
Snakemake for reproducible research
Making Snakemake even more reproducible

Antonin Thiébaut
antonin.thiebaut@chuv.ch

mailto:antonin.thiebaut@unil.ch

What could we improve? (again)

● Using unknown number of inputs/outputs

● Using scripts from other languages

● Being reproducible

2

What could we improve? (again)

● Using unknown number of inputs/outputs

● Using scripts from other languages

● Being reproducible

3

Input functions, checkpoints

Directives run and script

conda/mamba, Docker/Apptainer

Working with an unknown number of inputs/outputs

● When:
○ Input files depend on wildcards
○ Number of input files is hard to determine

• How to use an input function?
• Define the function above the rule
• Use the syntax input: <function_name>

• No parentheses, no argument

• Input functions = Python functions
• Single argument: 'wildcards'
• Return a file or list of files
• Can also return a dictionary with input

names as keys
• Use input: unpack(<function_name>)

to obtain named inputs

• Functions are evaluated before
workflow execution ➔ can't list output
files

• No output functions!
4

Working with an unknown number of inputs/outputs

● When:
○ Input files depend on wildcards
○ Number of input files is hard to determine

● How to use an input function?
○ Define the function above the rule
○ Use the syntax input: <function_name>

■ No parentheses, no argument

• Input functions = Python functions
• Single argument: 'wildcards'
• Return a file or list of files
• Can also return a dictionary with input

names as keys
• Use input: unpack(<function_name>)

to obtain named inputs

• Functions are evaluated before
workflow execution ➔ can't list output
files

• No output functions!
5

def seq_input(wildcards):

type = wildcards.type

if type == 'SE':

return 'data/file1.fq'

else:

return ['data/file1.fq', 'data/file2.fq']

rule merge_files:

input:

seq_input

output:

'results/{type}.txt'

shell:

'cat {input} > {output}'

Working with an unknown number of inputs/outputs

● When:
○ Input files depend on wildcards
○ Number of input files is hard to determine

● How to use an input function?
○ Define the function above the rule
○ Use the syntax input: <function_name>

■ No parentheses, no argument

● Input functions = Python functions
○ Single argument: 'wildcards'
○ Return a file or list of files
○ Can also return a dictionary with input

names as keys
■ Use input: unpack(<function_name>)

to obtain named inputs

• Functions are evaluated before
workflow execution ➔ can't list output
files

• No output functions!
6

def seq_input(wildcards):

type = wildcards.type

if type == 'SE':

return 'data/file1.fq'

else:

return ['data/file1.fq', 'data/file2.fq']

rule merge_files:

input:

seq_input

output:

'results/{type}.txt'

shell:

'cat {input} > {output}'

Working with an unknown number of inputs/outputs

● When:
○ Input files depend on wildcards
○ Number of input files is hard to determine

● How to use an input function?
○ Define the function above the rule
○ Use the syntax input: <function_name>

■ No parentheses, no argument

● Input functions = Python functions
○ Single argument: 'wildcards'
○ Return a file or list of files
○ Can also return a dictionary with input

names as keys
■ Use input: unpack(<function_name>)

to obtain named inputs

● Functions are evaluated before
workflow execution ➔ can't list output
files

○ No output functions!
7

snakemake --cores 1 results/not_SE.txt

{type} = "NotSE"

input:

['data/file1.fq', 'data/file2.fq']

def seq_input(wildcards):

type = wildcards.type

if type == 'SE':

return 'data/file1.fq'

else:

return ['data/file1.fq', 'data/file2.fq']

rule merge_files:

input:

seq_input

output:

'results/{type}.txt'

shell:

'cat {input} > {output}'

Working after an unknown number of inputs/outputs

● aka 'Data-dependent conditional execution' aka checkpoint (instead of rule)

● When:
○ An unknown number of files is generated by a rule

○ Output files are unknown before execution

● Conditional reevaluation of the DAG of jobs based on the outputs content
○ Since DAG is re-evaluated midway ➔ you can't see the whole workflow at the start

● Very complicated!

8

Executing external code in Snakemake

● There are 2 ways to execute external code in Snakemake: run and script

9

Executing external code in Snakemake: run

● There are 2 ways to execute external code in Snakemake: run and script

10

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake: run

● There are 2 ways to execute external code in Snakemake: run and script

11

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

• Problems:
• Inconvenient for long code
• No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake: script

● There are 2 ways to execute external code in Snakemake: run and script

12

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake: script

● There are 2 ways to execute external code in Snakemake: run and script

13

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

script:

'first_step.py'

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake: script

● There are 2 ways to execute external code in Snakemake: run and script

14

● Execute Python/R/R Markdown/Julia/Rust/bash code
from an external script

● Replaces shell/run

● Access to directive values and variables, like in shell

● Value = path to the script relative to the rule's snakefile

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

script:

'first_step.py'

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake: script

● There are 2 ways to execute external code in Snakemake: run and script

15

● Execute Python/R/R Markdown/Julia/Rust/bash code
from an external script

● Replaces shell/run

● Access to directive values and variables, like in shell

● Value = path to the script relative to the rule's snakefile

● Advantages:
○ Great for long code
○ Can use conda/singularity directive!!!

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

script:

'first_step.py'

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())

Executing external code in Snakemake: script

● There are 2 ways to execute external code in Snakemake: run and script

16

Retrieve information from Snakemake

input_file = open(snakemake.input[0])

output_file = open(snakemake.output[0], 'w')

n_lines = snakemake.params.lines

Process file

for i in range(n_lines):

output_file.write(input_file.readline())

first_step.py

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

script:

'first_step.py'

Executing external code in Snakemake: script

● There are 2 ways to execute external code in Snakemake: run and script

17

library(readr)

Retrieve information from Snakemake

input_path <- snakemake@input[[1]]

output_path <- snakemake@output[[1]]

n_lines <- snakemake@params$lines[1]

Process file

data <- read_delim(input_path, '\t', n_max=n_lines)

first_step.R

● Execute Python code directly from a Snakefile

● Replaces shell

● Access to directive values and variables, like in shell

● Problems:
○ Inconvenient for long code
○ No conda/container directive!!!

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

script:

'first_step.py'

rule get_header:

input:

'data/file.txt'

output:

'results/file_header.txt'

params:

lines = 5

run:

input_file = open(input[0])

output_file = open(output[0], 'w')

for i in range(params.lines):

output_file.write(input_file.readline())

Being reproducible with Snakemake and Conda

● What is conda?

• Conda/mamba: open-source, cross-platform,

language-agnostic package manager and environment

management system

• Channels: field-specific repositories of software

• Conda-forge: general computation

• Bioconda: bioinformatics

• Environments defined in YAML files

18

https://conda-forge.org/
https://bioconda.github.io/

Being reproducible with Snakemake and Conda

● What is conda?

○ Conda/mamba: open-source, cross-platform,

language-agnostic package manager and environment

management system

○ Channels: field-specific repositories of software

■ Conda-forge: general computation

■ Bioconda: bioinformatics

• Environments defined in YAML files

19

https://conda-forge.org/
https://bioconda.github.io/

Being reproducible with Snakemake and Conda

● What is conda?

○ Conda/mamba: open-source, cross-platform,

language-agnostic package manager and environment

management system

○ Channels: field-specific repositories of software

■ Conda-forge: general computation

■ Bioconda: bioinformatics

○ Environments defined in YAML files

20

name: python_env

channels:

- conda-forge

- bioconda

dependencies:

- python >= 3.12

- pandas == 2.2.3

py.yaml

https://conda-forge.org/
https://bioconda.github.io/

Being reproducible with Snakemake and Conda

21

● Using conda in Snakemake:

○ Snakemake provides integrated package

management via Conda to define isolated

software environments per rule

○ Directive: conda

○ Value: path to the environment file

relative to the rule's snakefile

○ Execution parameter:

■ v7 and before: --use-conda

■ v8+: --software-deployment-method

or --sdm (shorthand version)

Being reproducible with Snakemake and Conda

22

● Using conda in Snakemake:

○ Snakemake provides integrated package

management via Conda to define isolated

software environments per rule

○ Directive: conda

■ Value: path to the environment file

relative to the rule's snakefile

○ Execution parameter:

■ v7 and before: --use-conda

■ v8+: --software-deployment-method

or --sdm (shorthand version)

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

conda:

'../envs/py.yaml'

shell:

'mv {input} {output}'

Being reproducible with Snakemake and Conda

23

● Using conda in Snakemake:

○ Snakemake provides integrated package

management via Conda to define isolated

software environments per rule

○ Directive: conda

■ Value: path to the environment file

relative to the rule's snakefile

○ Execution parameter:

■ v7 and before: --use-conda

■ v8+: --software-deployment-method

or --sdm (shorthand version)

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

conda:

'../envs/py.yaml'

shell:

'mv {input} {output}'

snakemake --cores 1 --use-conda results/renamed_file.txt

snakemake --cores 1 --sdm conda

results/renamed_file.txt

Being reproducible with Snakemake and Docker

● What is Docker?

○ Snakemake provides a Conda integration: it

automatically deploys a conda environment

for a rule

○ Directive conda

■ Value = path to the environment file

relative to the rule's snakefile

○ Execution parameter --use-conda

24

Being reproducible with Snakemake and Docker

● What is Docker?

○ Snakemake provides a Conda integration: it

automatically deploys a conda environment

for a rule

○ Directive conda

■ Value = path to the environment file

relative to the rule's snakefile

○ Execution parameter --use-conda

25

Being reproducible with Snakemake and Docker

● Using Docker in Snakemake:

○ Snakemake provides a container integration: it can
automatically spawn a container created from a
given image

• Directive: container
• Value: URL/path to the image location
• Handles Docker and Apptainer images
• Global OR rule-specific

• Execution parameter
• v7 and before: --use-singularity
• V8+: --sdm apptainer

• Can be combined with conda --sdm conda apptainer
• Pull the image
• Create the conda env from within the

container

• Containerisation of Conda-based workflows

26

Being reproducible with Snakemake and Docker

● Using Docker in Snakemake:

○ Snakemake provides a container integration: it can
automatically spawn a container created from a
given image

○ Directive: container
■ Value: URL/path to the image location
■ Handles Docker and Apptainer images
■ Global OR rule-specific

• Execution parameter
• v7 and before: --use-singularity
• V8+: --sdm apptainer

• Can be combined with conda --sdm conda apptainer
• Pull the image
• Create the conda env from within the

container

• Containerisation of Conda-based workflows

27

container: 'docker://geertvangeest/deseq2:v1'

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

container:

'docker://geertvangeest/deseq2:v1'

shell:

'mv {input} {output}'

Being reproducible with Snakemake and Docker

● Using Docker in Snakemake:

○ Snakemake provides a container integration: it can
automatically spawn a container created from a
given image

○ Directive: container
■ Value: URL/path to the image location
■ Handles Docker and Apptainer images
■ Global OR rule-specific

○ Execution parameter
■ v7 and before: --use-singularity
■ V8+: --sdm apptainer

• Can be combined with conda --sdm conda apptainer
• Pull the image
• Create the conda env from within the

container

• Containerisation of Conda-based workflows

28

container: 'docker://geertvangeest/deseq2:v1'

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

container:

'docker://geertvangeest/deseq2:v1'

shell:

'mv {input} {output}'

snakemake -cores 1 --use-singularity results/renamed_file.txt

snakemake -cores 1 –sdm=apptainer results/renamed_file.txt

Being reproducible with Snakemake and Docker

● Using Docker in Snakemake:

○ Snakemake provides a container integration: it can
automatically spawn a container created from a
given image

○ Directive: container
■ Value: URL/path to the image location
■ Handles Docker and Apptainer images
■ Global OR rule-specific

○ Execution parameter
■ v7 and before: --use-singularity
■ V8+: --sdm apptainer

○ Can be combined with conda --sdm conda apptainer
■ Pull the image
■ Create the conda env from within the

container

○ Containerisation of Conda-based workflows

29

container: 'docker://geertvangeest/deseq2:v1'

rule rename_file:

input:

'data/test.txt'

output:

'results/renamed_file.txt'

container:

'docker://geertvangeest/deseq2:v1'

shell:

'mv {input} {output}'

snakemake --cores 1 --containerize > Dockerfile

snakemake -cores 1 --use-singularity results/renamed_file.txt

snakemake -cores 1 –sdm=apptainer results/renamed_file.txt

snakemake -cores 1 results/renamed_file.txt --sdm conda apptainer

Snakemake environments

● Question 6

30

What is the best setting for Snakemake environments?

● Use package and container managers!

● Same as Snakefile and config files: split things reasonably
○ 1 .smk file ≈ 1 'thematic' module ≈ 1 environment

● Always check for version conflicts

31

Exercises

● Through the day:
○ Develop a simple RNAseq analysis workflow, from reads (fastq files) to Differentially Expressed Genes

(DEG)

● For this session:
○ Create and use an input function

○ Run R and Python scripts

○ Deploy a conda environment

○ Deploy a Docker/Singularity container

32

Conclusion

● Snakemake helps with reproducibility:
○ OS, language, software, versions, parameters control via Conda and containers

■ Avoid installation problems!

○ Readability: written in Python, has a well-defined structure

○ Availability: easy to share via WorkflowHub, Snakemake workflow catalog or git

○ Every command run by Snakemake is saved!

● And it has many uses:
○ Easily deployable/executable, locally or remotely

○ Scalable, up to thousands of jobs

■ Easy to parallelise

○ Snakemake can do a lot for you!

○ Beautiful DAG in one command, no more powerpoint or Photoshop!

33

https://snakemake.github.io/snakemake-workflow-catalog/

34

	Diapositive 1 Snakemake for reproducible research Making Snakemake even more reproducible
	Diapositive 2 What could we improve? (again)
	Diapositive 3 What could we improve? (again)
	Diapositive 4 Working with an unknown number of inputs/outputs
	Diapositive 5 Working with an unknown number of inputs/outputs
	Diapositive 6 Working with an unknown number of inputs/outputs
	Diapositive 7 Working with an unknown number of inputs/outputs
	Diapositive 8 Working after an unknown number of inputs/outputs
	Diapositive 9 Executing external code in Snakemake
	Diapositive 10 Executing external code in Snakemake: run
	Diapositive 11 Executing external code in Snakemake: run
	Diapositive 12 Executing external code in Snakemake: script
	Diapositive 13 Executing external code in Snakemake: script
	Diapositive 14 Executing external code in Snakemake: script
	Diapositive 15 Executing external code in Snakemake: script
	Diapositive 16 Executing external code in Snakemake: script
	Diapositive 17 Executing external code in Snakemake: script
	Diapositive 18 Being reproducible with Snakemake and Conda
	Diapositive 19 Being reproducible with Snakemake and Conda
	Diapositive 20 Being reproducible with Snakemake and Conda
	Diapositive 21 Being reproducible with Snakemake and Conda
	Diapositive 22 Being reproducible with Snakemake and Conda
	Diapositive 23 Being reproducible with Snakemake and Conda
	Diapositive 24 Being reproducible with Snakemake and Docker
	Diapositive 25 Being reproducible with Snakemake and Docker
	Diapositive 26 Being reproducible with Snakemake and Docker
	Diapositive 27 Being reproducible with Snakemake and Docker
	Diapositive 28 Being reproducible with Snakemake and Docker
	Diapositive 29 Being reproducible with Snakemake and Docker
	Diapositive 30 Snakemake environments
	Diapositive 31 What is the best setting for Snakemake environments?
	Diapositive 32 Exercises
	Diapositive 33 Conclusion
	Diapositive 34

