
 mem_mb = 100
 localrule: True
 shell:
 'bash light.sh –i {input} -o {output}'

rule heavy:
 input: light.output
 output: 'heavy_output.txt'
 resources:
 mem_mb = 40000
 shell:
 'bash heavy.sh –i {input} -o {output}'

Rule-specific settings in the Snakefile

19

Configuration profiles

20

Configuration profiles

● Preconfigured configuration parameters: resources, executor, sdm…
○ Can manage executor parameters as well:

■ Scripts to submit jobs
■ Scripts to check job status
■ Advanced customisation

● Currently, there are two types of profile:
○ Global: directory stored in ~/.config/snakemake/<profile_name>/
○ Workflow-specific: directory named <profile_name> and containing a config.yaml file.

● The directory contains config files in YAML format.

● Official list of Snakemake profiles here

https://github.com/snakemake-profiles

21

executor: cluster-generic
cluster-generic-submit-cmd: 'sbatch –job-name={rule} –cpus-per-task={threads}'
jobs: 10

● executor: used to indicate how to communicate with the scheduler
○ cluster-generic is a Snakemake plugin that handles communication with the scheduler

● cluster-generic-submit-cmd: command to use to run the jobs
○ In SLURM, this command is sbatch followed by the arguments you want to use

● jobs: used to indicate the maximum amount of jobs to run simultaneously
○ Useful to avoid overloading the cluster

./

Snakefile
config.yaml
myprofile/

config.yaml

input_data/

Configuration profiles

22

● Once set up, running Snakemake using a profile is as simple as:

snakemake --profile <path_to_profile_folder>

Running Snakemake using a profile

23

● Through the day:
○ Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes

(DEG)

● For this session:
○ Benchmark rules to understand resource usage
○ Optimise resource usage
○ Create a configuration profile
○ Run a Snakemake workflow while sending jobs through SLURM

Exercises

24

● Snakemake helps with reproducibility:
○ OS, language, software, versions, parameters control via Conda and containers

■ Avoid installation problems!
○ Readability: written in Python, has a well-defined structure
○ Availability: easy to share via WorkflowHub, Snakemake workflow catalog or git
○ Every command run by Snakemake is saved!

● And it has many uses:
○ Easily deployable/executable, locally or remotely
○ Scalable, up to thousands of jobs

■ Easy to parallelise
○ Snakemake can do a lot for you!
○ Beautiful DAG in one command, no more powerpoint or Photoshop!

Conclusion

https://snakemake.github.io/snakemake-workflow-catalog/

