
April 23-25, 2025
Adapted from previous year courses

Deepak Tanwar
Frédéric Burdet

Reproducible
Computational Research

I N T R O D U C T I O N T O S E Q U E N C I N G D A T A A N A L Y S I S

Learning Objectives

Understand the difference between replicable and reproducible
research.

Learn about the reproducibility crisis and its impact on science.

Get introduced to literate programming for clearer, more
reproducible code.

Apply simple rules to make your own code reproducible and easy
to understand.

Computational reproducibility is the
ability to recreate, exactly same, an

earlier research/ analysis given
the same data and code.

Replication vs Reproducibility

Claerbout, J. F., & Karrenbach, M. (1992). Electronic documents give reproducible research a new meaning.

In SEG Technical Program Expanded Abstracts. https://doi.org/10.1190/1.1822162

https://doi.org/10.1190/1.1822162

Cartoon depiction of terms

Replicability vs Reproducibility
10.1097/j.pain.0000000000001254

Quiz 1

What best describes computational reproducibility?

A) Running a new experiment to confirm previous results
B) Repeating the same lab protocol on a different sample
C) Re-creating the same analysis using the same code and data
D) Rewriting the entire codebase to improve performance

Reproducibility spectrum

The reproducibility crisis in science

https://www.nature.com/articles/533452a

https://www.nature.com/articles/533452a

https://www.nature.com/articles/533452a

Quiz 2

What is one key issue highlighted in the reproducibility crisis?

A) There are too few publications in top-tier journals
B) Many studies cannot be reproduced by independent labs
C) All computational results are automatically reproducible
D) Academic research never uses animal models

Academic Bias and biotech failures

The unspoken rule is that at least 50% of the
studies published even in top tier academic
journals – Science, Nature, Cell, PNAS, etc… –
can’t be repeated with the same conclusions
by an industrial lab. In particular, key animal
models often don’t reproduce.

https://lifescivc.com/2011/03/academic-bias-biotech-failures/

https://lifescivc.com/2011/03/academic-bias-biotech-failures/

A perfectly typeset
text example

Literate programming

Literate programming is a programming methodology that

combines a programming language with a documentation

language, making programs more robust, more portable,

and more easily maintained than programs written only in a
high-level language.

Quiz 3

What is the goal of literate programming?

A) To teach programming to literature students
B) To improve hardware compatibility of software
C) To combine code and documentation for clarity
D) To automate writing of scientific papers

Tools for literate programming in R

Tools for literate programming in LaTeX

Sweave – Integrates R code into LaTeX (older tool).

knitr – Improved version of Sweave, works with R and LaTeX.

Pweave – Python + LaTeX (like knitr, but for Python).

noweb – Original language-independent tool for literate

programming.

Tools for literate programming in Multiple-languages

Quiz 4

Which of the following is not a tool for literate programming?

A) Jupyter Notebook

B) knitr
C) Sweave
D) FastQC

Why reproducible?

1. For yourself!

a. Adjusting your analysis

b. Sharing your analysis

c. Find out what the heck you did > 2 weeks ago

2. Because the academic community requires it..

1. Many journals require accompanied code

2. Proposals often require a data management plan

5 simple rules to get started

1. Execute the commands from a script

2. Number scripts based on their order of execution

3. Give your scripts a descriptive and active name

4. Make your scripts specific

5. Directories and variables at the beginning of the script

Rule 1

Execute the commands from a script to be
able to trace back your steps

All output files and directories created from within a script

Adjusting your analysis becomes possible

Makes your analysis portable. It can be run:

On a different computer

By your colleague

Rule 2

Number scripts based on their order of
execution (e.g. 01_download_reads.sh)

Easily trace the order of execution

Seperates main scripts from secondary scripts (i.e. scripts called by another
script)

Example:
01_download_reads.sh
02_run_fastqc.sh
03_trim_reads.sh
04_run_fastqc_trimmed.sh

Rule 3

Give your scripts a descriptive and active
names

Makes it easier to identify the script of interest

Example:

01_download_reads.sh
02_run_fastqc.sh
03_trim_reads.sh
04_run_fastqc_trimmed.sh

Rule 4

Make your scripts specific, i.e. do not
combine many different commands in the

same script

Makes your scripts modular (i.e. you can use it for other analyses)

Makes job submission more efficient

Turn your script in a pipeline later

Rule 5

Refer to directories and variables at the
beginning of the script

Directories and variables need to be changed often

No need to search through the whole script to change them

Debugging is easier

Example:

#!/usr/bin/env bash

TRIMMED_DIR=~/workdir/trimmed_data

READS_DIR=~/workdir/reads

mkdir -p $TRIMMED_DIR

Quiz 5

Which of the following is not one of the five simple rules for
reproducible code?

A) Execute commands from a script
B) Use modular and specific scripts
C) Hard-code all file paths
D) Define variables at the top of scripts

Version control (git, GitHub, GitLab)

Pipelines

Notebooks

Further steps

Further readings

1. Sandve, G.K. et al. (2013b) 'Ten simple rules for reproducible computational research,'

PLoS Computational Biology, 9(10), p. e1003285.

https://doi.org/10.1371/journal.pcbi.1003285.

2. Heise, V. et al. (2023) 'Ten simple rules for implementing open and reproducible

research practices after attending a training course,' PLoS Computational Biology,

19(1), p. e1010750. https://doi.org/10.1371/journal.pcbi.1010750.

3. Rule, A. et al. (2018b) 'Ten simple rules for reproducible research in Jupyter notebooks,'

arXiv (Cornell University) [Preprint]. https://doi.org/10.48550/arxiv.1810.08055.

https://doi.org/10.1371/journal.pcbi.1003285

Summary

1. Reproducibility is essential for trust and progress in science.

2. Reproducibility ≠ Replicability — know the difference.

3. The reproducibility crisis affects even top-tier research.

4. Literate programming improves transparency by combining code and
explanation.

5. Follow simple coding rules to make your work reproducible.

6. Think ahead: version control, documentation, and sharing are key for
reproducible research.

Thank you
D A T A S C I E N T I S T S F O R L I F E

sib.swiss

	Slide 1: Reproducible Computational Research
	Slide 2: Learning Objectives
	Slide 3: Computational reproducibility is the ability to recreate, exactly same, an earlier research/ analysis given the same data and code.
	Slide 4: Replication vs Reproducibility
	Slide 5: Cartoon depiction of terms
	Slide 6: Replicability vs Reproducibility
	Slide 7: Quiz 1
	Slide 8: Reproducibility spectrum
	Slide 9: The reproducibility crisis in science
	Slide 10: Quiz 2
	Slide 11: Academic Bias and biotech failures
	Slide 12: A perfectly typeset text example
	Slide 13: Literate programming
	Slide 14: Quiz 3
	Slide 15: Tools for literate programming in R
	Slide 16: Tools for literate programming in LaTeX
	Slide 17: Tools for literate programming in Multiple-languages
	Slide 18: Quiz 4
	Slide 19: Why reproducible?
	Slide 20: 5 simple rules to get started
	Slide 21: Rule 1
	Slide 22: Rule 2
	Slide 23: Rule 3
	Slide 24: Rule 4
	Slide 25: Rule 5
	Slide 26: Quiz 5
	Slide 27: Further steps
	Slide 28: Further readings
	Slide 29: Summary
	Slide 30: Thank you

