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Emergence of single-cell temporal-omics approaches
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RNA velocity can be estimated from RNA metabolism
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RNA velocity can be estimated from RNA metabolism
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Phase portraits show changes to relative unspliced and
spliced RNA abundances
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Phase portraits show changes to relative unspliced and
spliced RNA abundances
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RNA velocity is a gene-specific estimate
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RNA velocity is a gene-specific estimate
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RNA velocity is a gene-specific estimate
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Examples of RNA velocity applied to trajectories

Forebrain development
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When should | use RNA velocity?

| expect there to be a trajectory in my single-cell dataset, but:
| do not know the direction along which cells should change
| expect the trajectories to change for a similar population of cells but in different

dataset conditions (in response to gene perturbations, environmental stimuli, etc)

Note: the changes between cell states should unfold on a relatively short time scale (hours
to days) and not a long time scale (weeks to months).



RNA velocity to describe a simple differentiation process
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RNA velocity to describe a simple differentiation process
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RNA velocity to describe a simple differentiation process
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A more complex application of RNA velocity
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A more complex application of RNA velocity
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Other recent velocities!

Generalizing RNA velocity to transient cell states

through dynamical modeling el
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Cell Profiling of RNA and Chromatin L/ &@%’l
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+ about 40-50 additional velocity methods! (it’s not yet a category on scrna-tools.org)




Using expectation-maximization to estimate velocity and RNA
kinetics with scvelo
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Should you perform RNA velocity analysis on your data?

RNA velocity unraveled:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010492

. Lior Pachter
' @lpachter
If you work w/ single-cell RNA-seq & are performing RNA velocity
analyses, you might find this @GorinGennady et al. preprint w/ Meichen

Fang & Tara Chari of interest. It's a deep dive into the method, and
navigation of the 67 pages may be aided w/ this & 1/

biorxiv.org

b i O RX iV RNA velocity unraveled

e orepminT server ror ooy | WE perform a thorough analysis of RNA velocity methods,
with a view towards understanding the suitability of the ...


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010492

Should you perform RNA velocity analysis on your data?

* Do | expect a temporal axis of variation in your data?
* Do | expect the time scale of temporal change to unfold in hours/days or weeks?

« Which single-cell technology do you use (single cell vs single nuclei) and how
much detection of intronic reads do you expect?



Internal priming and measurement of additional intronic regions
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Conclusion: there may be intron detection biases between different genes in the datal



The RNA life cycle captured by single nucleus RNA-seq is different

Transcription ¢ a In single-nuclei data, it is not possible
to measure the degradation rate for a

unspliced mRNA%BQ U gene.

.. The nuclear export rate may be
Splicing ¢ ,8:] instead described by changes to

spliced mRNA %\ﬂ ¢ spliced abundance.

—Deg-Fa-d-a-t-be-n-i 14 Nuclear export occurs much more

Nuclear export “)ﬁn’“\ quicl;l;ll'than the degradation — be
careful!



Two steps for RNA velocity analysis

Step 1. Intron/exon counting

« Command line tool that takes the output bam files from CellRanger and generates separate
count matrices for spliced and unspliced mRNA

« Original tool (velocyto): hitps://velocyto.org/velocyto.py/tutorial/cli.html

» Also possible with STARsolo and alevin-fry methods for read alignment

Step 2. Velocity estimation and visualization

Most widely-used tools are:

» velocyto (https://velocyto.org/velocyto.py/tutorial/analysis.htmil)
» scvelo (https://scvelo.readthedocs.io/)

Most RNA velocity tools are implemented and better-supported in Python.


https://velocyto.org/velocyto.py/tutorial/cli.html
https://velocyto.org/velocyto.py/tutorial/analysis.html
https://scvelo.readthedocs.io/

The RNA velocity workflow is complex!
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A recap of RNA velocity analysis
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