

Swiss Institute of Bioinformatics

INTRODUCTION TO SEQUENCING-BASED TRANSCRIPTOMICS DATA ANALYSIS

Intermediate processing

Joana Carlevaro Fita

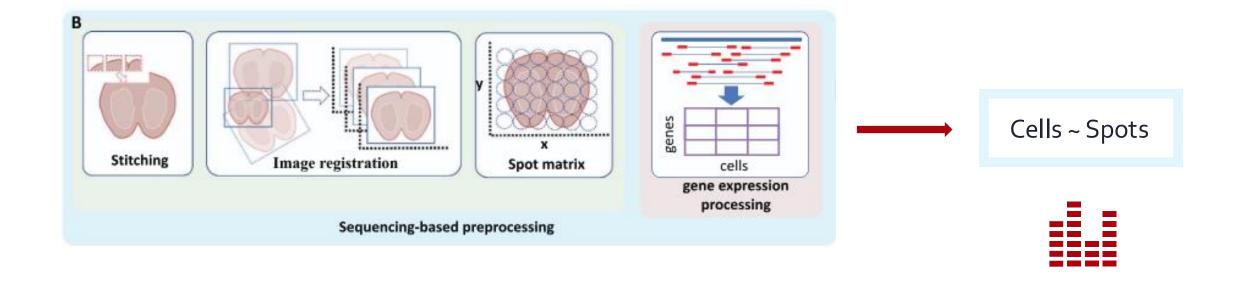
December 9-10, 2025

Learning objectives

- >>> Describe intermediate processing steps applied to spatial transcriptomics data analysis
- >> List spatially-aware methods used at each step, and explain the importance of testing them over standard scRNAseq methods
- >> Exaplain what a spatial domain is, and key aspects in their identification

Normalisation, feature selection, dimensionality reduction

Several scRNAseq methods are used for intermediate processing of spot-based ST



Standard scRNAseq methods applied

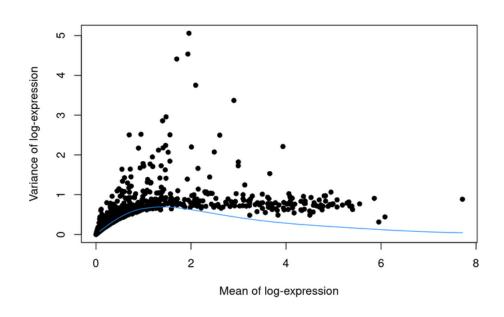
1. Select Features:

Identify highly variable genes (HVG) to screen a proportion of genes

- Reduce noise from random variation from biologically uninformative genes
- Improve computatuinal efficiency

Two-step procedure:

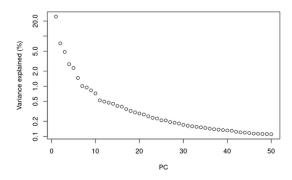
- 1) Model the mean-variance relationship, which decomposes variance into a technical component (smooth fit) and biological component (deviation thereof).
- 2) Select top HVG (fixed number or proportion of genes)



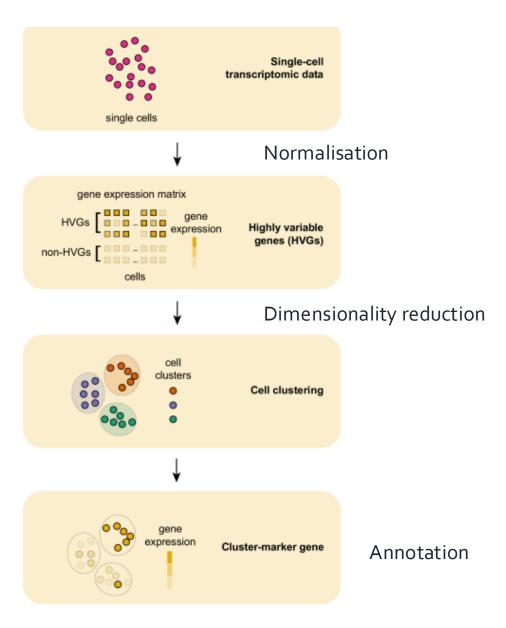
Standard scRNAseq methods applied

2. PCA

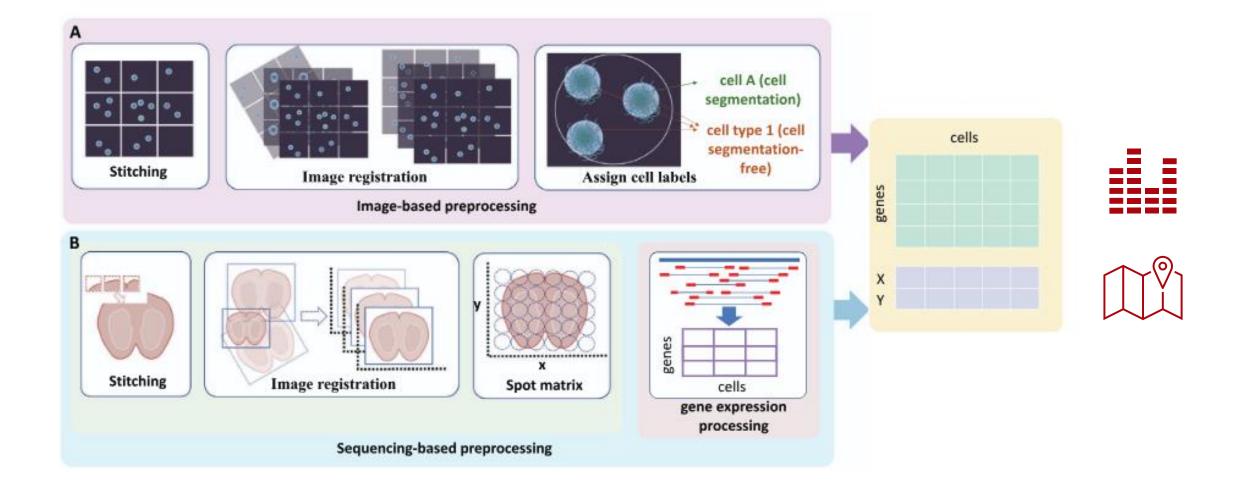
PCA to the set of top HVG Retain informative PCs



Standard scRNAseq methods applied



Spatial information



Feature selection

HVG: Highly variable genes

Defined only based on molecular features (gene expression).

Do not incorporate spatial information

SVG: Spatially variable genes

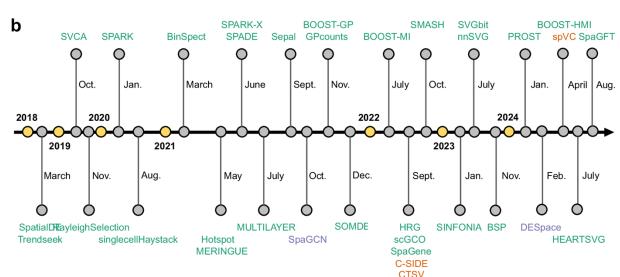
Take spatial coordinates of the measurements also into account

Select genes with non-random, informative spatial patterns -> more biologically informative ranking of genes

Used either instead of or complementary to HVGs in subsequent steps.

Several SVG methods:

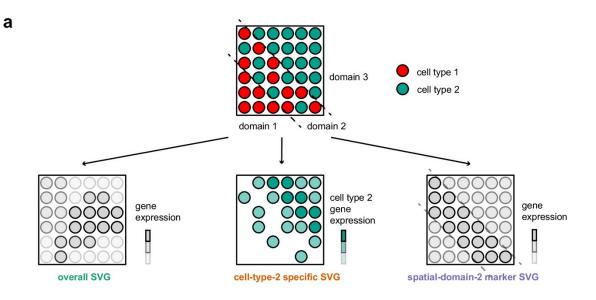
- de novo (nnSVG)
- pre-computed spatial clusters (by morphology or clustering methods (DESpace))



SVG methods

Classification of SVG methods

Yan, Hua, and Li. Nat Comm, 2025 → Categorise 34 SVG methods in 3 categories:



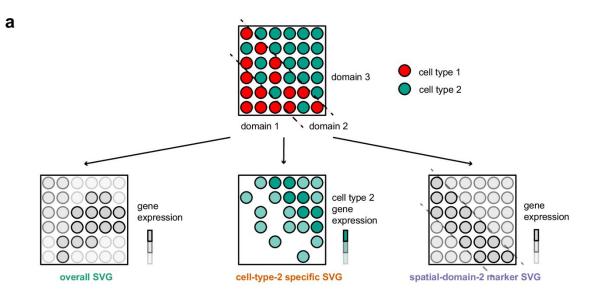
1. Overall SVG:

- Based on Gaussian process model: spatialDE,nnSVG
- Rank genes based on spatial autorcorrelation: Moran's I, Geary's C
- Non-parametric test of covariance matrices: SPARK
- Used as feature selection step (screen for informative genes)
- To identify spatial domains. Cluster spots (graph-based clustering) using SVGs expression and location information.
- Not necessary for all spatial domain detection methods (BayesSpace based on HVG)
- Identification of spatial-gene modules

SVG methods

Classification of SVG methods

Yan, Hua, and Li. Nat Comm, 2025 → Categorise 34 SVG methods in 3 categories:



2. Spatial domain-specific:

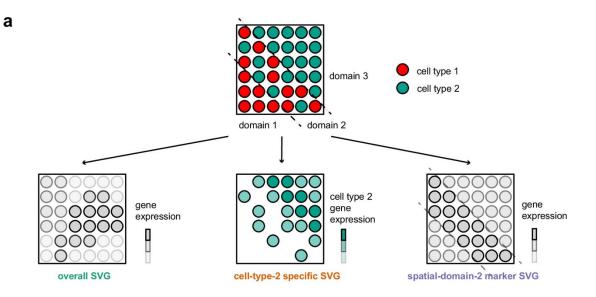
DESpace, SpaGCN

- Genes that change significantly between domains and summarise spatial information
- Identified using spatial domains
- Insights to molecular mechanisms of spatial domains/tissue layers
- Spatial domain marker SVGs can help with other domains annotation.

SVG methods

Classification of SVG methods

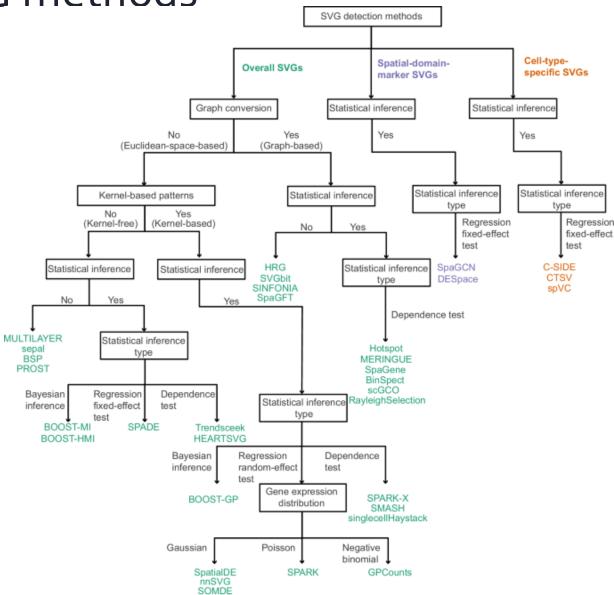
Yan, Hua, and Li. Nat Comm, 2025 → Categorise 34 SVG methods in 3 categories:



3. Cell type-specific:

CTSV, C-SIDE, spVC

- Genes that exhibit non-random spatial expression patterns within a cell type.
- Indentified using external cell type annotations
- Identify cell subpopulations or cell states across the tissue section



SVCA

Supplementary Table 1: Summary of three existing benchmark studies for SVG detection methods

	Charitakis et al., 2023 [1]	Chen et al., 2024 [2]	Li et al., 2023 [3]
SVG Detection Methods	1. SpatiaIDE 2. SPARK-X 3. Squidpy 4. Seurat ("markvariogram") 5. SpaGCN 6. scGCO	1. SpatiaIDE 2. SPARK-X 3. SOMDE 4. Giotto 5. nnSVG 6. MERINGUE 7. Seurat ("moransi")	1. Moran's I 2. Spanve 3. scGCO 4. SpaGCN 5. SpaGFT 6. Sepal 7. SpatialDE 8. SpatialDE 9. SPARK 10. SPARK-X 11. BOOST-GP 12. GPcounts 13. nnSVG 14. SOMDE

[...] Datasets, Evaluation Metrics, Conclusions

Non spatially-aware

DR based on the cell's molecular profile only: PCA, NMF, LDA.. Often combined with spatially-aware clustering methods

Spatially-aware

Takes spatial information also into account: BANKSY, SpatialPCA, STAMP Often combined with standard clustering approaches from scRNAseq (SNN graph), scRNAseq trajectory inference models

Layer1Layer2Layer3

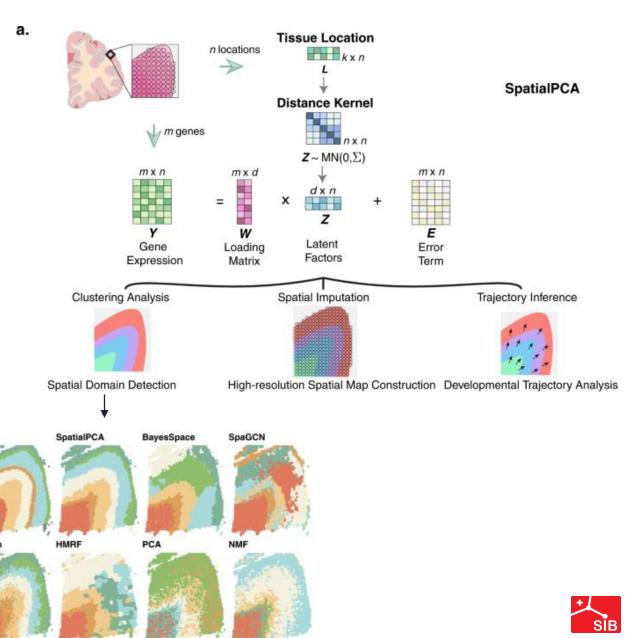
SpatialPCA (Shang and Zhou, Nat Comm. 2022)

Neighbouring regions share similar cell type compositions

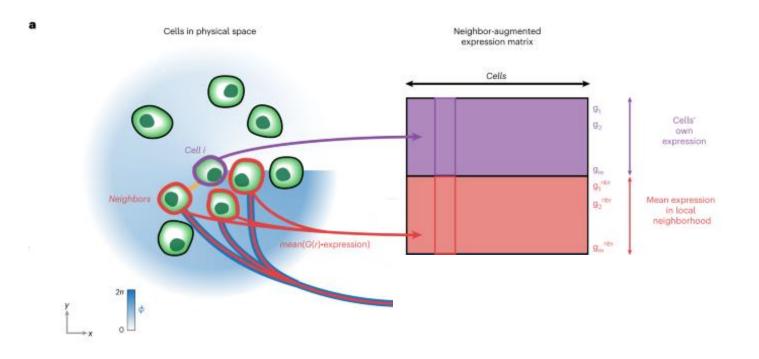
"SpatialPCA builds upon the probabilistic version of PCA, incorporates localization information as additional input, and uses a kernel matrix to explicitly model the spatial correlation structure across tissue locations."

Spatial PCs can be paired with clustering analysis on the low-dimensional components that contain spatial correlation information.

Adjusted Rand Index (ARI)
Statistical measure to quantify similarity beween clusterings

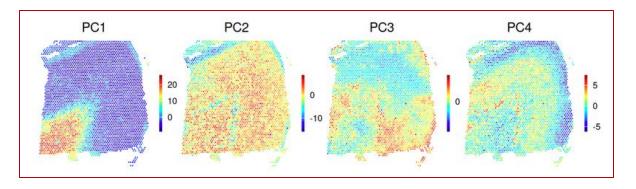


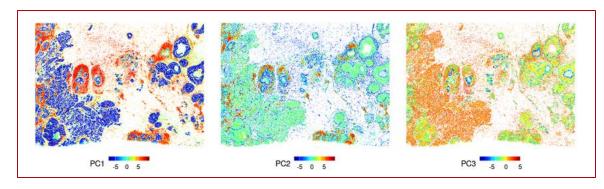
Building Aggregates with a Neighborhood Kernel and Spatial Yardstick (BANKSY)

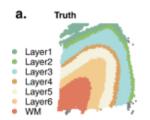


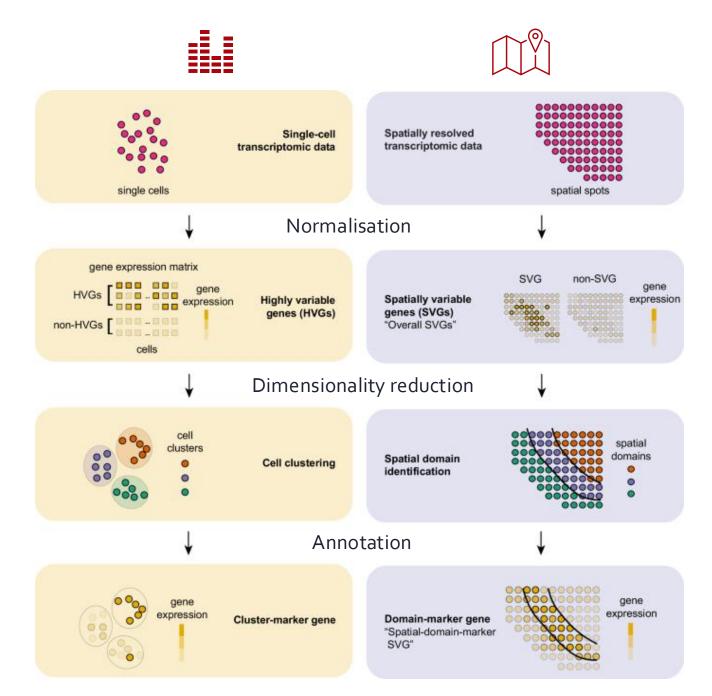
Visualise PCs in spatial context

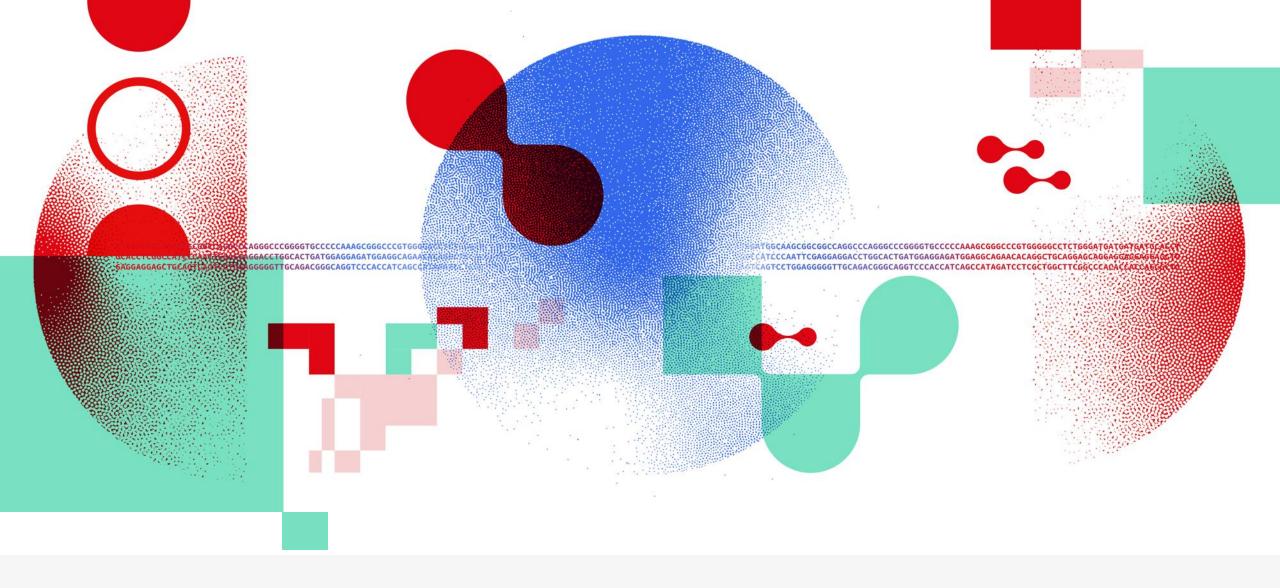
Visualise PCs in the tissue slice in order to observe if the main sources of variation explain distinguishable tissue structres/spatial locations











Thank you

