

Statistical methods for spatial omics data

- Overview on the technologies (review)
- Finding spatially-variable genes
- Deconvoluting low-resolution (or aggregating high-resolution) spatial omics data
- Spatially-aware dimension reduction / clustering
- Cell-cell communication —> co-localization
- Classical spatial statistics
 - Point patterns: random, clustered, intensity/correlation
 - Lattice data: useful summaries / functions
 - models with spatially correlated errors

From bulk to single-cell RNA-seq to imaging- & sequencing-based spatially resolved transcriptomics

Background

Slide from Helena Crowell

imaging-based sequencing-based

- molecule-level data
- targeted panel (100s of features; >2024: 1000s)
- single-cell resolution requires segmentation

- spot-level data
- whole transcriptome (10,000s of features)
- single-cell resolutions requires aggregation or deconvolution

Technology choices: expression table + coordinates

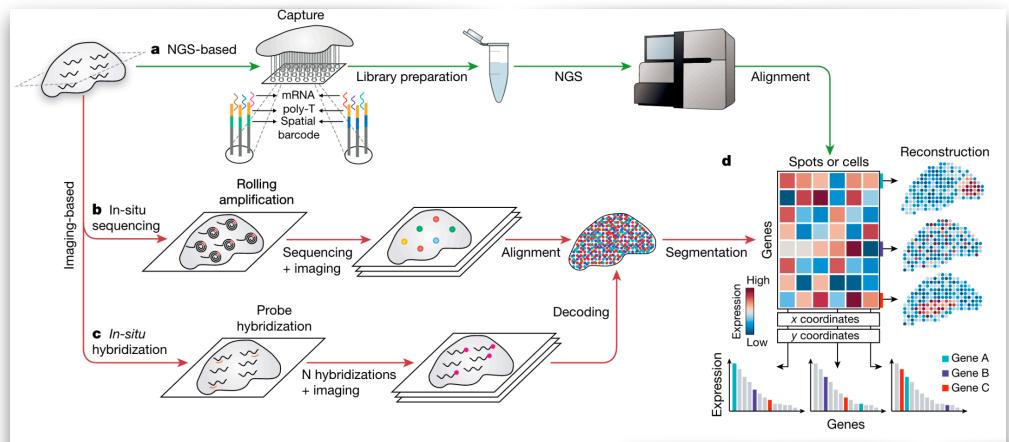


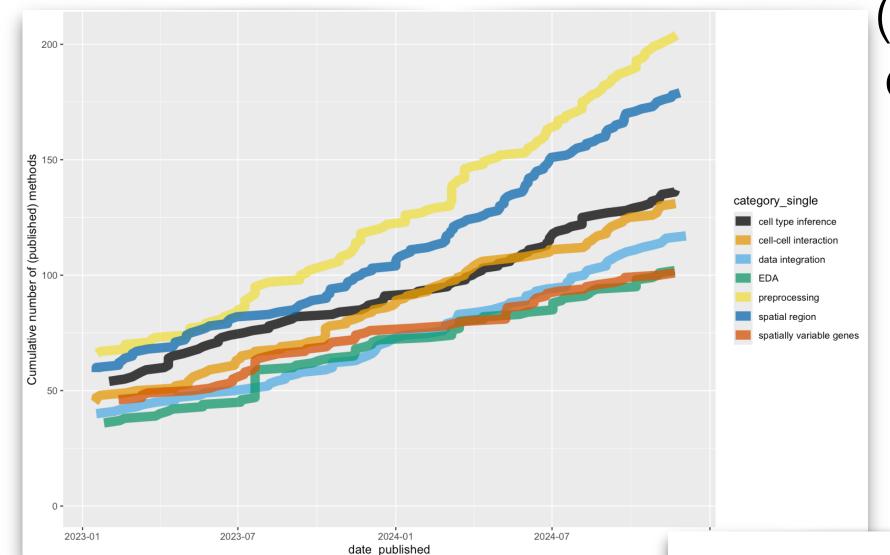
Fig. 1| **The technologies of spatial transcriptomics provide a gene-expression matrix. a**, NGS-based spatial transcriptomic methods
barcode transcripts according to their location in a lattice of spots. **b**, ISS
approaches directly read out the transcript sequence within the tissue. **c**, ISH

methods detect ta fluorescent probe gene-expression n genes and location

Review

Exploring tissue architecture using spatial transcriptomics

https://doi.org/10.1038/s41586-021-03634-9 Anjali Rao¹³, Dalia Barkley¹³, Gustavo S. França¹ & Itai Yanai¹²≅



(Spatial omics) computational method explosion

Museum of spatial transcriptomics

Lambda Moses 1 and Lior Pachter 1,2 \to

Finding spatially-variable genes: SpatialDE

SpatialDE: identification of spatially variable genes

Valentine Svensson^{1,2}, Sarah A Teichmann^{1,3} & Oliver Stegle^{2,4}

- SpatialDE: response = normal distribution with covariance with two components: i) based on distance b/w points exponential decay; ii) constant non-spatial variance
- Null model: fit just the nonspatial variance (i.e., without sigma)
- Fit 2 models, likelihood ratio test

SpatialDE model. SpatialDE models gene expression profiles $y = (y_1, ..., y_N)$ for a given gene across spatial coordinates $X = (x_1, ..., x_N)$, using a multivariate normal model of the form

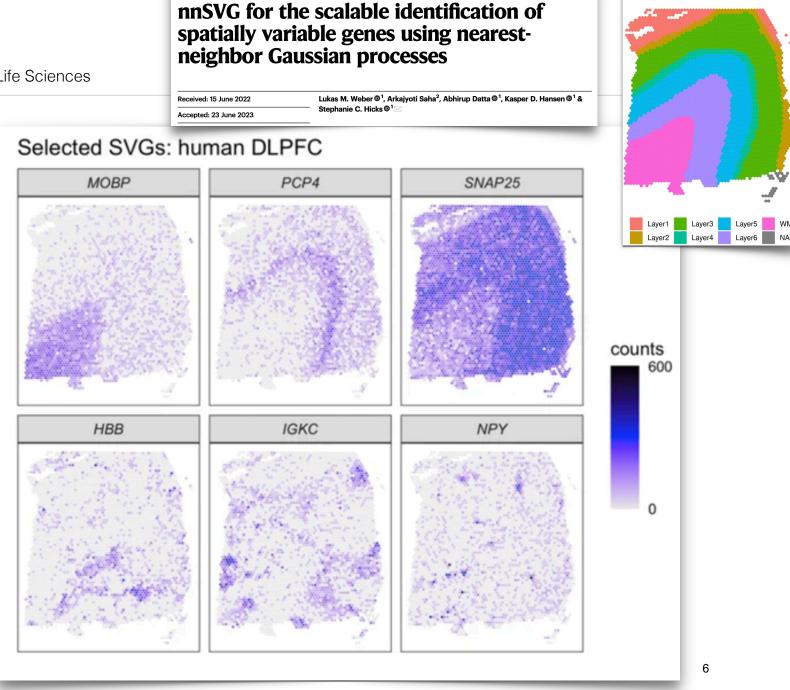
$$P(y \mid \mu, \sigma_s^2, \delta, \Sigma) = N(y \mid \mu \cdot 1, \sigma_s^2 \cdot (\Sigma + \delta \cdot I))$$
 (1)

The fixed effect μ_g ·1 accounts for the mean expression level, and Σ denotes a spatial covariance matrix defined on the basis of the input coordinates of pairs of cells. SpatialDE uses the so-called squared exponential covariance function to define Σ :

$$\Sigma_{i,j} = k(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{2 \cdot l^2}\right)$$
 (2)

Spatially variable genes

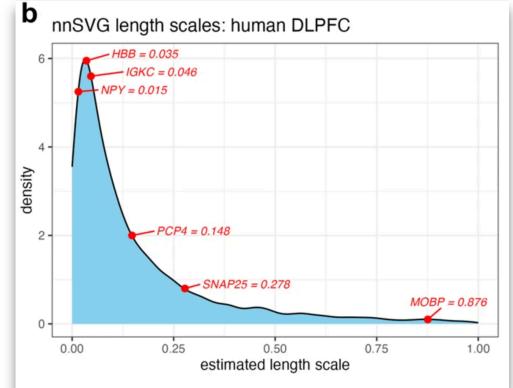
different types (senses?)
 of spatially variable genes



LIBD

Spatially variable genes

$$C_{ij}(oldsymbol{ heta}) = \sigma^2 \expigg(rac{-||\mathbf{s_i} - \mathbf{s_j}||}{l}igg)$$



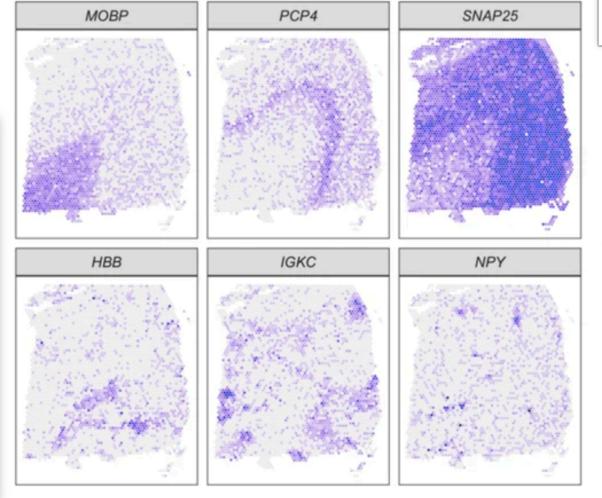
rticle https://doi.org/10.1038/s41467-023-39748-z

nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes

Received: 15 June 2022

Lukas M. Weber ®¹, Arkajyoti Saha², Abhirup Datta ®¹, Kasper D. Hansen ®¹ & Stephanie C. Hicks ®¹⊠

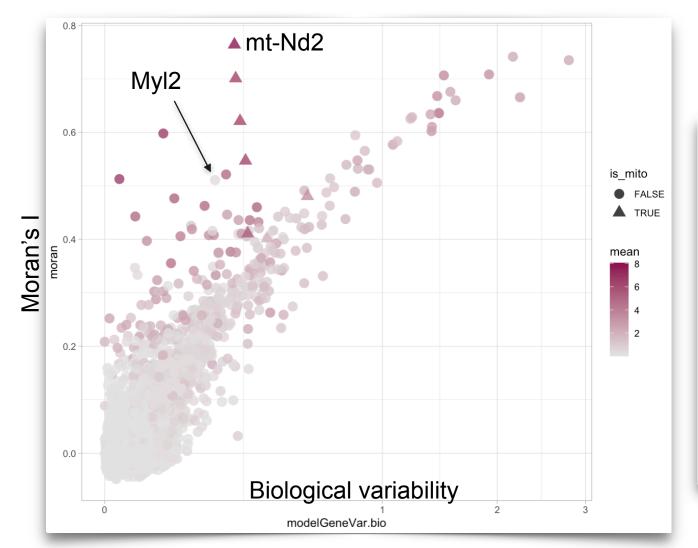
Selected SVGs: human DLPFC

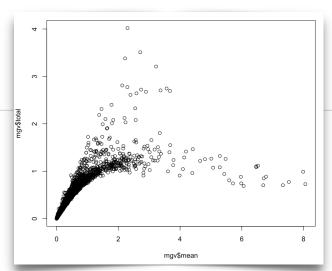


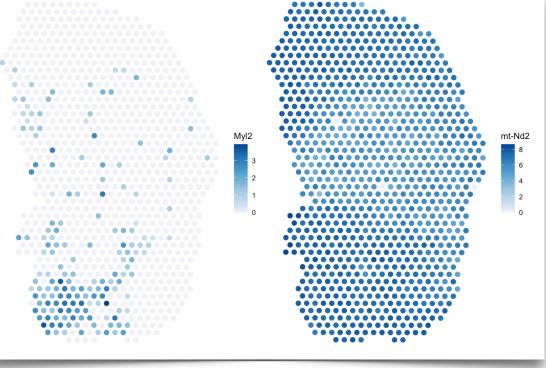
counts

600

Spatially variable versus highly variable







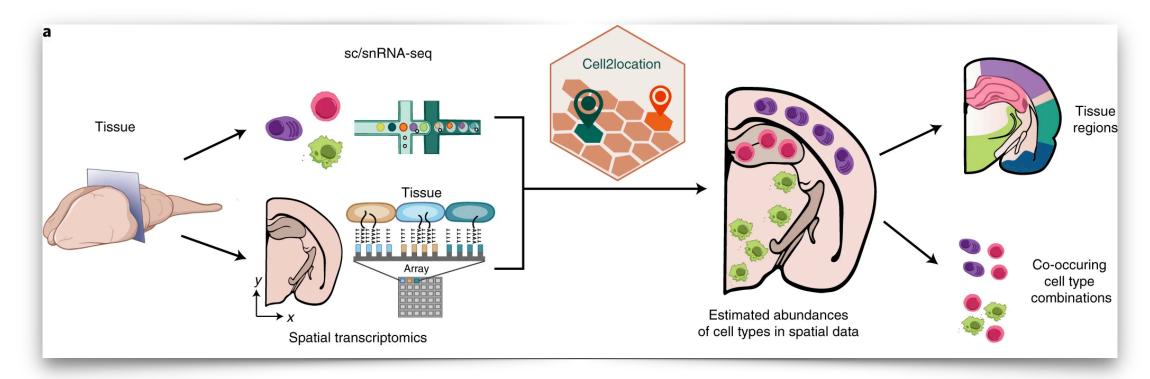
(More mathematical details on Moran's I below)

Statistical methods for spatial omics data

- Overview on the technologies (review)
- Finding spatially-variable genes
- Deconvoluting low-resolution (or aggregating high-resolution) spatial omics data
- Spatially-aware dimension reduction / clustering
- Cell-cell communication —> co-localization
- Classical spatial statistics
 - Point patterns: random, clustered, intensity/correlation
 - Lattice data: useful summaries / functions
 - models with spatially correlated errors

Deconvoluting low-resolution spatial omics (sequencing) data

 Cell2location: negative binomial regression for reference cell type signatures; decompose spot-level mRNA counts into reference cell types



Deconvoluting low-resolution spatial omics data

 Cell2location: negative binomial regression for reference cell type signatures; decompose spot-level mRNA counts into reference cell types

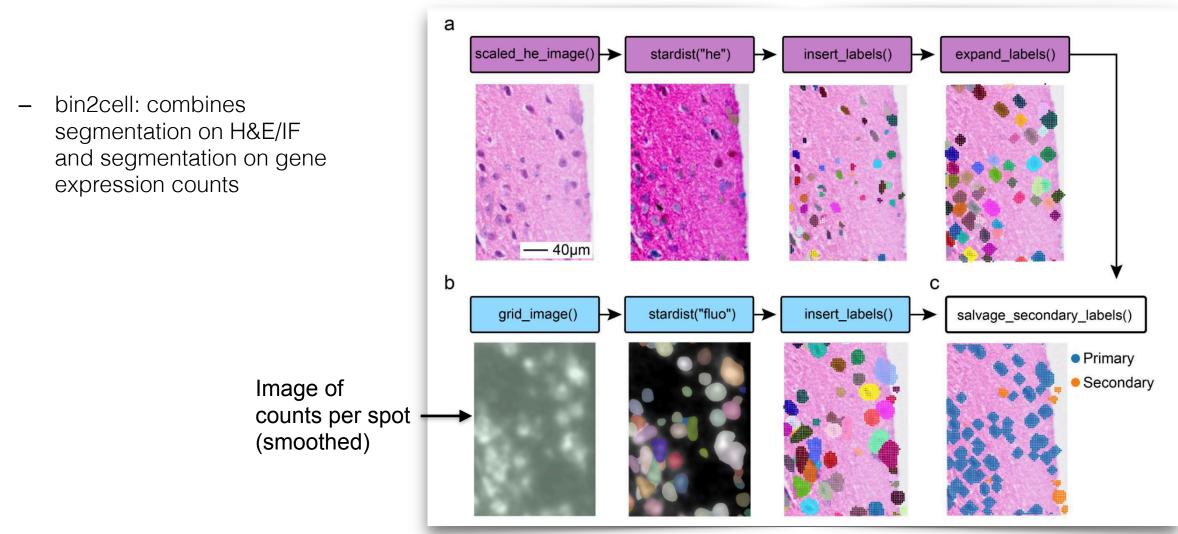
Cell2location model. Cell2location models the elements of the spatial expression count matrix $d_{s,g}$ as negative binomial distributed, given an unobserved gene expression level (rate) $\mu_{s,g}$ and gene- and batch-specific over-dispersion $\alpha_{e,g}$:

$$d_{s,g} \sim NB\left(\mu_{s,g}, lpha_{e,g}
ight)$$
 .

The expression rate of genes g at location s, $\mu_{s,g}$ in the mRNA count space is modeled as a linear function of reference cell types signatures $g_{f,g}$:

$$\mu_{s,g} = \left(\underbrace{m_g}_{\text{technology sensitivity}} \cdot \underbrace{\sum_f w_{s,f} \, g_{f,g}}_{\text{cell type contributions}} + \underbrace{s_{e,g}}_{\text{additive shift}}\right) \cdot \underbrace{y_s}_{\text{per-location sensitivity}}.$$

Aggregating high-resolution spatial omics (sequencing) data



Statistical methods for spatial omics data

- Overview on the technologies (review)
- Finding spatially-variable genes
- Deconvoluting low-resolution (or aggregating high-resolution) spatial omics data
- Spatially-aware dimension reduction / clustering
- Cell-cell communication —> co-localization
- Classical spatial statistics
 - Point patterns: random, clustered, intensity/correlation
 - Lattice data: useful summaries / functions
 - models with spatially correlated errors

Spatial clustering / domain detection (BANKSY)

-> combine transcription and spatial information

BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis

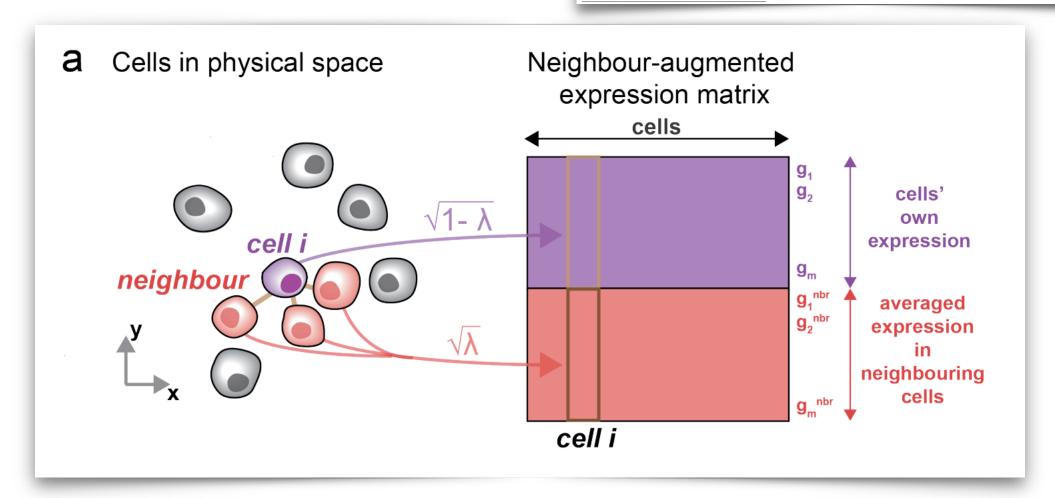
Received: 3 April 2023

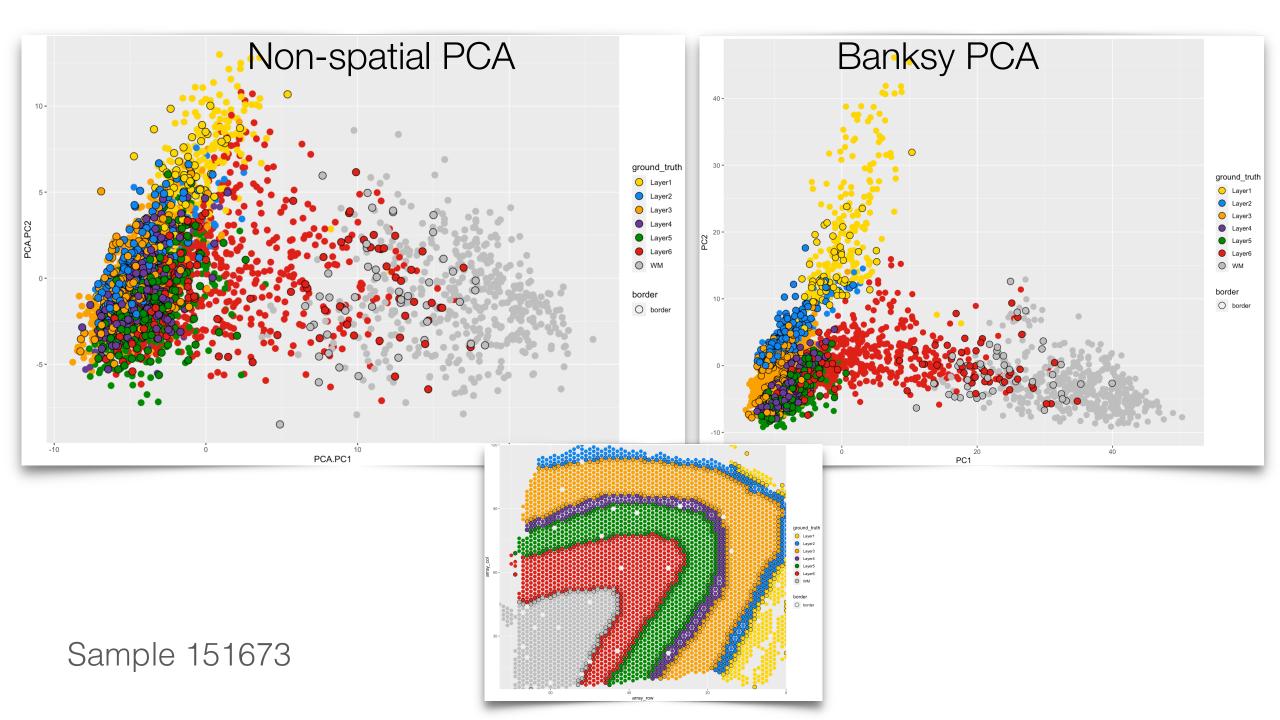
Vipul Singhal © 1,13, Nigel Chou © 1,13, Joseph Lee © 2, Yifei Yue³, Jinyue Liu © 1,

Wan Kee Chock © 1, Li Lin⁴, Yun-Ching Chang⁵, Erica Mei Ling Teo⁵,

Jonathan Aow © 1, Hwee Kuan Lee⁴,6,7,8,9,10, Kok Hao Chen © 1

& Shyam Prabhakar © 1,11,12





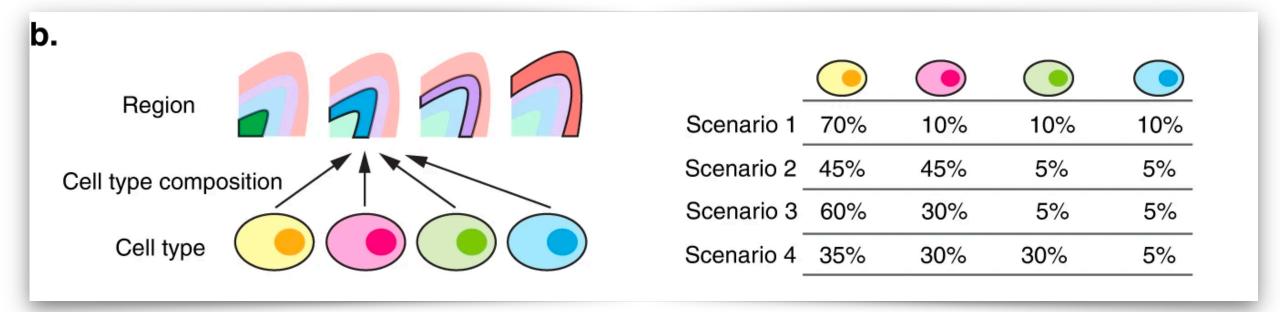
Spatially aware dimension reduction for spatial transcriptomics

Received: 10 March 2022

Lulu Shang © 1,2 & Xiang Zhou © 1,2

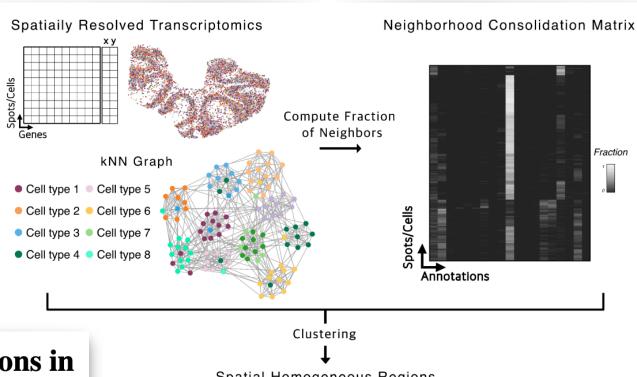
Spatial domain detection ~ spatially homogeneous regions ~ spatial niches

Article

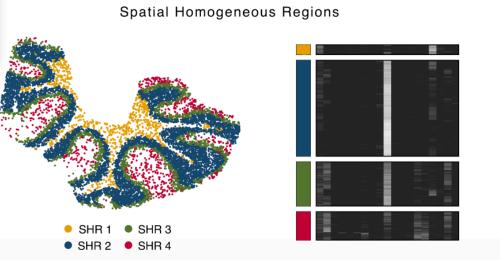


https://www.nature.com/articles/s41467-022-34879-1

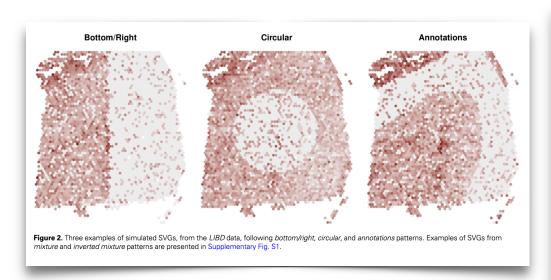
Spatial domain detection ~ spatially homogeneous regions

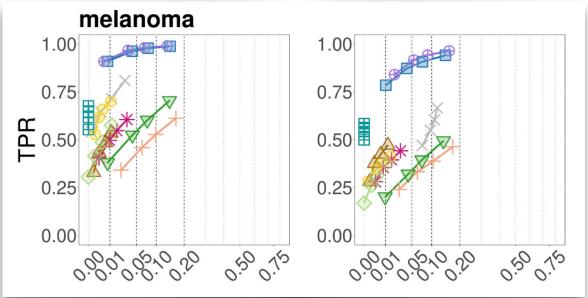


Identification of spatial homogeneous regions in tissues with concordex



Alternatively, spatially variable features = DE between domains





Peiying Cai

To find spatially variable genes (SVGs); spatial clustering + classical statistical method works quite well

JOURNAL ARTICLE

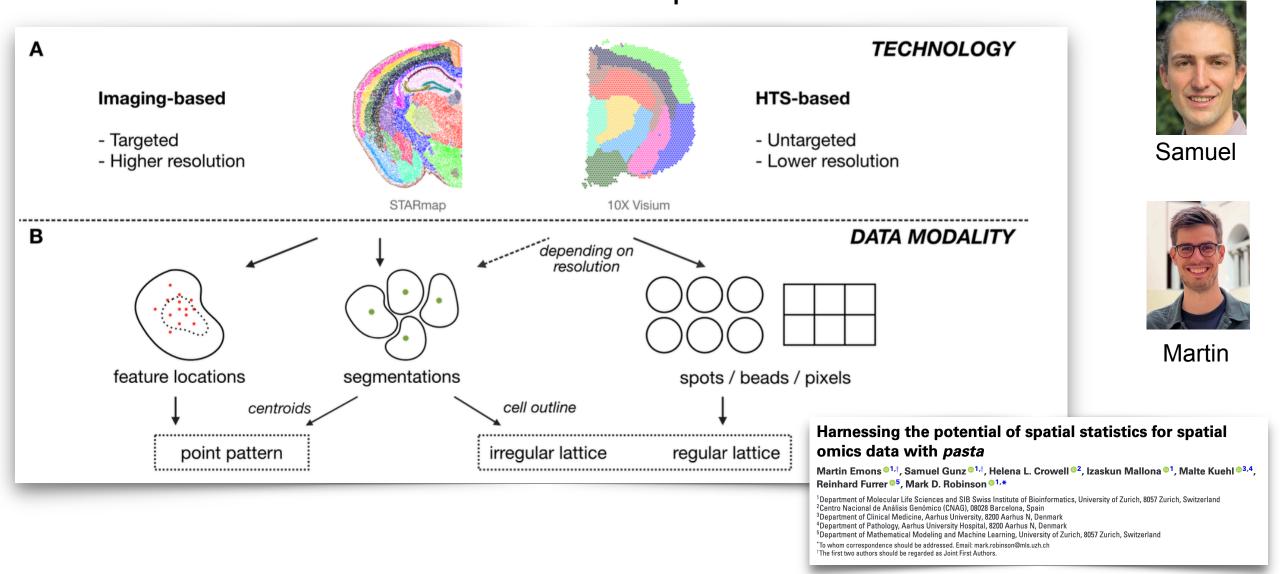
DESpace: spatially variable gene detection via differential expression testing of spatial clusters 3

Peiying Cai, Mark D Robinson, Simone Tiberi 💌

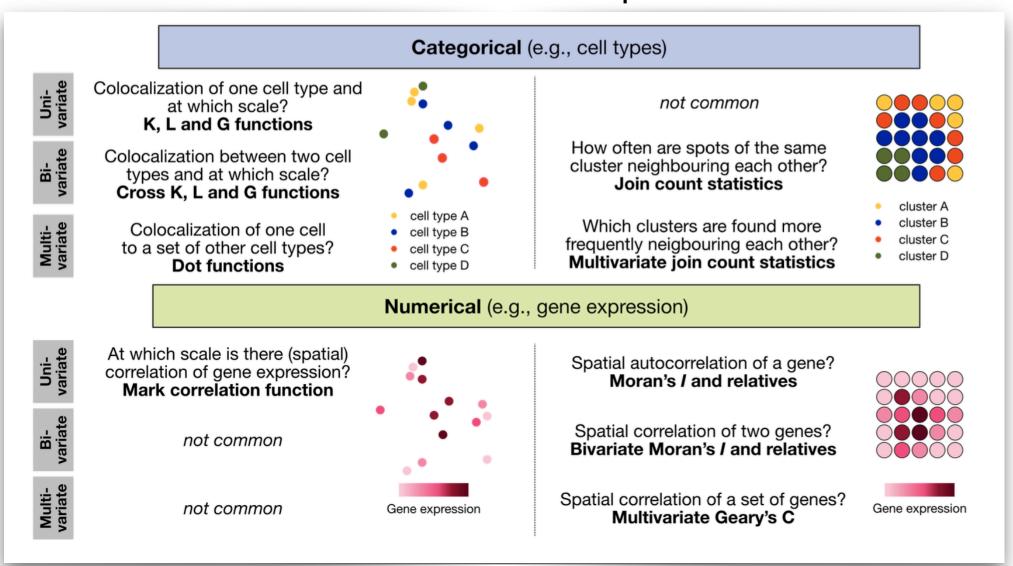
Statistical methods for spatial omics data

- Overview on the technologies (review)
- Finding spatially-variable genes
- Deconvoluting low-resolution (or aggregating high-resolution) spatial omics data
- Spatially-aware dimension reduction / clustering
- Cell-cell communication —> co-localization
- Classical spatial statistics
 - Point patterns: random, clustered, intensity/correlation
 - Lattice data: useful summaries / functions
 - models with spatially correlated errors

pasta: Data representations determine spatial statistics options



pasta: Data representations determine spatial statistics options



Samuel

Martin

Correlation for point patterns

Ripley's K function

University of

– mathematical definition:

$$K(r) = \frac{1}{\lambda} \mathbb{E} \left[\text{number of } r \text{-neighbours of } \mathbf{u} \mid \mathbf{X} \text{ has a point at location } u \right]$$

$$t(u, r, \mathbf{x}) = \sum_{j=1}^{n(\mathbf{x})} \mathbf{1} \{0 < ||u - x_j|| \le r \}$$

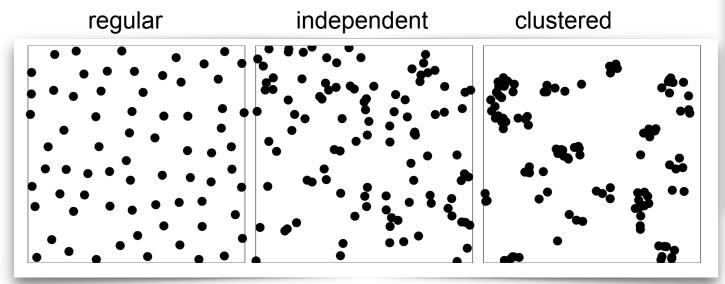
Definition 7.1. If **X** is a stationary point process, with intensity $\lambda > 0$, then for any $r \geq 0$

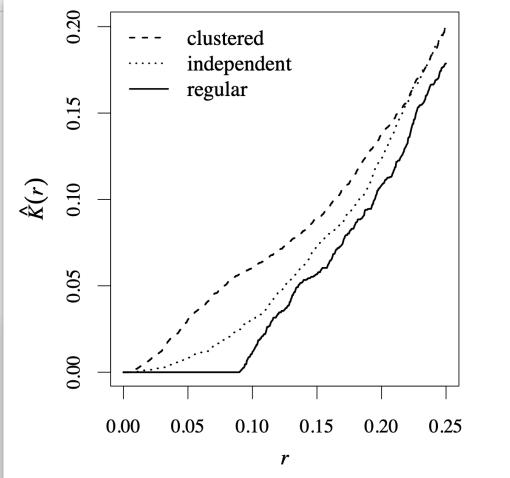
$$K(r) = \frac{1}{\lambda} \mathbb{E}\left[t(u, r, \mathbf{X}) \mid u \in \mathbf{X}\right]$$
 (7.6)

does not depend on the location u, and is called the K-function of X.

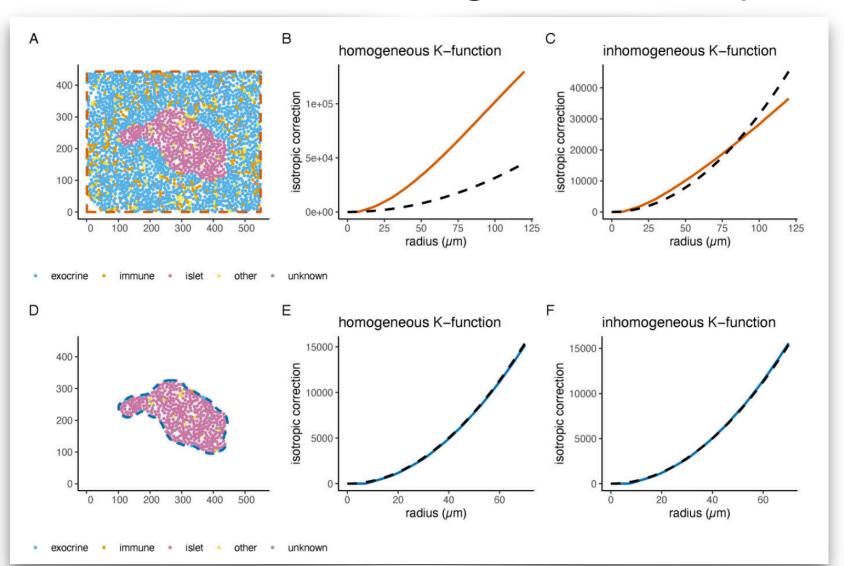
Correlation for **point patterns**

- Ripley's K function
- words definition: the empirical K-function K(r) is the cumulative average number of data points lying within a distance r of a typical data point





pasta: the 'gotcha' of spatial statistics — is it clustering or intensity?

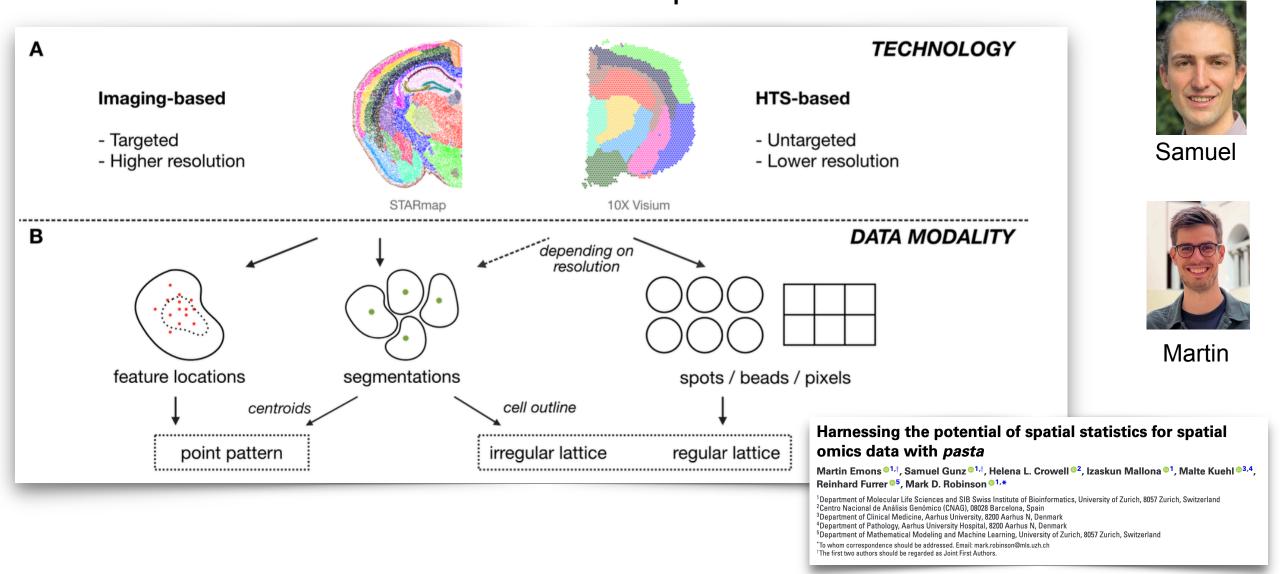


Samuel

Martin

K-functions here: clustering / intensity of pink cells (islets).

pasta: Data representations determine spatial statistics options



Spatial autocorrelation: Global Moran's I

- Global measure of auto-correlation (correlation to signal nearby in space); assume homogeneity!
- Alternative: Geary's C

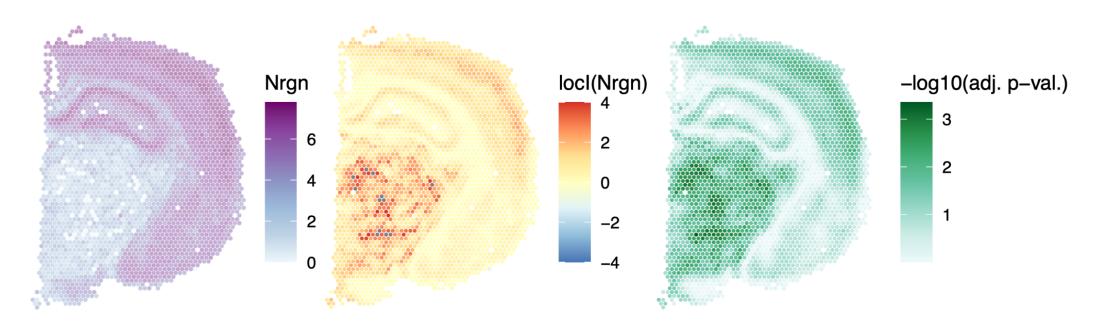
$$I = \frac{1}{\sum_{ij} w_{ij}} \frac{\sum_{ij} w_{ij} (X_i - \overline{X}) (X_j - \overline{X})}{N^{-1} \sum_i (X_i - \overline{X})^2}$$

$$C = rac{(N-1)\sum_{i}\sum_{j}w_{ij}(x_{i}-x_{j})^{2}}{2W\sum_{i}(x_{i}-ar{x})^{2}}$$

Spatial autocorrelation: Local Moran's I

 Local measure of auto-correlation (correlation to signal nearby in space)

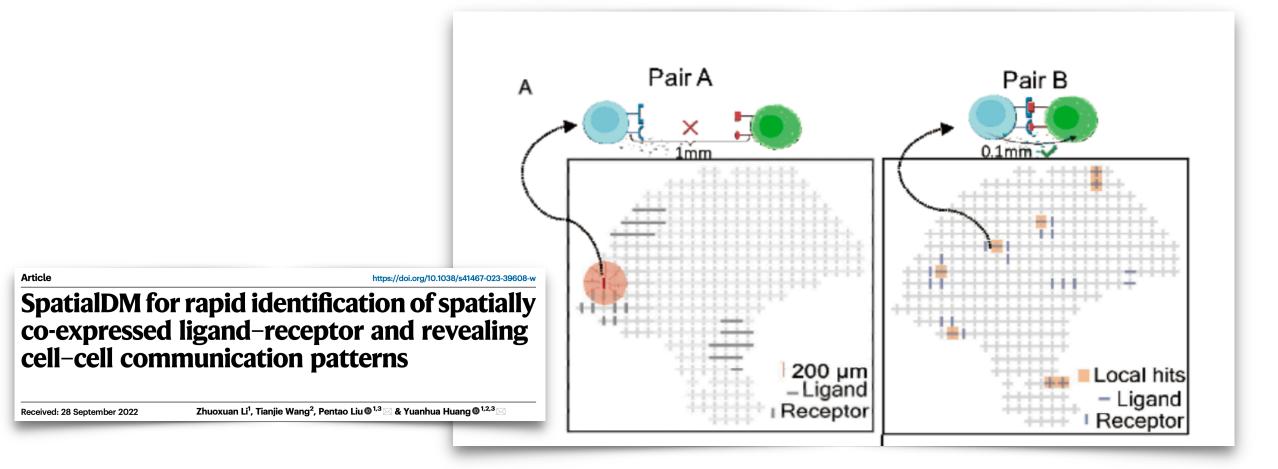
$$I_i = rac{x_i - ar{x}}{\sum_{k=1}^n (x_k - ar{x})^2/(n-1)} \sum_{j=1}^n w_{ij}(x_j - ar{x})$$



Global Moran's
$$R = \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x})(y_j - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2} \sqrt{\sum_{i} (y_i - \bar{y})^2}},$$

Cell-cell communication

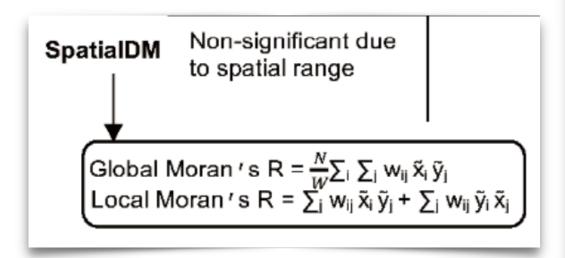
- SpatialDM: Global Moran's R, which is a bivariate version of Moran's I

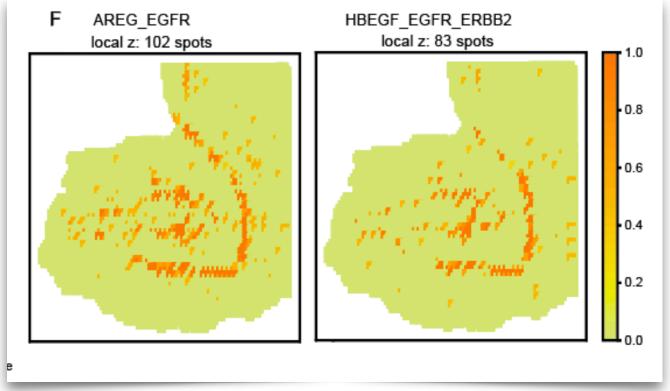


Global Moran's
$$R = \frac{\sum_i \sum_j w_{ij} (x_i - \bar{x})(y_j - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2} \sqrt{\sum_i (y_i - \bar{y})^2}},$$

Cell-cell communication

SpatialDM: Global Moran's R, which is a bivariate version of Moran's I

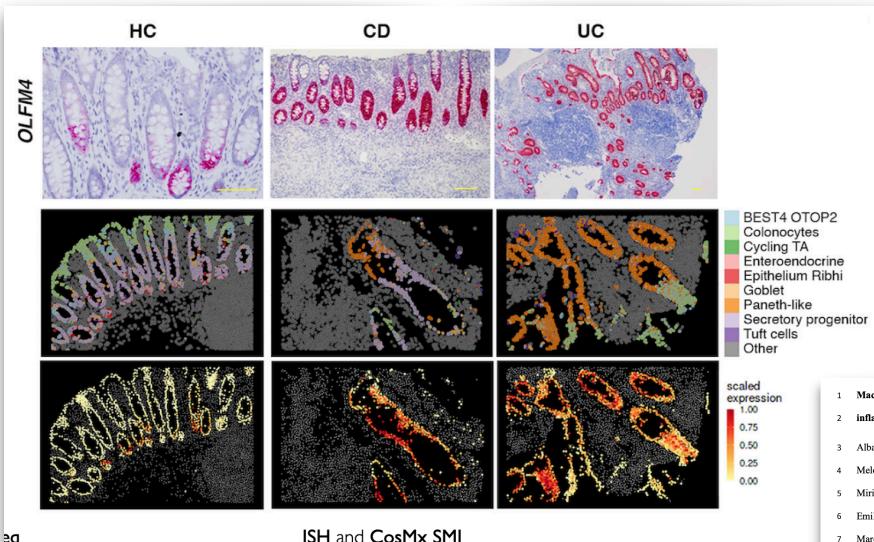




Research

- spatialFDA: Flexible modeling of point pattern summaries —> Martin
- DESpace2: DE beyond markers/SVGs: "differential spatial patterns" —> Peiying
- sosta: "Spatial structure"-focused analyses
- OSTA: Orchestrating spatial transcriptomics analysis with Bioconductor
- SpaceHack: using consensus clustering to consolidate domain detection

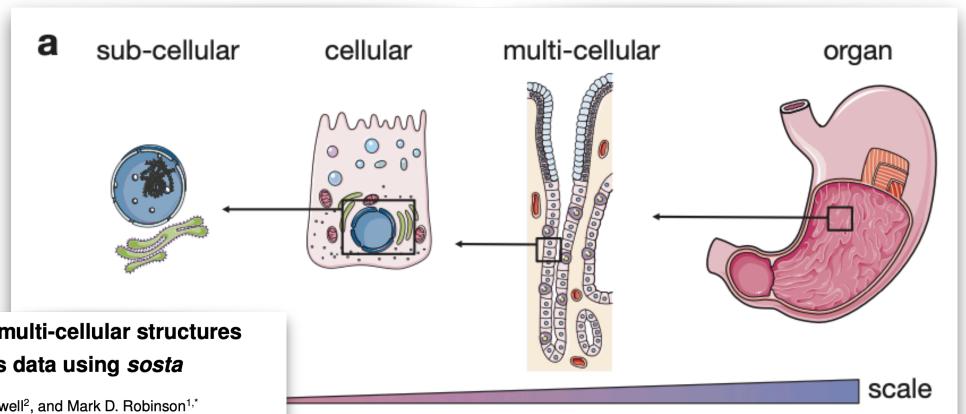
Tissue "structures" are often visible



- healthy control (HC)
- Crohn's disease (CD)
- ulcerative colitis (UC)

- Macrophage and neutrophil heterogeneity at single-cell spatial resolution in
- inflammatory bowel disease
- Alba Garrido-Trigo^{1,2}, Ana M. Corraliza^{1,2}, Marisol Veny^{1,2}, Isabella Dotti^{1,2}, Elisa
- Melon-Ardanaz^{1,2}, Aina Rill³, Helena L. Crowell⁴, Ángel Corbí⁵, Victoria Gudiño^{1,2},
- Miriam Esteller^{1,2}, Iris Álvarez-Teubel^{1,2}, Daniel Aguilar^{1,2}, M Carme Masamunt^{1,2},
- Emily Killingbeck⁶, Youngmi Kim⁶, Michael Leon⁶, Sudha Visvanathan⁷, Domenica
- Marchese⁸, Ginevra Caratù⁸, Albert Martin-Cardona^{2,9}, Maria Esteve^{2,9}, Julian Panés, ^{1,2}
- Elena Ricart^{1,2}, Elisabetta Mereu^{3,*}, Holger Heyn^{8,10,*}, Azucena Salas^{1,2}

Tissue "structures" occur at different scales



Analysis of anatomical multi-cellular structures from spatial omics data using *sosta*

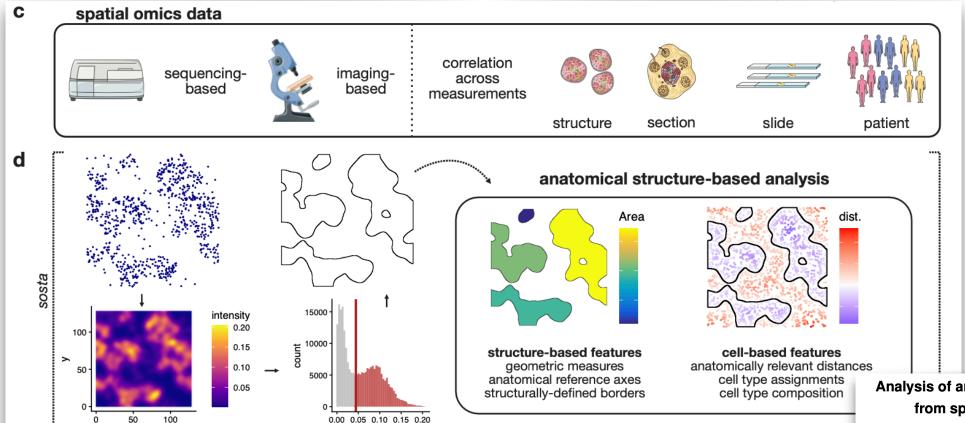
Samuel Gunz¹, Helena L. Crowell², and Mark D. Robinson^{1,*}

¹Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland ²Centro Nacional de Análisis Genómico, Barcelona, Spain ^{*}Correspondence to: mark.robinson@mls.uzh.ch

October 29, 2025

sosta: extracting spatial "structures" + quantifying metrics + modelling (differential discovery)

Samuel



pixel intensity

Analysis of anatomical multi-cellular structures from spatial omics data using *sosta*

Samuel Gunz¹, Helena L. Crowell², and Mark D. Robinson^{1,*}

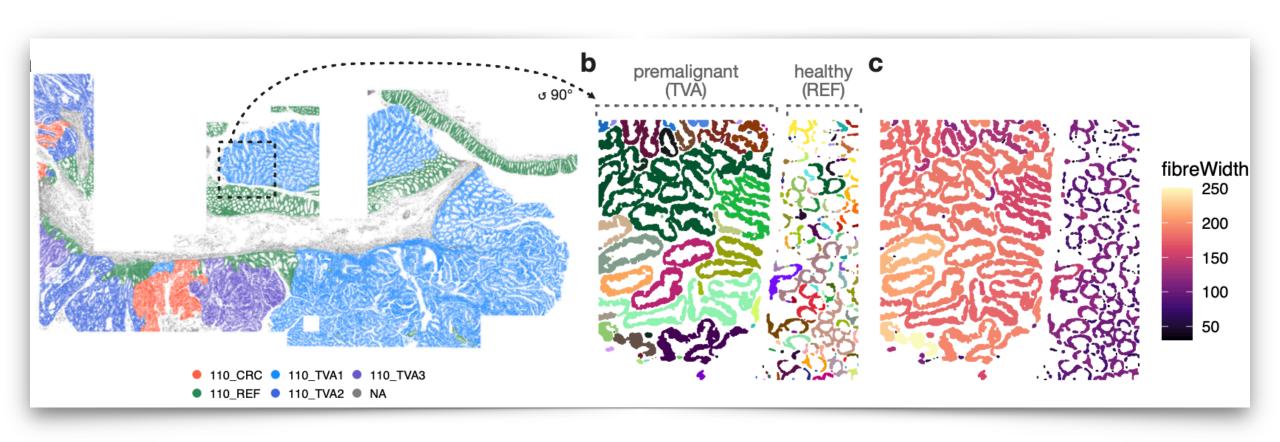
¹Department of Molecular Life Sciences and
SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
²Centro Nacional de Análisis Genómico, Barcelona, Spain

**Correspondence to base and a web as a secondary of the se

*Correspondence to: mark.robinson@mls.uzh.ch

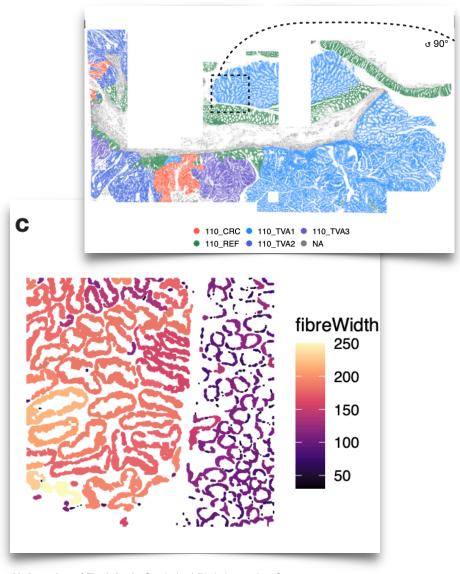
October 29, 2025

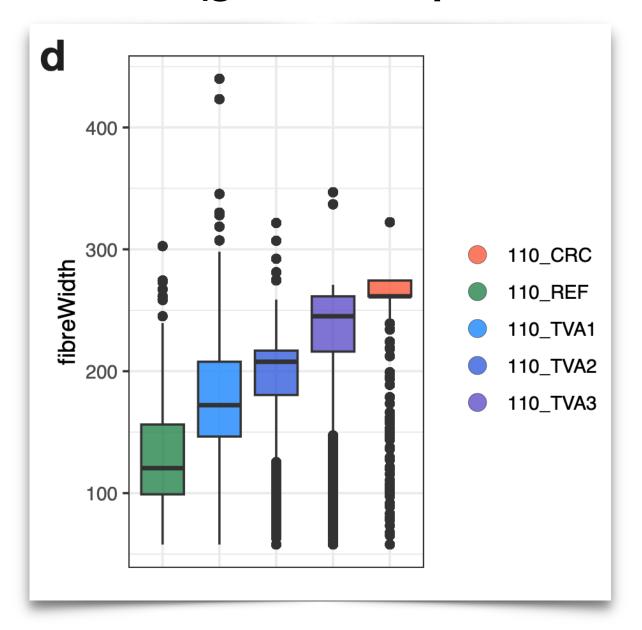
Variation among spatial structures (epithelial example)



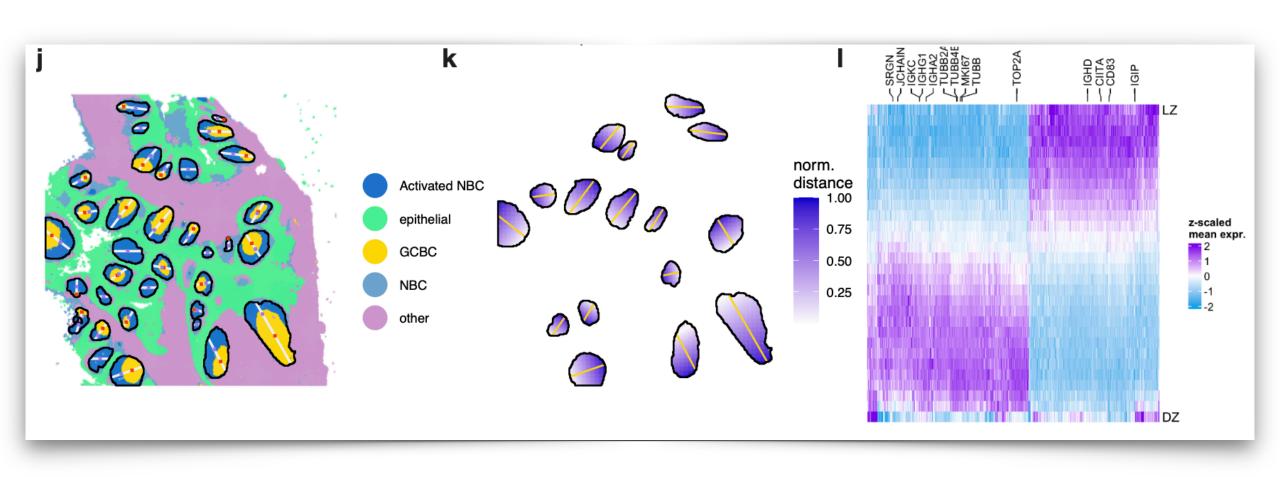
University of Zurich Statistical Bioinformatics Group

Variation among spatial structures (geometric quantifications)

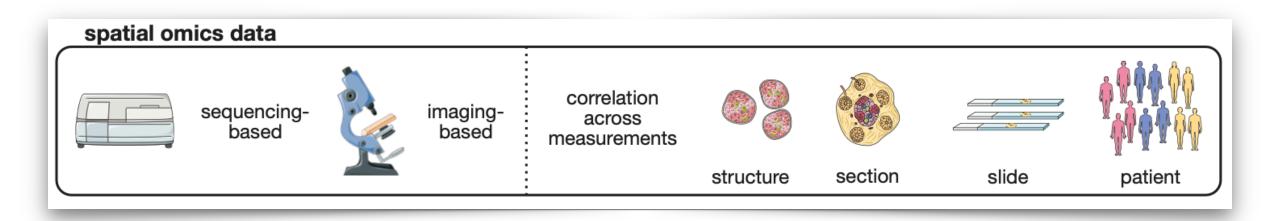




Structures —> Reference axis —> Expression gradients



Modeling requires accounting for repeated measurements



Potentially i) multiple structures per tissue slice; ii) multiple slices per patient; iii) replication —> multiple levels of variability —> mixed models generally most appropriate

Orchestrating Spatial Transcriptomics Analysis with Bioconductor

https://bioconductor.org/books/OSTA

Orchestrating Spatial Transcriptomics Analysis with Bioconductor

Helena L. Crowell^{1,*,⊠}, Yixing Dong^{2,3,*}, Ilaria Billato⁴, Peiying Cai^{5,6}, Martin Emons^{5,6}, Samuel Gunz^{5,6}, Boyi Guo⁷, Mengbo Li^{8,9,10}, Alexandru Mahmoud¹¹, Artür Manukyan¹², Hervé Pagès¹³, Pratibha Panwar^{14,15,16}, Shreya Rao^{14,15,17}, Callum J. Sargeant⁸, Lori Shepherd Kern¹⁸, Marcel Ramos^{19,20}, Jieran Sun^{2,3}, Michael Totty²¹, Vincent J. Carey¹¹, Yunshun Chen^{8,9,10}, Leonardo Collado-Torres^{21,22,23}, Shila Ghazanfar^{14,15,16}, Kasper D. Hansen^{21,24,25}, Keri Martinowich^{22,26,27,28}, Kristen R. Maynard^{22,26,27}, Ellis Patrick^{14,15,16,17}, Dario Righelli²⁹, Davide Risso^{30,31}, Simone Tiberi³², Levi Waldron^{19,20}, Raphael Gottardo^{2,3,33,†,⊠}, Mark D. Robinson^{5,6,†,⊠}, Stephanie C. Hicks^{21,25,34,35,†,⊠}, and Lukas M. Weber^{36,†,⊠}

Book is available. Preprint on bioRxiv.

(Successor of the OSCA book: https://bioconductor.org/books/OSCA/)

- 6 Example datasets
- 7 Python interoperability

Sequencing-based platforms

- 8 Introduction
- 9 Reads to counts
- 10 Quality control
- 11 Intermediate processing
- 12 Deconvolution
- 13 Workflow: Visium DLPFC
- 14 Workflow: Visium CRC
- 15 Workflow: Visium HD

Imaging-based platforms

- 16 Introduction
- 17 Segmentation
- 18 Quality control
- 19 Intermediate processing
- 20 Neighborhood analysis
- 21 Cell-cell communication
- 22 Sub-cellular analysis
- 23 Workflow: Xenium
- 24 Workflow: CosMX

Platform-independent vanalyses

25 Normalization

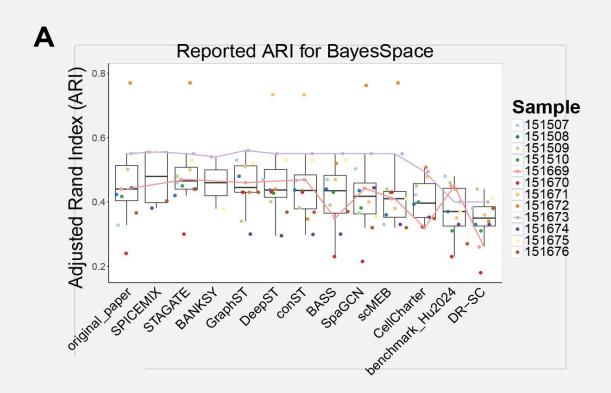
Meta-benchmark

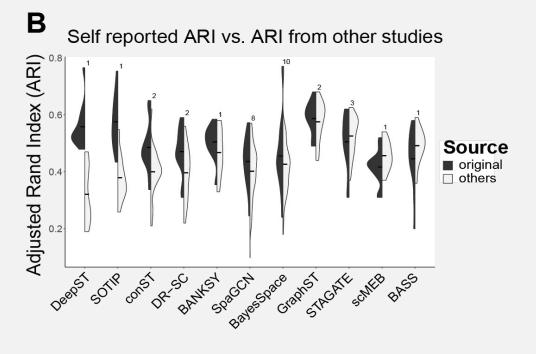
Reported method performances are inconsistent across studies

Beyond benchmarking: an expert-guided consensus approach to spatially aware clustering

Jieran Sun^{1†}, Kirti Biharie^{2,3†}, Peiying Cai^{4†}, Niklas Müller-Bötticher^{5†}, Paul Kiessling^{6†}, Meghan A. Turner^{7†}, Søren H. Dam^{8,9†}, Florian Heyl^{10,11†}, Sarusan Kathirchelvan⁴, Martin Emons⁴, Samuel Gunz⁴, Sven Twardziok⁵, Amin El-Heliebi¹², Martin Zacharias¹³, SpaceHack 2.0 participants, Roland Eils⁵, Marcel Reinders³, Raphael Gottardo¹, Christoph Kuppe⁶, Brian Long^{7*}, Ahmed Mahfouz^{2,3*}, Mark D. Robinson^{4*}, Naveed Ishaque^{5*}

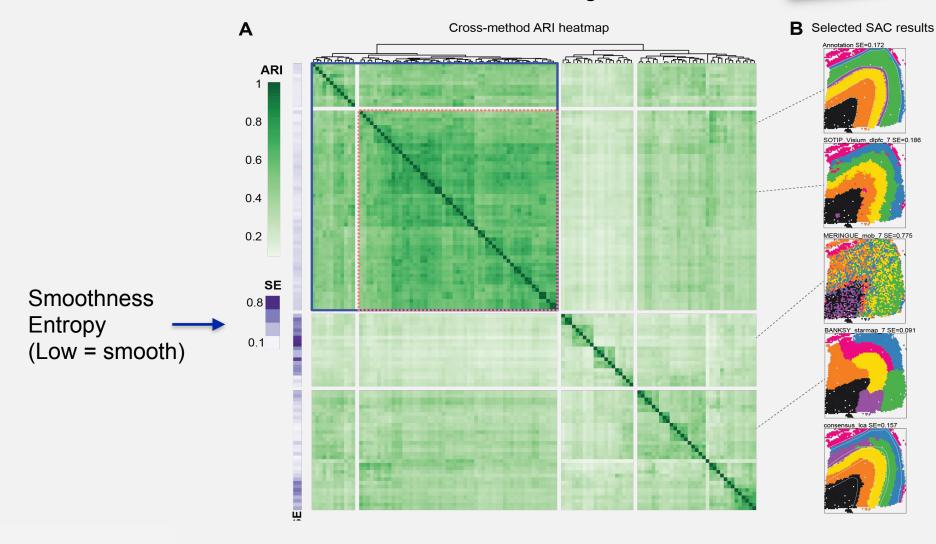
Peiying Cai





Ensemble clustering

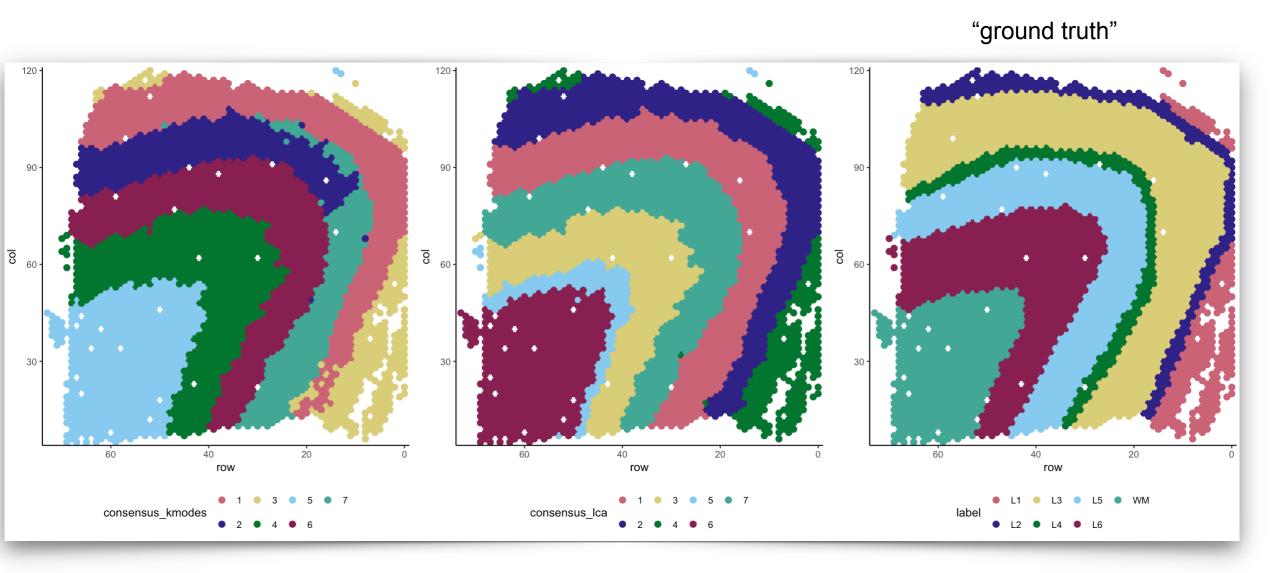
Methods are often more similar to each other than to the ground truth.



Beyond benchmarking: an expert-guided consensus approach to spatially aware clustering

Jieran Sun^{1†}, Kirti Biharie^{2,3†}, Peiying Cai^{4†}, Niklas Müller-Bötticher^{5†}, Paul Kiessling^{6†}, Meghan A. Turner^{7†}, Søren H. Dam^{8,9†}, Florian Heyl^{10,11†}, Sarusan Kathirchelvan⁴, Martin Emons⁴, Samuel Gunz⁴, Sven Twardziok⁵, Amin El-Heliebi¹², Martin Zacharias¹³, SpaceHack 2.0 participants, Roland Eils⁵, Marcel Reinders³, Raphael Gottardo¹, Christoph Kuppe⁶, Brian Long^{7*}, Ahmed Mahfouz^{2,3*}, Mark D. Robinson^{4*}, Naveed Ishaque^{5*}

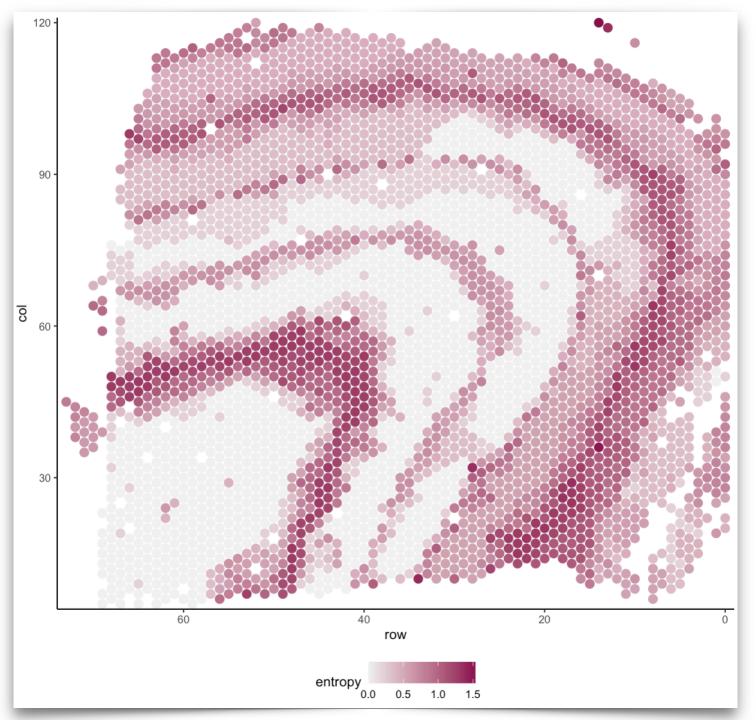
Consensuses



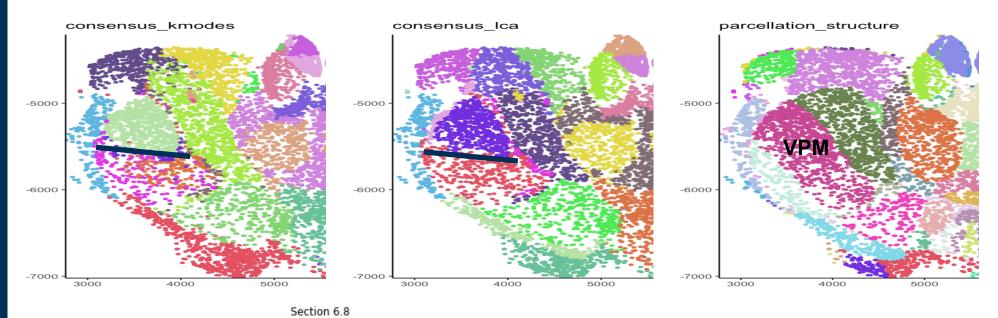
Entropy #2: Understanding spot-level uncertainty (across methods)

Entropy in the sense of <u>how stable</u> <u>across algorithms</u>

(align the spot-wise cluster labels across methods, entropy across label proportions)

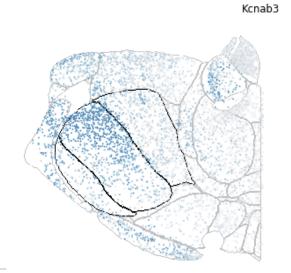


VPM

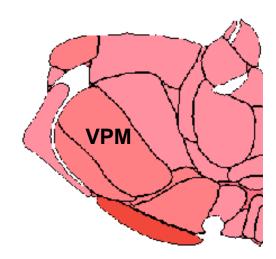


Slide from Meghan Turner

Pvalb



Section 6.8



Concluding remarks

- You are collecting/analyzing spatial data: what spatial features do you want to quantify?
- A few places where (classical) spatial statistics might be useful;
 data determines: point patterns versus lattice
- Functional data analysis, multi-cellular structure-based analyses, caveats of benchmarking