
Introduction to scanpy
Single Cell Transcriptomics in Python

Alex Lederer



• Highly popular set of Python tools for 
analysis of single cell datasets (primarily 
single cell RNA-sequencing data)

• Allows analysis from raw counts 
through the following steps:
o Preprocessing and quality control
o Feature selection
o Dimensionality reduction
o Clustering and marker annotation
o Visualization

o Other related tools for RNA velocity 
(scvelo), data batch integration, and 
spatial transcriptomics

o Let’s walk through a tutorial!

What is scanpy?



AnnData objects
• Fundamental unit of scanpy
• Essentially a fancy table with embedding metadata, example: 

• BUT when you first load a file it is pretty empty:

rows, columns = 2432 cells, 2000 genes
adata.obs = metadata table for the cells (pandas data frame)
adata.var = metadata table for the genes (pandas data frame)



Reading and writing AnnData objects

Reading a 10X dataset folder

Other functions for loading data:
 sc.read_10x_h5
 sc.read_csv
 sc.read_h5ad # this function will be used to load any analysis objects you save
 sc.read_loom

To save your adata object at any step of analysis:

Essential imports

A saved h5ad can later be reloaded using the command sc.read_h5ad

Check out the documentation pages for these packages!



Preprocessing and quality control

• How many UMIs are there per cell?
• cells with low num UMIs = low quality
• cells with high num UMIs = doublets

• How many genes are detected per cell?



Preprocessing and quality control

Example of filtering criteria:
What are the most highly expressed genes?

MALAT1, ribosomal genes (RPL, RPS) are normally the most abundant

These filtering criteria will depend on the overall 
sequencing quality and depth of the respective dataset



Preprocessing and quality control
Cells with a large percentage of reads from mitochondrial genes are usually of lower quality 

'MT' for 
human 
datasets!

Can also make scatter plots:

Filtering step:



Normalization
• Total-count normalize (library-size correct) the data matrix 𝐗 to 10,000 reads per cell, so that counts 

become comparable among cells

• Logarithmize the data

• Important: save a copy of the raw data file before any gene filtering is performed in the next step!

Or: adata.raw = adata.X



Finding highly variable genes
• Select a subset of all genes to use for dimensionality reduction
• Highly variable genes better capture the heterogeneity of the dataset

• Visualize selected genes

• Actually do the gene filtering:



Regression and scaling
• Regress out effects of total counts per cell and the percentage of mitochondrial genes expressed.
• Scale each gene to unit variance. Clip values exceeding standard deviation 10.

Before

https://satijalab.org/seurat/articles/cell_cycle_vignette.html

After



Regression and scaling
• Regress out effects of total counts per cell and the percentage of mitochondrial genes expressed.
• Scale each gene to unit variance. Clip values exceeding standard deviation 10.

Center data so that mean=0 and unit variance; clip all values larger than 10
=> Avoids very highly expressed genes having a biased influence on dimensionality reduction steps.



Regression and scaling
• Regress out effects of total counts per cell and the percentage of mitochondrial genes expressed.
• Scale each gene to unit variance. Clip values exceeding standard deviation 10.

• AnnData object continuing to be populated, now only includes 2000 highly variable genes

Center data so that mean=0 and unit variance; clip all values larger than 10
=> Avoids very highly expressed genes having a biased influence on downstream analysis steps.



Principal component analysis
• Reduce the dimensionality of the data by running principal component analysis (PCA), which reveals the 

main axes of variation and denoises the data.

• We can make a scatter plot 
in the PCA coordinates, but 
we will not use that later on. • We can inspect the 

contribution of single PCs to 
the total variance in the data. 
This gives us information about 
how many PCs we should 
consider in order to compute 
the neighborhood relations of 
cells.



Computing and embedding the neighborhood graph
• Compute the neighborhood graph of cells using the PCA representation of the data matrix.

• Embedding the graph can be performed using either tSNE or UMAP algorithms



Visualizing the data with tSNE or UMAP
UMAP

tSNE

The color attribute can be used for 
any gene in the AnnData object as 
well as for any metadata features in 
adata.obs 



Clustering the UMAP
• Louvain or Leiden clustering

resolution parameter = adjust number of clusters
• Higher resolution = more clusters
• Lower resolution = fewer clusters



Visualizing the data with tSNE or UMAP
• If we want to visualize genes that weren’t considered highly variable, we can use our adata_raw object
• First we must transfer over the metadata, however.

• Recommended to use the full list of genes (after initial QC filtering) when looking at differential expression 



AnnData objects
• Now the AnnData object is pretty packed with information!



Finding marker genes
• Let us compute a ranking for the highly differential genes in each cluster using the Wilcoxon rank-sum test. For 

this, by default, the .raw attribute of AnnData is used in case it has been initialized before.

More easily access the marker genes Visualize marker genes on UMAP or tSNE:



Compare gene expression across cell types
• If you want to compare a certain gene across groups, one can use the following:

Violin plots

Dot plots



Assigning cell types to Louvain clusters
• Almost the most challenging step!
• Use the literature to annotate marker genes for each cluster and obtain cell type estimates:

• Google search of gene names is often the most useful for finding relevant papers!
• Online tools: GeneCards, EnrichR, Gene Ontology
• Machine learning based approach: Celltypist

Don’t forget to save your analysis file for later use!



Assigning cell types to Louvain clusters
• Almost the most challenging step!
• Use the literature to annotate marker genes for each cluster and obtain cell type estimates:

• Google search of gene names is often the most useful for finding relevant papers!
• Online tools: GeneCards, EnrichR, Gene Ontology
• Machine learning based approach: Celltypist

Don’t forget to save your analysis file for later use!

Sub-clustering after the initial analysis
• Additional heterogeneity can sometimes be uncovered by sub-clustering
• Given the cluster annotations from the initial analysis, select the cells from a single cluster
• Using that single cluster, repeat scanpy analysis



Next steps:
• Visit the scanpy website and practice with their tutorials!
https://scanpy.readthedocs.io/en/stable/tutorials.html#

(covered in depth in these slides)

https://scanpy.readthedocs.io/en/stable/tutorials.html

