Introduction to Cell Ranger

Single Cell Transcriptomics in Python

Alex Lederer

General overview of scRNA-seq technologies

Microtitre Plates Cell flow FACS sorting Multispectral detectors Laser Deflection 0 plates multi-well plate

Microfluidic Arrays

Microfluidic Droplets

https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html

10X Genomics Single-Cell RNA-sequencing protocol overview

https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html

Question

Cell Ranger converts raw FASTQs into a cell-by-gene count matrix

		Gene0	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6	Gene7	Gene8	Gene9	
Count matrix	Cell0	31.0	15.0	91.0	45.0	49.0	99.0	32.0	55.0	29.0	51.0	
	Cell1	54.0	18.0	95.0	99.0	88.0	77.0	81.0	73.0	60.0	63.0	
	Cell2	9.0	9.0	54.0	45.0	53.0	86.0	40.0	75.0	88.0	14.0	
	Cell3	90.0	85.0	28.0	11.0	92.0	99.0	2.0	44.0	61.0	18.0	

FASTQ files explained

Link: <u>https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html</u>

- 1. A sequence identifier with information about the sequencing run and the cluster. The exact contents of this line vary by based on the BCL to FASTQ conversion software used.
- 2. The sequence (the base calls; A, C, T, G and N).
- 3. A separator, which is simply a plus (+) sign.
- 4. The base call quality scores. These are Phred +33 encoded, using ASCII characters to represent the numerical quality scores.

Here is an example of a single entry in a R1 FASTQ file:

Cell Ranger count

- One of multiple functions offered as part of the Cell Ranger software (*mkfastq*, *multi*, *aggr*).
- Cell ranger count operates in two main steps: (<u>https://www.10xgenomics.com/support/software/cell-ranger/latest/analysis/running-pipelines/cr-gex-count</u>)

Step 1: Align each sequencing read to a reference transcriptome

Convert a FASTQ file...

TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCCTGACATAAGGGGGCATGGACGA

Into a BAM/SAM file (<u>https://www.metagenomics.wiki/tools/samtools/bam-sam-file-format</u>)

<00369:86:HKJEVBBXY:6:2218:15453:10616 0</pre> chr1 629330 <u>ΑΤΤΑCΤΤΑΤΑΤGATATGTCTCCATACCCATTACAATCTCCAGCAT</u> nM:i:0 RG:Z:RPE_34_ctrl_rep1:0:1:HKJ HI:i:1 AS:i:102 RE:A:I xf:i:0 CR:Z:AGTGACTTCTAGGCCG CY:Z:AAFFFJFJJJJJJJJJJ UY:Z:JJJJJJJJJJJJJ UB:Z:CATTACCAGTAA CB:Z:AGTGACTTCTAGGCCG-1 <00369:86:HKJFVBBXY:4:2214:17401:7732</pre> chr1 629330 ʹΤϹϹΤΑΤGΑΑΑΑΑΑΥΤΤϹϹʹ ICCACTCACCCTAGCATTACTTATATGATATGTCTCCATACCCATTACAATCTCCAGCATTCC NH:i:2 HI:i:1 AS:i:102 nM:i:0 RG:Z:RPE_34_ctrl_rep1:0:1:HKJ UB:Z:TTTCTGGATCCG RE:A:I xf:i:0 CR:Z:ATCGATGTCAGCTTCC CY:Z:AAFFFJJJJJJJJJJJ CB:Z:ATCGATGTCAGCTTCC-1 UR:Z:TTTCTGGATCCG UY:Z:JJJJJJJJJJJJ

Cell Ranger count

- One of multiple functions offered as part of the Cell Ranger software (*mkfastq*, *multi*, *aggr*).
- Cell ranger count operates in two main steps: (<u>https://www.10xgenomics.com/support/software/cell-ranger/latest/analysis/running-pipelines/cr-gex-count</u>)

Step 1: Align each sequencing read to a reference transcriptome

Convert a FASTQ file...

TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCCTGACATAAGGGGGCATGGACGA

Into a BAM/SAM file (<u>https://www.metagenomics.wiki/tools/samtools/bam-sam-file-format</u>)

<00369:86:HKJEVBBXY:6:2218:15453:10616 0</pre> chr1 629330 ATTACTTATATGATATGTCTCCATACCCATTACAATCTCCAGCAT <u>AAACCTAA_AAFEE1A-7A<7FA</u>]<]]]]]]]FJ-<-AJF7EJFFJJ<<<FF<FJJJJJJ]<]JFFJJJJFFJJJJFJJFFJAJJFFJJJF nM:i:0 RG:Z:RPE_34_ctrl_rep1:0:1:HKJ AS:i:102 RE:A:I xf:i:0 CR:Z:AGTGACTTCTAGGCCG CY:Z:AAFFFJFJJJJJJJJJJ UB:Z:CATTACCAGTAA CB:Z:AGTGACTTCTAGGCCG-1 UY:Z:JJJJJJJJJJJJJ (00369:86:HKJFVBBXY:4:2214:17401:7732 chr1 629330 ʹϹͳΑΤĠΑΑΑΑΑΑΥΤΊ CCACTCACCCTAGCATTACTTATATGATATGTCTCCATACCCATTACAATCTCCAGCATTCC NH:i:2 HI:i:1 AS:i:102 nM:i:0 RG:Z:RPE_34_ctrl_rep1:0:1:HKJ RE:A:I xf:i:0 CR:Z:ATCGATGTCAGCTTCC CY:Z:AAFFFJJJJJJJJJJJ CB:Z:ATCGATGTCAGCTTCC-1 UR:Z:TTTCTGGATCCG UY:Z:JJJJJJJJJJJJ UB:Z:TTTCTGGATCCG

Step 2: Count cell barcodes and the number of unique molecular identifiers (UMIs) per gene/cell

BAM/SAM file → Feature-Count matrix

Which cell barcodes are "real" and which come from "empty" droplets or sequencing errors?

5k_pbmc_protein_v3 - 5k Peripheral blood mononuclear cells (PBMCs) from a healthy donor

5.247		Cells ⑦						
Estimated Number of Cells			Barcode Rank Plot	e Rank Plot 💿 希				
		10k	_	Cells Background				
28,918 Mean Reads per Cell		1000 WD 1000						
uencing 💿		10 1 1	100 10k 1M					
lumber of Reads	151,731,342		Barcodes					
d Barcodes	97.5%		(0.1)					
id UMIs	99.9%	Estimated Number	of Cells	5,24				
quencing Saturation	52.4%	Fraction Reads in C	ells	87.75				
D Bases in Barcode	95.8%	Mean Reads per Ce	ll	28,918				
0 Bases in RNA Read	91.9%	Median Genes per (Cell					
) Bases in Sample Index	89.8%	Total Genes Detecte	ed	20,82				
30 Bases in UMI	95.4%	Median UMI Counts	per Cell	5,49				
lapping 💿		Sample						
leads Mapped to Genome	94.3%	Sample ID	5	k_pbmc_protein_v				
ads Mapped Confidently to Genome	88.4%	Sample Description	5k Peripheral blood	mononuclear cells				
eads Mapped Confidently to Intergenic Regions	6.8%	Chemistry		Single Coll 3' v				
eads Mapped Confidently to Intronic Regions	25.0%	Transcriptome		CPCh38-2 0				
ads Mapped Confidently to Exonic Regions	56.7%	Pineline		GRUH30-3.0.				
ads Mapped Confidently to Transcriptome	53.2%	Version		3.1.				
ds Mapped Antisense to Gene	1.3%							

How do I know if my sample is any good?

Sample Preparation

- Cell isolation and tissue dissociation
- **Potential issues:** What if the tissue is not fully dissociated? Or agitated too much?

Cell Encapsulation

- Gel Bead-In-Emulsions (GEMs) Formation: cells are encapsulated in droplets with gel beads coated with barcoded cell-specific primers and molecule-specific UMIs
- Potential issues: multiple cells per barcode, droplets without any cells, ambient RNA

Reverse Transcription

- Converts mRNA into cDNA within each droplet.
- **Potential issues:** degradation of unstable RNA molecules

Post-Emulsion Breakage Processing

- Emulsion Breakage and cDNA Cleanup: The emulsions are broken, and the pooled cDNA is cleaned up, usually using magnetic beads. The cleaned-up cDNA is PCR-amplified to generate sufficient material for library preparation (PCA amplification) and sequencing.
- **Potential issues:** incorrect size selection with magnetic beads; amplification of primers or other small DNA fragments

The barcode rank plot

Question