Pseudotime Trajectory Inference

Single Cell Transcriptomics in Python
Alex Lederer



What is a cell state transition?

... the process by which cells change in the multi-dimensional feature space over time



What is a cell state transition?

... the process by which cells change in the multi-dimensional feature space over time

‘A system containing many components can be
represented by a point in multidimensional space. [...]

In the study of development, we are interested not
only in the final state to which the system arrives, but

also the course by which it gets there [...]

Conrad H. Waddington
The strategy of genes (1952)

“Part of an epigenetic landscape”
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From: Proteintech (https://www.ptglab.com/news/blog/cell-fate-commitment-and-the-waddington-landscape-model/)



What defines the features of the multi-dimensional space?

... usually, the genes!



What defines the features of the multi-dimensional space?

... usually, the genes!

Changes in gene abundances
define the trajectories taken by
cells during cell state transitions

“The complex system of interactions
underlying the epigenetic landscape”



What defines the features of the multi-dimensional space?
We need technologies to quantify the
abundance of molecular features

Single cell RNA sequencing!
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Single-cell RNA sequencing is a destructive technology

A cell can be profiled only one time,
providing a static snapshot



Emergence of single-cell temporal-omics approaches
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Emergence of single-cell temporal-omics approaches
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Pseudotime trajectory inference



Pseudotime trajectory inference

» Differences in gene expression between cells might be attributed to dynamic processes:
» Cell cycle
» Development or differentiation
» Response to a stimuli (environmental change, drug treatment)

 Trajectory inference orders a population of individual cells along a path or lineage

Dr. Rachel Marcone



Pseudotime trajectory inference

Differences in gene expression between cells might be attributed to dynamic processes:
» Cell cycle
» Development or differentiation
» Response to a stimuli (environmental change, drug treatment)

Trajectory inference orders a population of individual cells along a path or lineage

Cells on the learned path can be assigned a “pseudotime”, which is a measure of their
amount progress along the path.

Can be a good starting point for further analysis:

« Determine gene expression programs driving changes in conditions that drive cells
towards more or less differentiated states or phenotypes (i.e., number of cells in the
beginning vs end of of the pseudotime axis).

Dr. Rachel Marcone



Pseudotime trajectory inference
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let’s say this process takes 7 days to unfold...



Pseudotime trajectory inference
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There are many trajectory inference methods to choose from!
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The first pseudotime algorithm: Monocle
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Minimum spanning tree

« Sum of all distances in the tree (graph) among
single cells is at its minimum

« Having more intermediate cells improves the
definition of the tree

 The weights are usually a distance in the
dimensionality reduction space (PCA, UMAP)

« MST has no cycles, cell cycles will not work in
here

Dr. Rachel Marcone



General types of pseudotemporal ordering

1. Clustering graph-based: cells are clustered using k-means or Leiden clustering, and

then ordered connections between the clusters are constructed based on similarity or a
MST (MST, PAGA)

2. Manifold-learning based: connections between cells are defined using principal
curves, which find a one-dimensional curve connecting cellular observations
(Slingshot).

3. Probabilistic frameworks: assign transition probabilities to cell-cell pairs (diffusion
pseudotime)

Comparison of trajectory inference methods: htips://www.nature.com/articles/s41587-019-0071-9



https://www.nature.com/articles/s41587-019-0071-9

PAGA: Partition-based graph abstraction

» A graph connecting clusters/partitions (at various resolutions) of single cells is constructed
» Connective measure for each partition: do nodes in a cluster connect more to cells within

the cluster, or outside of it?

« Random-walk between cells to identify the most probable path: based on connectivity of
different partitions
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PAGA: Partition-based graph abstraction

» A graph connecting clusters/partitions (at various resolutions) of single cells is constructed

» Connective measure for each partition: do nodes in a cluster connect more to cells within
the cluster, or outside of it?

« Random-walk between cells to identify the most probable path: based on connectivity of
different partitions
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Should you run trajectory inference?

Questions to ask:

« Are you sure that you expect a trajectory?

* Do you have intermediate states?

* Do you think you have branching in your trajectory?
* Do you have a time scale on your cells?

* Do you know your start or end state?

Be aware, any dataset can be forced into a trajectory without any biological meaning!
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An example where pseudotime can be misinterpreted

Petrus-Reurer, Lederer et al 2022



An example where pseudotime can be misinterpreted
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* Cell types are similar to rostral embryonic tissues
* Spatial patterning (rather than a temporal axis of variation)

Petrus-Reurer, Lederer et al 2022



