
Dimensionality Reduction & 
Integration

Single Cell Transcriptomics in Python
Alex Lederer



• More dimensions = exponentially more possible cell “positions” in gene 
expression space! 

The curse of dimensionality

https://www.pinecone.io/learn/dimensionality-reduction/



• To simplify our complex data!

• Reduce number of features (genes) without losing information

• Identify signal and remove redundancies (noise) in the data

• Speed up computational time for downstream steps

• Facilitate clustering, since some algorithms struggle with too many dimensions

• Easier data visualization

Why do we perform dimensionality reduction?



• Low dimensional representations (two-dimensions) will not capture the full 
variability represented by high dimensional data (20K dimensions) 

• In other words: information will still be lost

• Distances between cells/clusters in low dimensions might not reflect the true 
high dimensional data.

• Biological conclusions should not be drawn from UMAP and tSNE (but PCA is a 
little better…)

Limits of dimensionality reduction



1. Geometric dimensionality reduction
• The contribution or “weight” of each gene feature for each principal component axis can be 

directly calculated

PCA: principal component analysis (https://hbctraining.github.io/scRNA-
seq/lessons/05_normalization_and_PCA.html)

Two types of dimensionality reduction

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html
https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html


1. Geometric dimensionality reduction
• The contribution or “weight” of each gene feature for each principal component axis can be 

directly calculated

PCA: principal component analysis (https://hbctraining.github.io/scRNA-
seq/lessons/05_normalization_and_PCA.html)

2. Non-geometric embedding methods
• The relationship between gene features and the lower dimensional representation is lost; there 

is a degree of randomness in the embedding computation.

tSNE: T-distributed stochastic neighborhood embedding 
(https://jmlr.org/papers/v9/vandermaaten08a.html)
UMAP: Uniform manifold approach and projection (https://arxiv.org/abs/1802.03426)

Two types of dimensionality reduction

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html
https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html
https://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1802.03426


Question



Principal component analysis (PCA)



Principal component analysis (PCA)
Goal: to emphasize variation as well as similarity in a dataset, among several thousand highly 
variable genes.

Let’s consider an example of two samples (cells) and four genes:

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html 

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html


Principal component analysis (PCA)
We can draw two lines to represent the largest and second largest axes of variation among all 
four genes.

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html 

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html


Principal component analysis (PCA)
Genes at the extremes of each axis of variation contribute the most to that “component”

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html 

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html


Principal component analysis (PCA)
By rotating the plot, we obtain two axes that can be thought of as our principal components!

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html 

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html


Principal component analysis (PCA)
By rotating the plot, we obtain two axes that can be thought of as our principal components!

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html 

With three cells, we have an extra dimension that can be 
described by a third line, i.e., a third principal component. This 

continues with each additional cell we add…

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html


Principal component analysis (PCA)

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html 

Each gene is assigned a score (loading) that weighs its contribution to each principal 
component.

”loadings”

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html


Principal component analysis (PCA)
Each gene is assigned a score (loading) that weighs its contribution to each principal 
component.

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html 

The position of each cell on a PCA plot is then determined by the sum of its gene counts and the 
loadings of each gene. For Sample 1 (Cell 1):
 PC1 score = (4 * -2) + (1 * -10) + (8 * 8) + (5 * 1) = 51
 PC2 score = (4 * 0.5) + (1 * 1) + (8 * -5) + (5 * 6) = -7

”loadings”

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html


Principal component analysis (PCA)

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html 

The position of each cell on a PCA plot is then determined by the sum of its gene counts and the 
loadings of each gene. For Sample 1 (Cell 1):
 PC1 score = (4 * -2) + (1 * -10) + (8 * 8) + (5 * 1) = 51
 PC2 score = (4 * 0.5) + (1 * 1) + (8 * -5) + (5 * 6) = -7 https://towardsdatascience.com/a-one-stop-shop-for-

principal-component-analysis-5582fb7e0a9c 

https://hbctraining.github.io/scRNA-seq/lessons/05_normalization_and_PCA.html
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c


PCA in scanpy

sc.pl.pca_variance_ratiosc.pl.pca More complex plots
sc.pl.heatmap



Question(s)



UMAP/tSNE embedding methods



Limitations of PCA

Image source: https://meta.caspershire.net/umap/

The two principal components from PCA do not always go far enough to discriminate 
different data types.



UMAP vs tSNE
• UMAP better preserves global structure compared to tSNE
• UMAP is significantly faster on larger datasets (https://umap-

learn.readthedocs.io/en/latest/performance.html)

• More intuitive information on tSNE: https://towardsdatascience.com/t-sne-clearly-
explained-d84c537f53a 

• Here I will focus more on UMAP

https://umap-learn.readthedocs.io/en/latest/performance.html
https://umap-learn.readthedocs.io/en/latest/performance.html
https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a
https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a


UMAP explained: general steps
1. Compute the similarity between (neighborhood graph with Euclidean distance)
2. Project the cells as points on a low-dimensional (2D) plot
3. Calculate the similarities between points in the 2D space compared to the high-dimensional space.
4. Randomly adjust position of a few points and recompute distances until convergence.



https://pair-code.github.io/understanding-umap/ 

Interactive UMAP exploration

https://pair-code.github.io/understanding-umap/


Computing and embedding the neighborhood graph

• Compute the neighborhood graph of cells using the PCA representation of the data matrix.



Computing and embedding the neighborhood graph

• Compute the neighborhood graph of cells using the PCA representation of the data matrix.

Number of nearest neighbors (n_neighbors)
• Low values = embedding captures more noise
• High values = smoother embedding (capture less biological variability)

Number of principal components (n_pcs)
• Low values = less cell type discrimination (you risk underestimating sample heterogeneity)
• High values = more cell type discrimination (but you risk including noise!) 



Computing and embedding the neighborhood graph
• Embedding the graph can be performed using either tSNE or UMAP algorithms

https://www.pinecone.io/learn/dimensionality-reduction/



Computing and embedding the neighborhood graph
• Embedding the graph can be performed using either tSNE or UMAP algorithms

UMAP hyperparameters:
• Number of nearest neighbors (n_neighbors): controls how UMAP balances local versus global 

structure. This is adjusted with the sc.pp.neighbors function.
• Low values = more local structure 
• High values = represent the big-picture structure, but losing fine detail

• Minimum distance between points in low-dimensional space (min_dist): controls how tightly 
UMAP clumps data points together. This is adjusted with the sc.tl.umap function.
• Low values = more tightly packed embeddings
• High values = points packed together more loosely, focusing on the broad structure

https://www.pinecone.io/learn/dimensionality-reduction/



Limitations of UMAP and embedding methods

• Dimensionality reduction from tens of 
thousands to two dimensions introduces 
distortions into the data 

https://www.nature.com/articles/s41592-024-02301-x 

https://www.nature.com/articles/s41592-024-02301-x


Limitations of UMAP and embedding methods

https://www.nature.com/articles/s41592-024-02301-x 

https://www.nature.com/articles/s41592-024-02301-x


Data integration



Integration analysis
Why do we integrate single-cell data?

From: https://doi.org/10.1038/s41592-019-0619-0

https://doi.org/10.1038/s41592-019-0619-0


Common steps of integration algorithms

1. Find similar cells across batches by computing a distance 
between cells in a certain space (i.e., PCA, gene feature space).

2. Compute a data adjustment based on correspondences between 
cells from different batches

3. Apply the adjustment and repeat until certain criteria (i.e., mean 
distance between cells in different batches) are reached



Data integration with Harmony

Fast, sensitive and accurate integration of single-cell data with Harmony (Nature Methods 2019)
https://doi.org/10.1038/s41592-019-0619-0

• An iterative algorithm to adjust principal components and reduce batch effect between samples
• Modifies the PCs but not the count data (unlike CCA in Seurat)

https://doi.org/10.1038/s41592-019-0619-0


Data integration with Harmony

From: https://doi.org/10.1038/s41592-019-0619-0

Integration of three PBMC datasets from different 10X technologies

https://doi.org/10.1038/s41592-019-0619-0


• Harmony (https://doi.org/10.1101/461954)
• MNNcorrect (https://doi.org/10.1038/nbt.4091)
• RPCA + anchors (Seurat v3)(https://doi.org/10.1101/460147)
• CCA + anchors (Seurat v3) (https://doi.org/10.1101/460147)
• CCA + dynamic time warping (Seurat v2; https://doi.org/10.1038/nbt.4096)
• LIGER (https://doi.org/10.1101/459891) 
• Conos (https://doi.org/10.1101/460246)
• Scanorama (https://doi.org/10.1101/371179)
• scMerge (https://doi.org/10.1073/pnas.1820006116)
• STACAS (https://doi.org/10.1093/bioinformatics/btaa755)

Benchmarking study of 68 different methods and preprocessing choices on 1.2 million single 
cell: “Benchmarking atlas-level data integration in single-cell genomics” 
(https://www.nature.com/articles/s41592-021-01336-8)

Many integration methods are only available in R

Package list compiled by Rachel Marcone

https://doi.org/10.1093/bioinformatics/btaa755
https://www.nature.com/articles/s41592-021-01336-8


Limitation: technical variability versus biological variability

Too “strong” of an integration can remove all technical variability, but also biological 
variability (i.e., differences between a diseased and control sample. 

Potential solution: cell type label transfer approaches (sc.tl.ingest)

• Uses PCs and neighborhood from reference dataset to infer label information for a 
new unlabeled dataset.

• Leaves the data matrix invariant
• Solves the label mapping problem
• Maintains a sample-specific embedding that might have desired properties like 

specific clusters or trajectories

https://scanpy-tutorials.readthedocs.io/en/latest/integrating-data-using-ingest.html 

https://scanpy-tutorials.readthedocs.io/en/latest/integrating-data-using-ingest.html


Question


