
Snakemake for reproducible research
Making a more general-purpose Snakemake workflow

Antonin Thiébaut
antonin.thiebaut@chuv.ch

mailto:antonin.thiebaut@unil.ch


Pop quiz

2

rule rename_file:

input:

rules.create_file.output

output:

'results/renamed_file.txt'

shell:

'mv {input} {output}'



Pop quiz

● Snakemake keyword

● Rule name (user-defined)

● Snakemake directives

● Directives values:
○ Object

○ String (file path)

○ Instruction (command)

○ Numeric values (seen later)

● Mystery syntax?

3

rule rename_file:

input:

rules.create_file.output

output:

'results/renamed_file.txt'

shell:

'mv {input} {output}'



Building a Directed Acyclic Graph (DAG)

● Snakemake determines which jobs to run to 
produce desired outputs

● Rule can appear more than once, with different 
wildcards

○ 1 rule + 1 wildcard values = 1 job

● Arrows = dependency between jobs
○ Snakemake runs jobs in any order that doesn't break 

dependency

● DAG = work list, ≠ flowchart
○ No if/else decisions or loops
○ Snakemake runs every job in the DAG exactly once

● DAG does not check shell directives
○ Shell commands are tested during execution (1. 

Works? 2. Produces expected outputs?)
4



Building a Directed Acyclic Graph (DAG)

5

● Snakemake determines which jobs to run to 
produce desired outputs

● Rule can appear more than once, with 
different wildcards

○ 1 rule + 1 wildcard values = 1 job

● Arrows = dependency between jobs
○ Snakemake runs jobs in any order that doesn't 

break dependency

• DAG = work list, ≠ flowchart
• No if/else decisions or loops
• Snakemake runs every job in the DAG exactly once

• DAG ≠ checking shell directives
• Shell commands are tested during execution

• Works? Produces expected outputs?



Building a Directed Acyclic Graph (DAG)

6

● Snakemake determines which jobs to run to 
produce desired outputs

● Rule can appear more than once, with 
different wildcards

○ 1 rule + 1 wildcard values = 1 job

● Arrows = dependency between jobs
○ Snakemake runs jobs in any order that doesn't 

break dependency

● DAG = work list, ≠ flowchart
○ No if/else decisions or loops
○ Snakemake runs every job in the DAG exactly once

● DAG ≠ checking shell directives
○ Shell commands are tested during execution

■ Works? Produces expected outputs?



What is a DAG useful?

● Skip parts of the DAG to avoid recomputing → Save time and resources (CPU, 

memory, energy, money)

● Change/add inputs to existing analyses without re-running everything

● Resume running a workflow that failed part-way

7



What could we improve?

8



What could we improve?

● Using hard-coded file paths

● Having multiple inputs/outputs per rule

● (Checking Snakemake behaviour)

9



What could we improve?

● Using hard-coded file paths

● Having multiple inputs/outputs per rule

● (Checking Snakemake behaviour)

10

Placeholders and wildcards

Numbered/named inputs/outputs

(Log files, benchmarks)



Avoiding hard-coded filepaths: placeholders

● Placeholder:

○ A person or thing that occupies the position or place of another person or thing

○ A symbol in a mathematical or logical expression that may be replaced by the name of any element of 

a set

(From the Merriam-Webster dictionary)

11



Avoiding hard-coded filepaths: placeholders

12

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_test.txt'

shell:

'mv data/test.txt results/renamed_test.txt'



Avoiding hard-coded filepaths: placeholders

13

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_test.txt'

shell:

'mv {input} {output}'

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_test.txt'

shell:

'mv data/test.txt results/renamed_test.txt'



Avoiding hard-coded filepaths: placeholders

● {input} and {output} are placeholders

● Used in shell directive

● Similar to python f-string

● Snakemake will replace them with 

appropriate values before running the 

command

● Many directives can use placeholders: 

{log}, {benchmark}, {params}…

14

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_test.txt'

shell:

'mv {input} {output}'



Making more general-purpose rules: wildcards

● Wildcards ≈ "variables" 

automatically inferred by 

Snakemake

● Enclose wildcard name with 

curly brackets { }

15



Making more general-purpose rules: wildcards

● Wildcards ≈ "variables" 

automatically inferred by 

Snakemake

● Enclose wildcard name with 

curly brackets { }

16

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_test.txt'

shell:

'mv {input} {output}'

Defined paths



Making more general-purpose rules: wildcards

● Wildcards ≈ "variables" 

automatically inferred by 

Snakemake

● Enclose wildcard name with 

curly brackets { }

17

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_test.txt'

shell:

'mv {input} {output}'

Adaptable paths 

with wildcards

rule rename_file:

input:

'data/{file}.tsv'

output:

'results/renamed_{file}.txt'

shell:

'mv {input} {output}'

Defined paths



Making more general-purpose rules: wildcards

● Wildcards ≈ "variables" 

automatically inferred by 

Snakemake

● Enclose wildcard name with 

curly brackets { }

18

Defined paths

Adaptable paths 

with wildcards

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_test.txt'

shell:

'mv {input} {output}'

rule rename_file:

input:

'data/{file}.tsv'

output:

'results/renamed_{file}.txt'

shell:

'mv {input} {output}'



Making more general-purpose rules: wildcards

● Wildcards are "resolved" from the 

target and propagated to other 

directives
○ Regular expression matching: .+

■ "1 or more occurrences of any 

character except newline"

○ Can be constrained

● Using wildcards forces to ask for 

output(s): Snakemake doesn't 

guess!
○ Target rules cannot contain wildcards

19

rule rename_file:

input:

'data/{file}.txt'

output:

'results/renamed_{file}.txt'

shell:

'mv {input} {output}'

snakemake --cores 1 results/renamed_test.txt

input: 'data/test.txt'

{file} = "test"



Making more general-purpose rules: wildcards

● Wildcards are "resolved" from the 

target and propagated to other 

directives
○ Regular expression matching: .+

● Both a workflow and a rule can use 

multiple wildcards

20

rule rename_file:

input:

'data/{file}_{nb}.txt'

output:

'results/renamed_{file}_{nb}.txt'

shell:

'mv {input} {output}'

snakemake --cores 1 results/renamed_test_1.txt

input: 'data/test_1.txt'

{file} = "test"; {nb} = "1"



Making more general-purpose rules: wildcards

● Wildcards are "resolved" from the 

target and propagated to other 

directives
○ Regular expression matching: .+

● Both a workflow and a rule can use 

multiple wildcards

● Input and output files do not need to 

share the same wildcards

● All outputs, logs… created by a 

rule must have the same wildcards!

21

rule rename_file:

input:

'data/{file}.txt'

output:

'results/renamed_{file}_{nb}.txt'

shell:

'mv {input} {output}'

snakemake --cores 1 results/renamed_test_1.txt

input: 'data/test.txt'

{file} = "test"; {nb} = "1"



Creating rules with multiple inputs/outputs

● Rules can use multiple inputs/outputs
○ Separated by a comma

○ Input values are unpacked (replaced by a 

space-separated list)

• Shell can have multiple commands
• Separated by a semicolon

• Commands are concatenated

• Inputs can be accessed by their positional 

index: input[n]
• Numbering starts at 0

• Named input can be accessed by their 

names: input.input_name
22



rule gather_files:

input:

'data/test1.txt',

'data/test2.txt'

output:

'results/merged_test.txt'

shell:

'cat {input} > {output}'

Creating rules with multiple inputs/outputs

● Rules can use multiple inputs/outputs
○ Separated by a comma

○ Input values are unpacked (replaced by a 

space-separated list)

• Shell can have multiple commands
• Separated by a semicolon

• Commands are concatenated

• Inputs can be accessed by their positional 

index: input[n]
• Numbering starts at 0

• Named input can be accessed by their 

names: input.input_name
23

shell:

'cat data/test1.txt data/test2.txt > results/merged_test.txt'



Creating rules with multiple inputs/outputs

● Rules can use multiple inputs/outputs
○ Separated by a comma

○ Input values are unpacked (replaced by a 

space-separated list)

● Shell can have multiple commands
○ Separated by a semicolon

○ Commands are concatenated

• Inputs can be accessed by their positional 

index: input[n]
• Numbering starts at 0

• Named input can be accessed by their 

names: input.input_name
24

rule gather_files:

input:

'data/test1.txt',

'data/test2.txt'

output:

'results/merged_test.txt'

shell:

'cat {input} > {output}';

'cat {input} >> {output}'



rule gather_files:

input:

'data/test1.txt',

'data/test2.txt'

output:

'results/merged_test.txt'

shell:

'''

cat {input} > {output}

cat {input} >> {output}

'''

Creating rules with multiple inputs/outputs

● Rules can use multiple inputs/outputs
○ Separated by a comma

○ Input values are unpacked (replaced by a 

space-separated list)

● Shell can have multiple commands
○ Separated by a semicolon

○ Commands are concatenated

• Inputs can be accessed by their positional 

index: input[n]
• Numbering starts at 0

• Named input can be accessed by their 

names: input.input_name
25



Creating rules with multiple inputs/outputs

● Rules can use multiple inputs/outputs
○ Separated by a comma

○ Input values are unpacked (replaced by a 

space-separated list)

● Shell can have multiple commands
○ Separated by a semicolon

○ Commands are concatenated

● Inputs can be accessed by their positional 

index: input[n]
○ Numbering starts at 0

• Named input can be accessed by their 

names: input.input_name
26

rule gather_files:

input:

'data/test1.txt',

'data/test2.txt'

output:

'results/merged_test.txt'

shell:

'''

cat {input[0]} > {output}

cat {input[1]} >> {output}

'''



Creating rules with multiple inputs/outputs

● Rules can use multiple inputs/outputs
○ Separated by a comma

○ Input values are unpacked (replaced by a 

space-separated list)

● Shell can have multiple commands
○ Separated by a semicolon

○ Commands are concatenated

● Inputs can be accessed by their positional 

index: input[n]
○ Numbering starts at 0

● Named inputs can be accessed by their 

names: input.input_name
27

rule gather_files:

input:

file_1='data/test1.txt',

file_2='data/test2.txt'

output:

'results/merged_test.txt'

shell:

'''

cat {input.file_1} > {output}

cat {input.file_2} >> {output}

'''



Creating rules with multiple inputs/outputs

● Outputs work like inputs
○ Separated by ','

○ Can be named

○ Can be accessed by positional 

index or by name

● All outputs need to be 

created or the job will fail

28

rule gather_files:

input:

file_1='data/test1.tsv',

file_2='data/test2.tsv'

output:

copy_1='results/copied_test1.txt',

copy_2='results/copied_test2.txt'

shell:

'''

cat {input.file_1} > {output.copy_1}

cat {input.file_2} > {output.copy_2}

'''

snakemake --cores 1 results/first_step_1.txt 

'results/first_step_1.txt', 'results/first_step_2.txt'



Checking Snakemake behaviour

● Producing log files

● Benchmarking rules

29



Checking Snakemake behaviour: log files

● 'log' is a directive; its value is a path to 

a log file for one rule
○ Can be accessed with a placeholder in shell: 

{log}

● You need to manually redirect 

messages to logs, but Snakemake 

automatically creates the folder path

• Log files must have the same 

wildcards as the output!

• Good practice: put all logs in same 

folder
30

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

log:

'logs/renaming.log'

shell:

'mv {input} {output} 2> {log}'



Checking Snakemake behaviour: log files

● 'log' is a directive; its value is a path to 

a log file for one rule
○ Can be accessed with a placeholder in shell: 

{log}

● You need to manually redirect 

messages to logs, but Snakemake 

automatically creates the folder path

• Log files must have the same 

wildcards as the output!

• Good practice: put all logs in same 

folder
31

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

log:

'logs/renaming.log'

shell:

'mv {input} {output} 2> {log}'



Checking Snakemake behaviour: log files

● 'log' is a directive; its value is a path to 

a log file for one rule
○ Can be accessed with a placeholder in shell: 

{log}

● You need to manually redirect 

messages to logs, but Snakemake 

automatically creates the folder path

● Log files must have the same 

wildcards as the output!

● Good practice: put all logs in same 

folder
32

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

log:

'logs/renaming.log'

shell:

'mv {input} {output} 2> {log}'



Checking Snakemake behaviour: benchmarks

● 'benchmark' is a directive; its value is a 

path to a benchmark results file for a rule

• Snakemake will measure runtime and 

memory usage for the rule and save it 

to the file

• Benchmark files must have the same 

wildcards as the output!

• Best practice: put all benchmarks in 

same folder

33

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

benchmark:

'benchmarks/renaming.txt'

shell:

'mv {input} {output}'



Checking Snakemake behaviour: benchmarks

● 'benchmark' is a directive; its value is a 

path to a benchmark results file for a rule

● Snakemake will measure runtime and 

memory usage for the rule and save it 

to the file

• Benchmark files must have the same 

wildcards as the output!

• Best practice: put all benchmarks in 

same folder

34

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

benchmark:

'benchmarks/renaming.txt'

shell:

'mv {input} {output}'



Checking Snakemake behaviour: benchmarks

● 'benchmark' is a directive; its value is a 

path to a benchmark results file for a rule

● Snakemake will measure runtime and 

memory usage for the rule and save it 

to the file

● Benchmark files must have the same 

wildcards as the output!

● Best practice: put all benchmarks in 

same folder

35

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

benchmark:

'benchmarks/renaming.txt'

shell:

'mv {input} {output}'



Exercises

● Through the day:
○ Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes 

(DEG)

● For this session:
○ Use placeholders and wildcards

○ Use multiple inputs and outputs

○ (Check workflow behaviour)

○ Visualise a DAG

36



37


	Diapositive 1 Snakemake for reproducible research Making a more general-purpose Snakemake workflow
	Diapositive 2 Pop quiz
	Diapositive 3 Pop quiz
	Diapositive 4 Building a Directed Acyclic Graph (DAG)
	Diapositive 5 Building a Directed Acyclic Graph (DAG)
	Diapositive 6 Building a Directed Acyclic Graph (DAG)
	Diapositive 7 What is a DAG useful?
	Diapositive 8 What could we improve?
	Diapositive 9 What could we improve?
	Diapositive 10 What could we improve?
	Diapositive 11 Avoiding hard-coded filepaths: placeholders
	Diapositive 12 Avoiding hard-coded filepaths: placeholders
	Diapositive 13 Avoiding hard-coded filepaths: placeholders
	Diapositive 14 Avoiding hard-coded filepaths: placeholders
	Diapositive 15 Making more general-purpose rules: wildcards
	Diapositive 16 Making more general-purpose rules: wildcards
	Diapositive 17 Making more general-purpose rules: wildcards
	Diapositive 18 Making more general-purpose rules: wildcards
	Diapositive 19 Making more general-purpose rules: wildcards
	Diapositive 20 Making more general-purpose rules: wildcards
	Diapositive 21 Making more general-purpose rules: wildcards
	Diapositive 22 Creating rules with multiple inputs/outputs
	Diapositive 23 Creating rules with multiple inputs/outputs
	Diapositive 24 Creating rules with multiple inputs/outputs
	Diapositive 25 Creating rules with multiple inputs/outputs
	Diapositive 26 Creating rules with multiple inputs/outputs
	Diapositive 27 Creating rules with multiple inputs/outputs
	Diapositive 28 Creating rules with multiple inputs/outputs
	Diapositive 29 Checking Snakemake behaviour
	Diapositive 30 Checking Snakemake behaviour: log files
	Diapositive 31 Checking Snakemake behaviour: log files
	Diapositive 32 Checking Snakemake behaviour: log files
	Diapositive 33 Checking Snakemake behaviour: benchmarks
	Diapositive 34 Checking Snakemake behaviour: benchmarks
	Diapositive 35 Checking Snakemake behaviour: benchmarks
	Diapositive 36 Exercises
	Diapositive 37

