

Differential gene expression analysis

Two types of gene expression analysis:

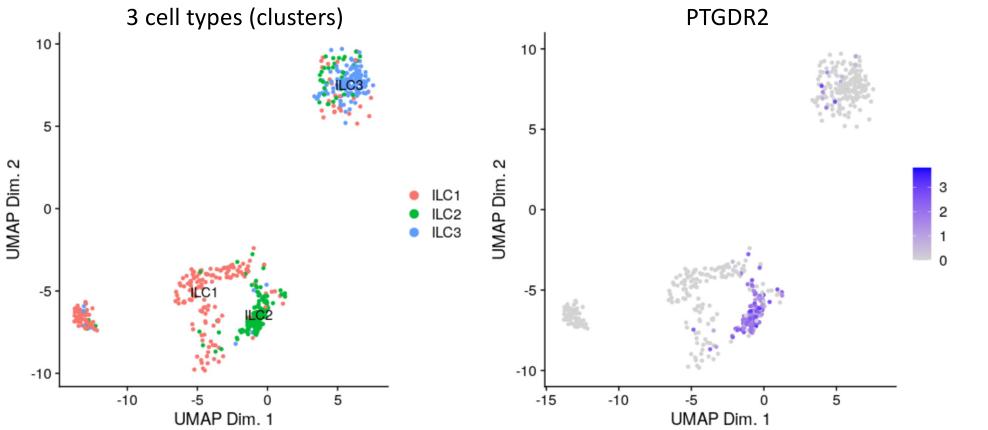
• Marker gene identification:

genes overexpressed by each cell type, cell cluster, ..., within the dataset => can *help with cell type annotation*

• **Differential gene expression analysis**: genes impacted by experimental conditions within a cell type, cell cluster, ..., etc

Marker gene identification

Which genes are more (or less) expressed in one cell type than in the others?



Marker gene identification

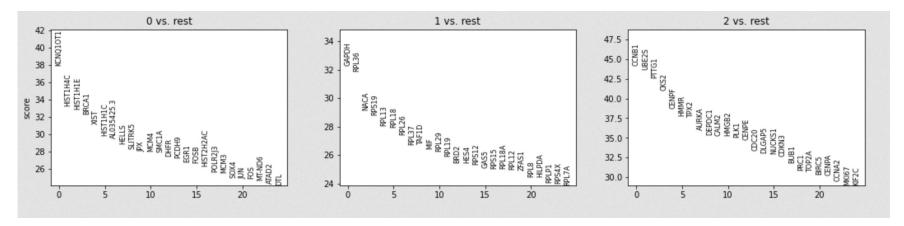
- Compare each cluster of cells against all other cells = 2 groupcomparison
- Wilcoxon Rank Sum test (Mann-Whitney U test)

sc.tl.rank_genes_groups(adata,
groupby="leiden", method="wilcoxon)

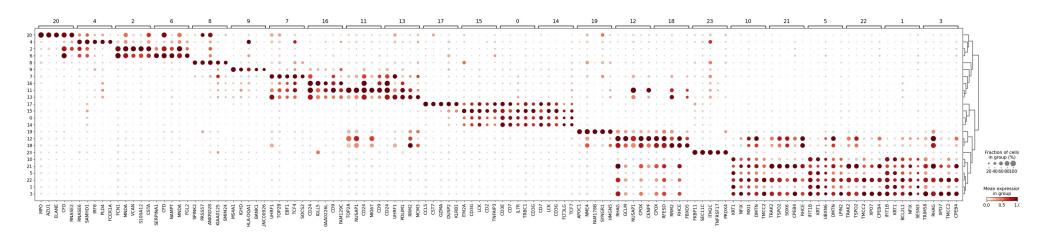
-> Returns an AnnData

• Plot the MW U statistic - the higher, the more significant:

sc.pl.rank_genes_groups(adata, n_genes=25)



Marker gene identification



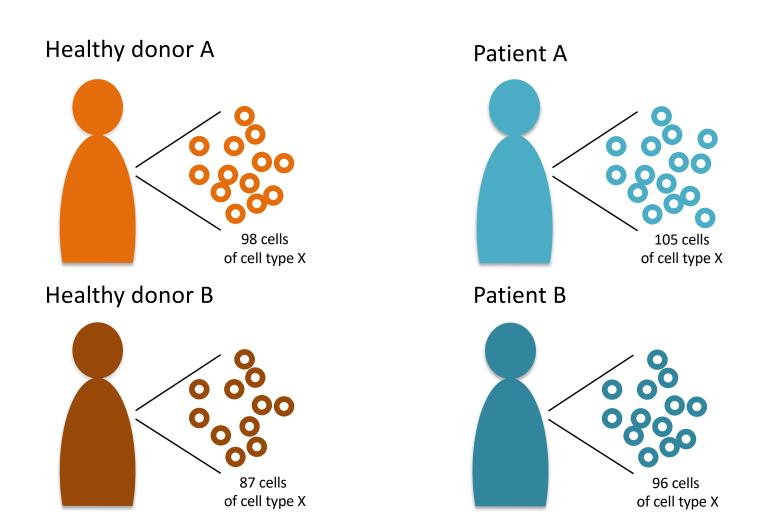
sc.pl.rank_genes_groups_dotplot(adata, groupby="leiden", n_genes=5)

Table of marker genes in each cluster versus all other cells - obtain log₂(fold change), pvalue and adjusted p-value

https://github.com/mousepixels/sanbomics_scripts/blob/main/Sca npy_intro_pp_clustering_markers.ipynb https://www.youtube.com/watch?v=5HuOGZEu2HY&t=21s&ab_ch annel=Sanbomics

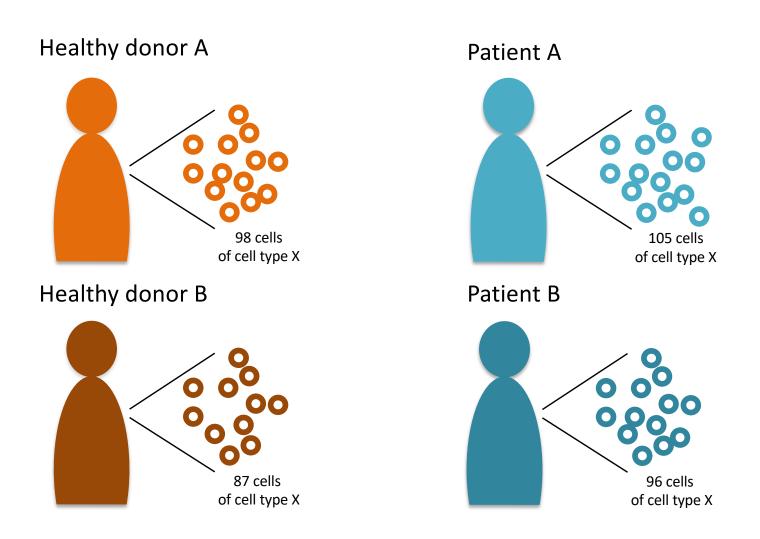
	Gene	scores	pval_adj	lfc	cluster
87796	zika	23.704487	0.0	8.062958	4
87797	SNHG15	16.631556	0.0	1.818314	4
87798	SDF2L1	16.453564	0.0	1.920571	4
87799	XBP1	16.216284	0.0	1.708001	4
87800	EIF4EBP1	15.350019	0.0	1.237626	4
109739	SOX4	-13.782868	0.0	-1.743386	4
109740	PGK1	-13.823959	0.0	-1.340903	4
109741	MSM01	-13.977442	0.0	-2.380198	4
109743	SLC25A3	-16.256285	0.0	-1.478398	4
109744	XIST	-16.642595	0.0	-1.296944	4

DGE analysis between 2 conditions :

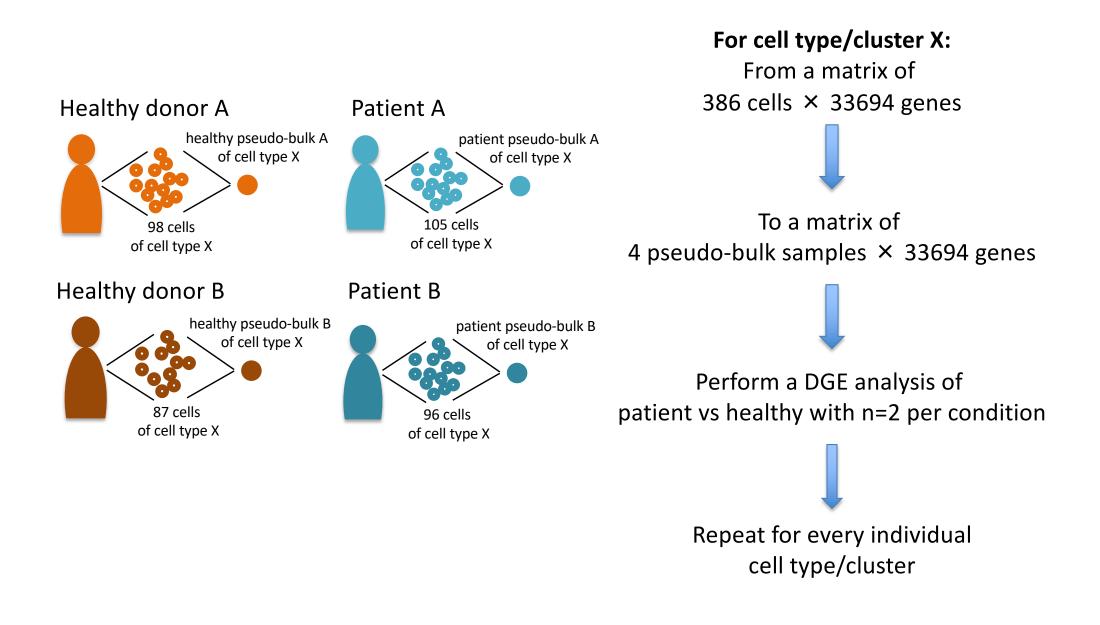


DGE analysis between 2 conditions : Problem of pseudo-replication?

How many independent replicates do we have, ~200 or 2 replicates per condition?



Pseudo-bulk DE analysis



PyDESeq2

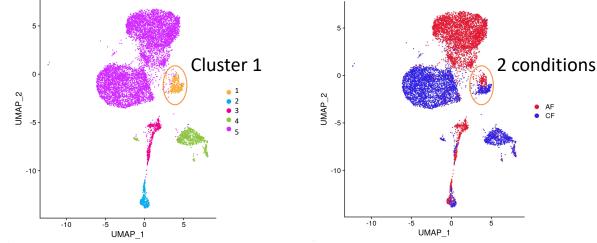
https://pydeseq2.readthedocs.io/en/latest/auto_examples/index.html

- Implementation of R's DESeq2 package: Method designed for bulk RNA seq analysis
- Wald test: DESeq2 models count data using a negative binomial distribution. It fits a GLM to the counts of each gene. The Wald test is used to determine the significance of individual coefficients in the GLM fitted to each gene.

 $counts_i \sim condition + other covariates$

- It can incorporate factors such as experimental conditions (multi-factor, factorial, ...), batch effects and other covariates.
- How to create design matrices and contrasts: <u>https://doi.org/10.12688%2Ff1000research.27893.1</u>

DGE analysis between 2 conditions :

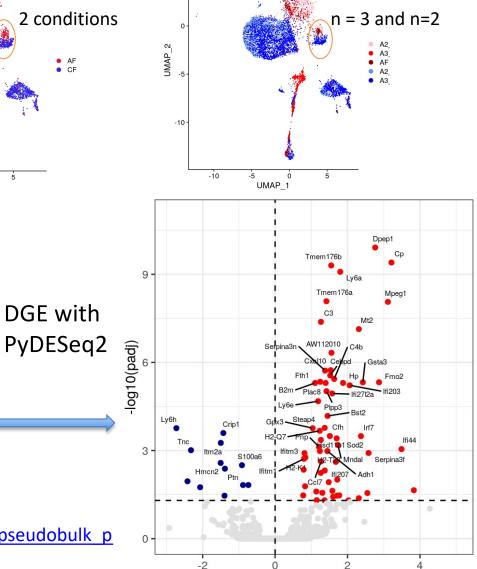


Sum counts of all cells of cluster 1 per sample:

	Xkr4	Gm1992	Gm3738	Rp1	Sox17	Gm3732	
A2_AF	18	1	240	0	4	68	
A3_AF	25	0	489	0	5	45	
AF	40	2	500	0	1	32	
A2_CF	70	0	407	0	0	45	
A3_CF	36	2	230	0	3	23	

https://github.com/mousepixels/sanbomics_scripts/blob/main/pseudobulk_p yDeseq2.ipynb

https://www.youtube.com/watch?v=Ee0PQUwVH8Q&ab_channel=Sanbomics



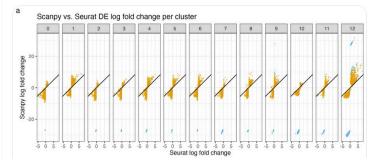
log2(fold change)

log₂(fold change) discrepancy?

...

A **I** on why Seurat and Scanpy's log fold change calculations are discordant. 1/

(based on the Supplementary Notes from biorxiv.org/content/10.110...).



Seurat formula:

$$R_g = \log_2(rac{1}{n_1}\sum_{i\in G_1}(exp(Y_{ig})-1)+1) - log_2(rac{1}{n_2}\sum_{i\in G_2}(exp(Y_{ig})-1)+1),$$

Scanpy formula:

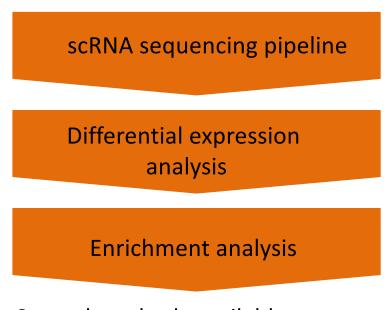
$$P_g = \log_2(exp(rac{1}{n_1}\sum_{i\in G_1}Y_{ig})-1+\epsilon) - log_2(exp(rac{1}{n_2}\sum_{i\in G_2}Y_{ig})-1+\epsilon),$$
 where $\epsilon = 10^{-9}.$

where Y_{ig} are the log-transformed expression values for cell *i* and gene *g*, G_1 and G_2 are the indices for two groups of cells, and n_1 and n_2 are the numbers of cells in the respective groups.

https://twitter.com/lpachter/status/1694387749967847874

https://divingintogeneticsandgenomics.com/post/do-you-really-understand-log2fold-change-in-single-cell-rnaseq-data/

Once we have identified marker or DE genes, what do we do?



Several methods available, e.g.:

- over-representation analysis (ORA)
- gene set enrichment analysis (GSEA)

Goal: to gain biologicallymeaningful insights from long gene lists

- Pathways from a collection like KEGG or Gene Ontology?
- Transcription factor targets ?
- Custom gene list from a publication?
- Genes associated with a disease ?
- Etc...

Enrichment analysis

• GSEApy:

https://gseapy.readthedocs.io/en/latest/introduction.html

Tutorial:

https://github.com/mousepixels/sanbomics_scripts/blob/main/GSE

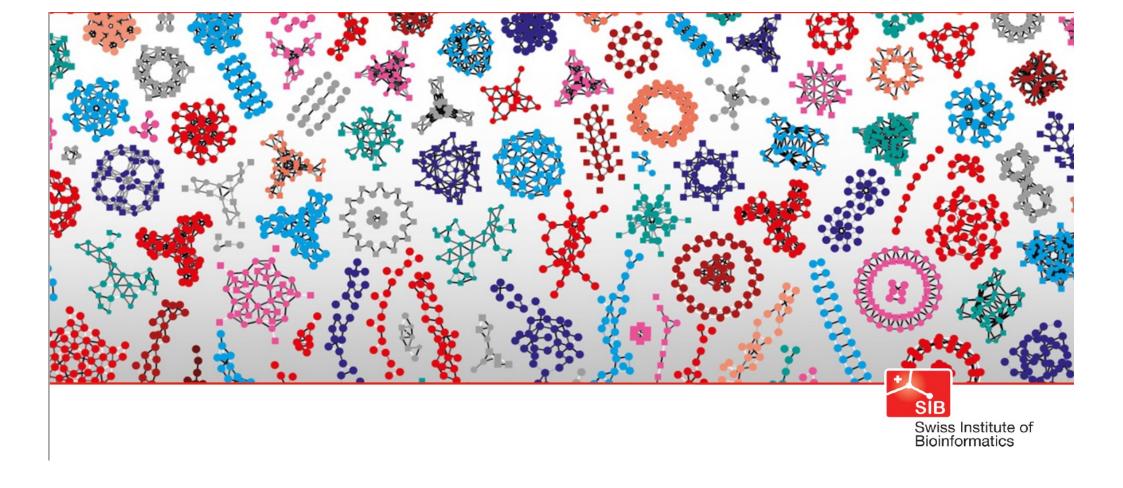
<u>A_in_python.ipynb</u>

<u>https://www.youtube.com/watch?v=yOQcrUMCALw&t=302s&ab_ch</u> <u>annel=Sanbomics</u>

<u>https://nbisweden.github.io/workshop-</u> <u>scRNAseq/labs/scanpy/scanpy_05_dge.html#meta-dge_gsa_hyper</u>

• (R: <u>https://sib-swiss.github.io/enrichment-analysis-training/</u>)

Question on marker gene/DGE analysis

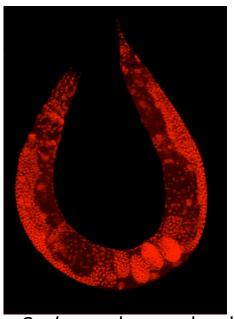


Single cell transcriptomics data analysis

Cell type annotation

What is a "cell type"?

- Fundamental unit of life
- Originally defined in terms of function, location tissue type, cell morphology
- Later extended to
 - presence/absence of cell surface markers
 - gene expression (molecular profile)
- Currently very much less fixed
 - cell cycle phase
 - migration state
 - differentiation: cell state

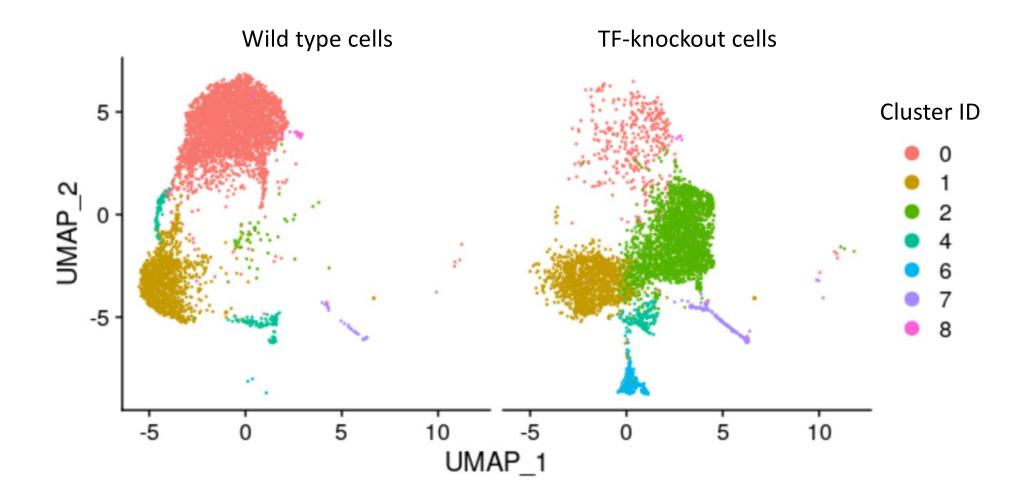


Wild-type *C. elegans* hermaphrodite stained to highlight the nuclei of all cells

Why should we identify cell types?

- Samples are heterogeneous (in general)
- Tumor sample: how much do they differ from normal cell types?
- Find new cell types which have been missed by using "standard" surface markers
- Follow cell fate and determine cell differentiation mechanisms
- To determine which cell types might communicate with each other
- To compare the abundance of cell types in different conditions
- •

Change in cell type abundances: what are the new cells?

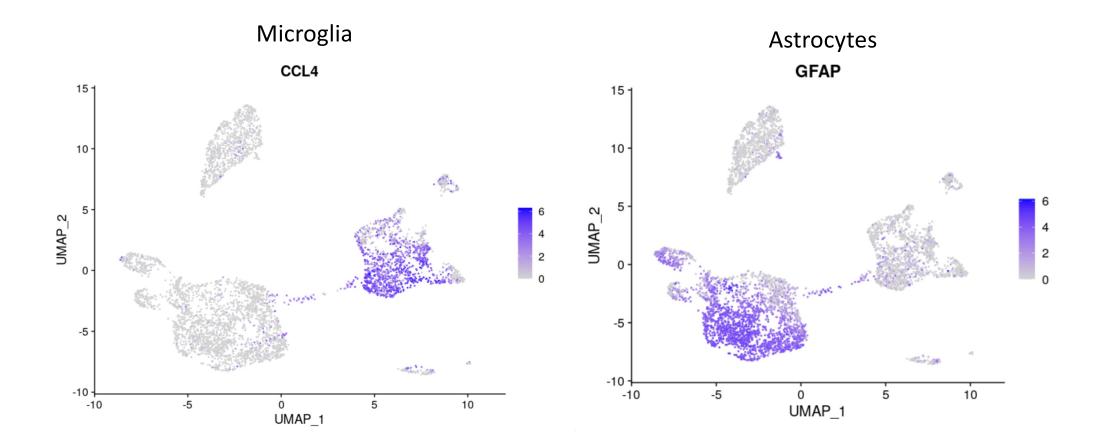


Mouse mesenteric lymphatic endothelial cells. From González-Loyola A et al 2021, DOI: 10.1126/sciadv.abf4335

Manual vs automatic cell type annotation

- Manual: using marker genes
 - What most people do...
 - Time consuming
 - Requires expert knowledge
 - Sometimes subjective and inaccurate
- Automatic: requires a reference
 - Use complete cell type-specific mRNA expression profiles based on bulk RNAseq from FACS-sorted 'pure' populations
 - OR: Use "a reference" of manually curated cells picked from scRNA-seq data sets
 - Can miss cell types if they are not included in the reference

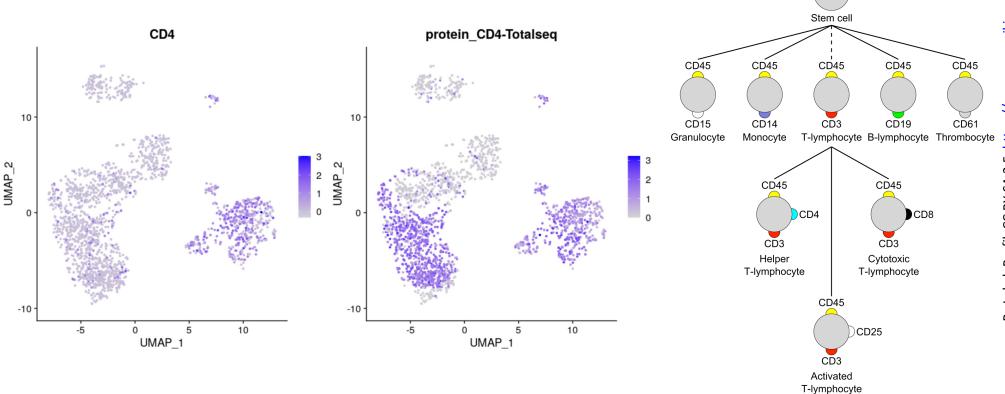
Manual annotation using known marker genes



Human glioblastoma multiforme cells, 10x Genomics data (source of data to play with) https://support.10xgenomics.com/single-cell-gene-expression/datasets/4.0.0/Parent_SC3v3_Human_Glioblastoma

Cell surface markers

- Often considered the gold standard esp. in immunology
- mRNA of cell surface markers sometimes lowly expressed or absent
- Use a combination of such marker genes, and also other genes like marker genes among clusters (eg secreted proteins or transcription factors)

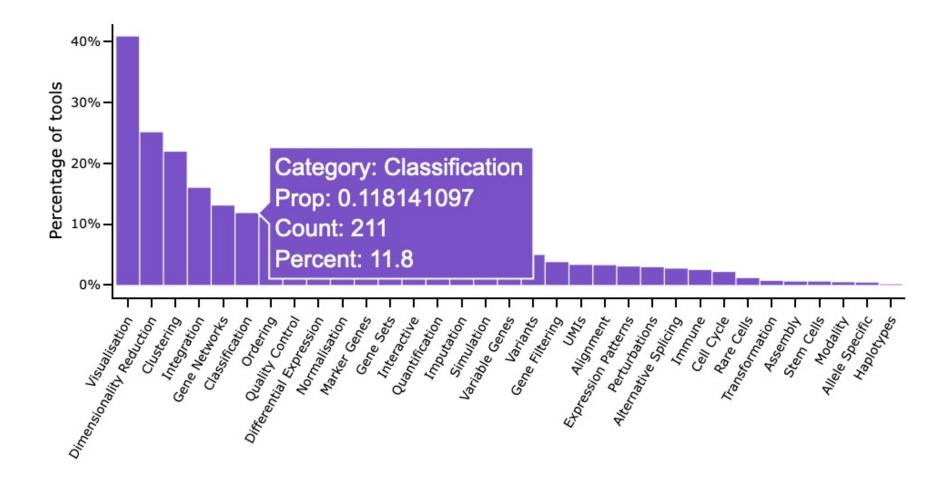


Databases with cell type marker genes

- PanglaoDB <u>https://panglaodb.se/</u> (mouse and human) Check out <u>https://cran.r-project.org/web/packages/rPanglaoDB/index.html</u>
- CellMarker (mouse and human) <u>http://xteam.xbio.top/CellMarker/index.jsp</u>

-> Check whether your marker genes are part of any of the cluster marker genes

Automated cell type annotation



May 24th, 2024 https://www.scrna-tools.org/

Several methods are available

Table 1 Automatic cell identification methods included in this study

From: A comparison of automatic cell identification methods for single-cell RNA sequencing data

Name	Version	Language	Underlying classifier	Prior knowledge	Rejection option	Reference
Garnett	0.1.4	R	Generalized linear model	Yes	Yes	[14]
Moana	0.1.1	Python	SVM with linear kernel	Yes	No	[<u>15]</u>
DigitalCellSorter	GitHub version: e369a34	Python	Voting based on cell type markers	Yes	No	[<u>16]</u>
SCINA	1.1.0	R	Bimodal distribution fitting for marker genes	Yes	No	[<u>17</u>]
scVI	0.3.0	Python	Neural network	No	No	[<u>18]</u>
Cell-BLAST	0.1.2	Python	Cell-to-cell similarity	No	Yes	[<u>19</u>]
ACTINN	GitHub version: 563bcc1	Python	Neural network	No	No	[20]
LAmbDA	GitHub version: 3891d72	Python	Random forest	No	No	[21]
scmapcluster	1.5.1	R	Nearest median classifier	No	Yes	[22]
scmapcell	1.5.1	R	kNN	No	Yes	[<u>22]</u>
scPred	0.0.0.9000	R	SVM with radial kernel	No	Yes	[23]
CHETAH	0.99.5	R	Correlation to training set	No	Yes	[24]
CaSTLe	GitHub version: 258b278	R	Random forest	No	No	[25]
SingleR	0.2.2	R	Correlation to training set	No	No	[<u>26</u>]
scID	0.0.0.9000	R	LDA	No	Yes	[<u>27</u>]
singleCellNet	0.1.0	R	Random forest	No	No	[28]
LDA	0.19.2	Python	LDA	No	No	[<u>29</u>]
NMC	0.19.2	Python	NMC	No	No	[29]
RF	0.19.2	Python	RF (50 trees)	No	No	[<u>29]</u>
SVM	0.19.2	Python	SVM (linear kernel)	No	No	[29]
SVM _{rejection}	0.19.2	Python	SVM (linear kernel)	No	Yes	[29]
kNN	0.19.2	Python	kNN (<i>k</i> = 9)	No	No	[29]

CellTypist

- Leverages machine learning models trained on large and diverse reference datasets to assign cell type labels in a query dataset.
- Classifiers are trained on the reference database: modelslearn to recognize patterns of gene expression characteristic of cell types.
- Compare the query gene expression profile to the reference profile, **predict** the most likely cell type
- CellTypist can assign broad or specific cell type label (user's choice)
- Obtain confidence score QC your annotations

https://www.celltypist.org/ https://www.science.org/doi/10.1126/science.abl5197

Sources of references

• **Celltypist pre-trained models:** models.models_description()

48 models: <u>https://www.celltypist.org/models</u>

Use your own reference: train the model with celltypist.train() <u>https://colab.research.google.com/github/Teichlab/celltypist/blob/main/docs/notebook/celltypis</u> <u>t_tutorial.ipynb#scrollTo=precise-bronze</u>

• **Tabula muris senis**: single-cell RNA-sequencing of different organs across the mouse lifespan, available as .h5ad files:

https://figshare.com/articles/dataset/Tabula_Muris_Senis_Data_Objects/12654728/1 https://github.com/czbiohub-sf/tabula-muris/blob/master/tabula-muris-on-aws.md

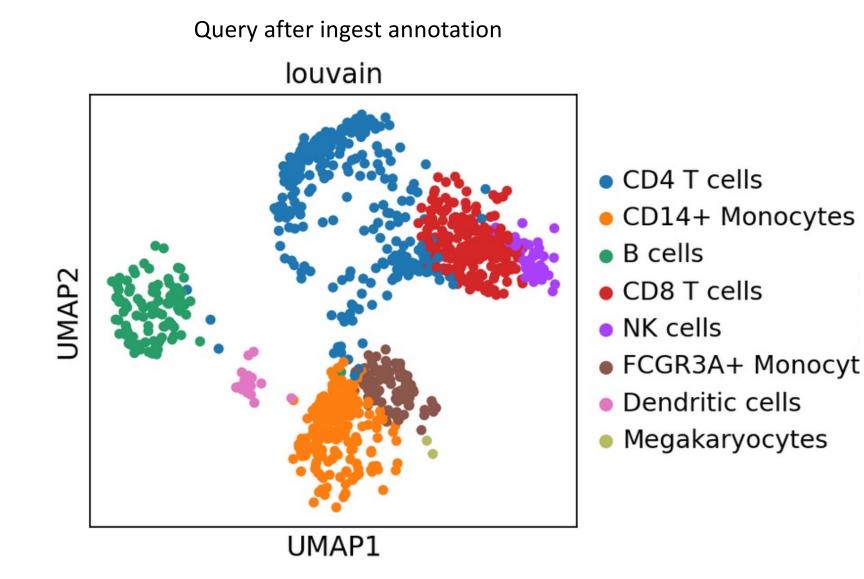
- **Single-cell portal**: convert count matrix and cell labels to annData <u>https://singlecell.broadinstitute.org/single_cell</u>
- Some papers provide link to .h5ad, eg human lymph node compartments: <u>https://www.nature.com/articles/s41587-021-01139-4</u>

ingest

https://scanpy-tutorials.readthedocs.io/en/latest/integrating-data-usingingest.html

- Uses PCs and neighborhood from reference dataset to infer label information for a new unlabeled dataset.
- Leaves the data matrix invariant
- Solves the label mapping problem
- Maintains a sample-specific embedding that might have desired properties like specific clusters or trajectories
- Look at what genes the different cell types express and use your biological knowledge to decide whether the annotation is good or should be improved.

sc.tl.ingest(adata=adata, adata_ref=adata_ref, obs="Louvain", embedding_method='pca')



https://nbisweden.github.io/workshop-scRNAseq/labs/scanpy/scanpy_06_celltyping.html#ingest

Additional links

Review on automated cell annotation, Pasquini et al 2021 <u>https://www.sciencedirect.com/science/article/pii/S2001</u> 037021000192

Question on cell type annotation