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What could we improve? (again)

● Using unknown number of inputs/outputs

● Using scripts from other languages

● Being reproducible
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Input functions, checkpoints

Directives run and script

conda/mamba, Docker/Apptainer



Working with an unknown number of inputs/outputs

● When:
○ Input files depend on wildcards
○ Number of input files is hard to determine

• How to use an input function?
• Define the function above the rule
• Use the syntax input: <function_name>

• No parentheses, no argument

• Input functions = Python functions
• Single argument: 'wildcards'
• Return a file or list of files
• Can also return a dictionary with input 

names as keys
• Use input: unpack(<function_name>) 

to obtain named inputs

• Functions are evaluated before 
workflow execution ➔ can't list output 
files

• No output functions!
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def seq_input(wildcards):

type = wildcards.type

if type == 'SE':

return 'data/file1.fq'

else:

return ['data/file1.fq', 'data/file2.fq']

rule merge_files:

input:

seq_input

output:

'results/{type}.txt'

shell:

'cat {input} > {output}'
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snakemake --cores 1 results/not_SE.txt

{type} = "NotSE"

input:

['data/file1.fq', 'data/file2.fq']

def seq_input(wildcards):

type = wildcards.type

if type == 'SE':

return 'data/file1.fq'

else:

return ['data/file1.fq', 'data/file2.fq']

rule merge_files:

input:

seq_input

output:

'results/{type}.txt'

shell:

'cat {input} > {output}'



Working after an unknown number of inputs/outputs

● aka 'Data-dependent conditional execution' aka checkpoint (instead of rule)

● When:
○ An unknown number of files is generated by a rule

○ Output files are unknown before execution

● Conditional reevaluation of the DAG of jobs based on the outputs content
○ Since DAG is re-evaluated midway ➔ you can't see the whole workflow at the start

● Very complicated!
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Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script
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rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())
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● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

• Problems:
• Inconvenient for long code
• No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())
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● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

script:

'first_step.py'

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())
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● Execute Python/R/R Markdown/Julia/Rust/bash code 
from an external script

● Replaces shell/run

● Access to directive values and variables, like in shell

● Value = path to the script relative to the rule's snakefile

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

script:

'first_step.py'

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())



Executing external code in Snakemake: script

● There are 2 ways to execute external code in Snakemake: run and script

15

● Execute Python/R/R Markdown/Julia/Rust/bash code 
from an external script

● Replaces shell/run

● Access to directive values and variables, like in shell

● Value = path to the script relative to the rule's snakefile

● Advantages:
○ Great for long code
○ Can use conda/singularity directive!!!

● Execute Python code directly from a Snakefile
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○ Inconvenient for long code
○ No conda/container directive!!!
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Executing external code in Snakemake: script

● There are 2 ways to execute external code in Snakemake: run and script
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# Retrieve information from Snakemake

input_file = open(snakemake.input[0])

output_file = open(snakemake.output[0], 'w')

n_lines = snakemake.params.lines

# Process file

for i in range(n_lines):

output_file.write(input_file.readline())

first_step.py

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

script:

'first_step.py'



Executing external code in Snakemake: script

● There are 2 ways to execute external code in Snakemake: run and script
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library(readr)

# Retrieve information from Snakemake

input_path <- snakemake@input[[1]]

output_path <- snakemake@output[[1]]

n_lines <- snakemake@params$lines[1]

# Process file

data <- read_delim(input_path, '\t', n_max=n_lines)

first_step.R

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

script:

'first_step.py'

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())



Being reproducible with Snakemake and Conda

● What is conda?

• Conda/mamba: open-source, cross-platform, 

language-agnostic package manager and environment 

management system

• Channels: field-specific repositories of software

• Conda-forge: general computation

• Bioconda: bioinformatics

• Environments defined in YAML files
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https://conda-forge.org/
https://bioconda.github.io/
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name: python_env

channels:

- conda-forge

- bioconda

dependencies:

- python >= 3.12

- pandas == 2.2.3

py.yaml

https://conda-forge.org/
https://bioconda.github.io/


Being reproducible with Snakemake and Conda
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● Using conda in Snakemake:

○ Snakemake provides integrated package 

management via Conda to define isolated 

software environments per rule

○ Directive: conda

○ Value: path to the environment file 

relative to the rule's snakefile

○ Execution parameter:

■ v7 and before: --use-conda

■ v8+: --software-deployment-method

or  --sdm (shorthand version)



Being reproducible with Snakemake and Conda
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● Using conda in Snakemake:

○ Snakemake provides integrated package 

management via Conda to define isolated 

software environments per rule

○ Directive: conda

■ Value: path to the environment file 

relative to the rule's snakefile

○ Execution parameter:

■ v7 and before: --use-conda

■ v8+: --software-deployment-method

or  --sdm (shorthand version)

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

conda:

'../envs/py.yaml'

shell:

'mv {input} {output}'
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● Using conda in Snakemake:

○ Snakemake provides integrated package 

management via Conda to define isolated 

software environments per rule

○ Directive: conda

■ Value: path to the environment file 

relative to the rule's snakefile
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input:

'data/test.txt'

output:

'results/renamed_file.txt'

conda:

'../envs/py.yaml'

shell:

'mv {input} {output}'

snakemake --cores 1 --use-conda results/renamed_file.txt

snakemake --cores 1 --sdm conda

results/renamed_file.txt



Being reproducible with Snakemake and Docker

● What is Docker?

○ Snakemake provides a Conda integration: it 

automatically deploys a conda environment 

for a rule

○ Directive conda

■ Value = path to the environment file 

relative to the rule's snakefile

○ Execution parameter --use-conda
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Being reproducible with Snakemake and Docker

● Using Docker in Snakemake:

○ Snakemake provides a container integration: it can 
automatically spawn a container created from a 
given image

• Directive: container
• Value: URL/path to the image location
• Handles Docker and Apptainer images
• Global OR rule-specific

• Execution parameter
• v7 and before: --use-singularity
• V8+: --sdm apptainer

• Can be combined with conda --sdm conda apptainer
• Pull the image
• Create the conda env from within the 

container

• Containerisation of Conda-based workflows
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container: 'docker://geertvangeest/deseq2:v1'

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

container:

'docker://geertvangeest/deseq2:v1'

shell:

'mv {input} {output}'
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container: 'docker://geertvangeest/deseq2:v1'

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

container:

'docker://geertvangeest/deseq2:v1'

shell:

'mv {input} {output}'

snakemake -cores 1 --use-singularity results/renamed_file.txt

snakemake -cores 1 –sdm=apptainer results/renamed_file.txt



Being reproducible with Snakemake and Docker

● Using Docker in Snakemake:

○ Snakemake provides a container integration: it can 
automatically spawn a container created from a 
given image

○ Directive: container
■ Value: URL/path to the image location
■ Handles Docker and Apptainer images
■ Global OR rule-specific

○ Execution parameter
■ v7 and before: --use-singularity
■ V8+: --sdm apptainer

○ Can be combined with conda --sdm conda apptainer
■ Pull the image
■ Create the conda env from within the 

container

○ Containerisation of Conda-based workflows
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container: 'docker://geertvangeest/deseq2:v1'

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

container:

'docker://geertvangeest/deseq2:v1'

shell:

'mv {input} {output}'

snakemake --cores 1 --containerize > Dockerfile

snakemake -cores 1 --use-singularity results/renamed_file.txt

snakemake -cores 1 –sdm=apptainer results/renamed_file.txt

snakemake -cores 1 results/renamed_file.txt --sdm conda apptainer



Snakemake environments

● Question 6
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What is the best setting for Snakemake environments?

● Use package and container managers!

● Same as Snakefile and config files: split things reasonably
○ 1 .smk file ≈ 1 'thematic' module ≈ 1 environment

● Always check for version conflicts
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Exercises

● Through the day:
○ Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes 

(DEG)

● For this session:
○ Create and use an input function

○ Run R and Python scripts

○ Deploy a conda environment

○ Deploy a Docker/Singularity container

32



Conclusion

● Snakemake helps with reproducibility:
○ OS, language, software, versions, parameters control via Conda and containers

■ Avoid installation problems!

○ Readability: written in Python, has a well-defined structure 

○ Availability: easy to share via WorkflowHub, Snakemake workflow catalog or git

○ Every command run by Snakemake is saved!

● And it has many uses:
○ Easily deployable/executable, locally or remotely

○ Scalable, up to thousands of jobs

■ Easy to parallelise

○ Snakemake can do a lot for you!

○ Beautiful DAG in one command, no more powerpoint or Photoshop!

33

https://snakemake.github.io/snakemake-workflow-catalog/
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