# Transcription Factor Analysis with pySCENIC

Single Cell Transcriptomics in Python

**Alex Lederer** 

## What is a transcription factor?

- A protein that binds to regulatory elements at specific DNA sequence motifs to activate transcription of a set of downstream genes.
- Important for coordinated regulation of related genes for a common biological program.



Can we elucidate which TF regulatory programs are active in a cell type or cluster using coexpression of TFs and their target genes?

## SCENIC: Single-Cell rEgulatory Network Inference and Clustering

https://scenic.aertslab.org/; pySCENIC: https://pyscenic.readthedocs.io/en/latest/tutorial.html



Gene regulatory network

Cell states

Aibar et al. Nat Methods (2017) https://doi.org/10.1038/nmeth.4463

## STEP 1: Gene regulatory network inference, and generation of coexpression modules

Input:

- scRNA-seq data (after processing with scanpy)
- A text file (allTFs\_hg38.txt) containing gene symbols for all transcription factors (TFs)

Output:

- An adjacency table of TF and targets that are potentially in a shared gene regulatory network
- Only based on co-expression of the TF and target gene; may include false positives or indirect targets

| <pre>adjacencies.head()</pre> |       |         |            |  |
|-------------------------------|-------|---------|------------|--|
|                               | TF    | target  | importance |  |
| 0                             | CEBPD | VCAN    | 33.587173  |  |
| 1                             | ZEB2  | LTB     | 33.086506  |  |
| 2                             | KLF4  | VCAN    | 29.961844  |  |
| 3                             | CEBPD | SRGN    | 29.306472  |  |
| 4                             | MEF2C | HLA-DRA | 28.519784  |  |

GEne Network Inference with Ensemble of trees



https://github.com/aertslab/GENIE3

# STEP 2: Regulon prediction aka cisTarget

#### Input:

- Adjacency table
- List of transcription start site (TSS) annotations (hg38\_\_refseqr80\_\_10kb\_up\_and\_down\_tss.mc9nr.genes\_vs\_motifs .rankings.feather)

#### <u>Output:</u>

- An adjacency table of TF and target gene pairs with appropriate TF binding motifs at the TSS of the target gene.
- A single TF and its target genes is defined as a **regulon**.

|                 | Notif discovery    |
|-----------------|--------------------|
| b               | Tool: RcisTarget   |
| Gene1           |                    |
| Gene2           | <b>i</b>           |
| Gene3           | 1 1 1 1 1 1        |
| Gene4           |                    |
| Gene3           |                    |
| Gene3           |                    |
| TF <sub>1</sub> |                    |
| Regulo          | ns                 |
| Tr'instant      | Transcr. regulatio |

https://github.com/aertslab/RcisTarget

# STEP 3: Cellular enrichment (aka AUCell)

#### Input:

• List of TF regulons

#### <u>Output:</u>

- A data matrix of regulon scores for all single cells in the dataset.
- AUC matrix is of shape = n\_cells x n\_regulons



#### Regulon activity in each cell



https://github.com/aertslab/RcisTarget

# STEP 3: Cellular enrichment (aka AUCell)

#### Input:

• List of TF regulons

#### <u>Output:</u>

- A data matrix of regulon scores for all single cells in the dataset.
- AUC matrix is of shape = n\_cells x n\_regulons

A UMAP can be computed using the AUC matrix instead of the counts data







### Visualization of "marker regulons" for cell clusters

MAFB(+)

KLF12(+)

BACH2(+)

IRF4(+)

E2F1(+)

E2F1(+) CEBPD(+)

