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Differential gene expression analysis
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wo types of gene expression analysis

Marker gene identification: gene overexpressed by each cell type or
cluster with the dataset => It can help in cell type annotation

Differential gene expression analysis: gene whose expression if
modulated (up or down) by experimental condition within a cell type or
cluster




Marker gene identification

Which genes are more (or less) expressed in one cell type that in the other

Clustering
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Finds genes that are DE between 1 cluster
and all other cells.
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to perform pairwise DGE analysis, e.g.
between cluster 1 and cluster 2



ypical Output

CHI3L1 5.61 0.958 0.225 7-63E-255 1.97E-250 2
HLA-DRA 3.41 0.978 0.215 2.84E-253 7-32E-249 2
PTGFR 4.31 0.795 0.093 6.43E-244 1.66E-239 2
HLA-DRB5 3.54 0.818 0.097 2.10E-243 5.41E-239 2
GRIN2A 4.24 0.69 0.05 1.64E-235 4.22E-231 2
CDHR3 3.34 0.892 0.159 2.56E-229 6.59E-225 2
AKR1C3 3.16 0.955 0.254 5.75E-223 1.48E-218 2
KCNKag 3.76 0.897 0.187 4.88E-217 1.26E-212 2
HLA-DRB1 2.53 0.78 0.102 2.71E-212 6.98E-208 2

PLPP3 3.34 0.965 0.322 3.54E-210 9.11E-206 2
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p-value: 5.24e-05

log2 FC: 0.05

P-value inflation
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P-value inflation

Focus on the effect size (e.g. logz Fold change )
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What is the ideal method

Analysis | Published: 26 February 2018

Bias, robustness and scalability in single-cell
differential expression analysis

Charlotte Soneson & & Mark D Robinson &

Many methods have been used to determine differential gene expression from single-cell
RNA (scRNA)-seq data. We evaluated 36 approaches using experimental and synthetic
data and found considerable differences in the number and characteristics of the genes
that are called differentially expressed. Prefiltering of lowly expressed genes has
important effects, particularly for some of the methods developed for bulk RNA-seq data
analysis. However, we found that bulk RNA-seq analysis methods do not generally

ik
https://www.nature.com/articles/nmeth.4612



What is the ideal method
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Limma/edgeR: old but gold

Methods designed for microarray and bulk RNAseq analysis
. Can be used to include batch effects in model as covariates
- Compare more than 2 groups: e.g. ANOVA(F-test)

.- Can be used to analyze factorial design such as genotype x
treatment

Analysis with limma and example of model with covariate:
https://ucdavis-bioinformatics-training.github.io/2018-June-RNA-Seqg-Workshop/thursday/DE .html
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Pseudo-bulk DE analysis: muscat

Healthy donor A Patient A
healthy pseudo-bulk A pat|ent pseudo-bulk A
of cell type X f cell type X
98 ceIIs 105 cells
of cell type X of cell type X
Healthy donor B Patient B
healthy pseudo-bulk B pat|ent pseudo-bulk B
fceII type X of cell type X
°3'/‘ &S
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One pseudo-bulk per cell type per sample

» .
! sn s
gt -
X A
0+ :‘ A AO®
% o o A A":‘
A o]
= A A 4 :2'
-
® Ao A A.
® ® ®
A e ®
®e
o4 ® A
..
®
1 0 1 2 3
MDS1
TNFSF10
z-normalized
mean logeount

2
0
2
4

20308 S8
& S‘Q\%&\ $\b“¢"®§‘e‘§,@§e

https://www.bioconductor.org/packages/release/bioc/vignettes/muscat/inst/doc/analysis.html

In the practical exercise: scuttle to aggregate counts + limma
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From matrix to biological insights

Goal: to gain biologically-
meaningful insights from

long gene lists

— test if differentially expressed
genes are enriched in genes
associated with a particular
function

Several methods available, e.g.:
- over-representation analysis (ORA)

- gene set enrichment analysis (GSEA) _ approaches: test a small
number of gene sets, or a
large collection of gene sets




What is a gene set?

A gene set is an unordered collection of genes that are functionally related.

* Genes located in the same compartment in a cell (e.g. all proteins located in the cell
nucleus)

* Proteins that are all regulated by a same transcription factor

e Custom gene list that comes from a publication and that are down-regulated in a mutant
* List of genes that contain SNPs associated with a disease

e ...etc!

e Several gene sets are grouped into Knowledge bases

A pathway can be interpreted as a gene set by ignoring functional relationships among
genes




On-line Reseources:

MSigDB -> https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

The database containing several types of gene set lists:
Hallmark of cancer

Positional Gene Set
Published gene sets
KEGG -> https://www.kegg.jp/kegg/pathway.html
Reactome -> https://reactome.org/
WikiPathways -> https://www.wikipathways.org/index.php/WikiPathways




Is the blue gene-set "modulated”
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Fisher’s exact test

> cont.table<-matrix(c(2,3,5,12), ncol=2, byrow = T)
> fisher.test(cont.table)

Fisher's Exact Test for Count Data

data: cont.table

p-value = 1

alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

0.1012333 18.7696686

) I CEETY
sample estimates: expressed
odds ratio

1.56456

Not
Differentially

expressed
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15
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Fisher’s exact test

> cont.table<-matrix(c(2,3,5,12), ncol=2, byrow = T)
> fisher.test(cont.table)

Fisher's Exact Test for Count Data

data: cont.table
p-value = 1

alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

0.1012333 18.7696686

: I CEETY Not
sample estimates: expressed Differentially
odds ratio expressed

1.56456




Which gene-sets are differentially expressed
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Run individual Fisher’s exact tests for
each gene set, blue, pink, purple, green

—>Multiple tests need p-value
adjustment.

—>Fisher test is threshold-based




clusterProfiler

clusterProfiler

A universal enrichment tool for interpreting omics data

platforms all fl rank 36 / 2300 support [1 5 / 18 Hin Bioc | 13.5 years m updated < 3 months | dependencies 132

| DOI: 10.18129/B9.bioc.clusterProfiler

Mechanism |
I.‘ Interpretation

" Visualization

Omics Data ~Genes of interest

clusterProfiler e regions

X Q “Ranked gene list
ay
MeRIP-Seq
m6A-Seq
ATAC-Seq
ChiP-Seq
Mass Spectrometry

Data Ocean

Wu T, et al. (2021). “clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.” ﬂ
The Innovation, 2(3), 100141. doi:10.1016/}.xinn.2021.100141.



https://doi.org/10.1016/j.xinn.2021.100141

Functions for over-representation analyses

Fisher exact test (package stats)

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
hybridPars = c(expect = 5, percent = 80, Emin = 1),
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)

Over-representation analysis (similar to Fisher test) for built-in GO gene sets:

enrichGO(gene, OrgDb, keyType = "ENTREZID", ont = "MF",
pvalueCutoff = 0.05, pAdjustMethod = "BH", universe,
gvalueCutoff = 0.2, minGSSize = 10, maxGSSize = 500,
readable = FALSE, pool = FALSE)

enricher(): similar enrichGO() but for user defined gene sets

"BH", universe,

enricher(gene, pvalueCutoff = 0.05, pAdjustMethod =
= 0.2, TERM2GENE,

minGSSize = 10, maxGSSize = 500, gvalueCutoff
TERM2NAME = NA)




Visualization

A dotplot for ORA
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Gene-Cocept Network
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Enrichment Map
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Gene-Set Enrichment Analysis

ORA fails to detect situations where all genes in a predefined set change in
a small but coordinated way

A Phenotype B Leading edge subset
Classes /\‘ Gene set S
Gene set S
- Correlation with Phenotype
»
] 5
O
C B |
8 Sl 0 0 Random Walk
T | | Es(s
& Maximum deviation Gene List Rank
: from zero provides the
enrichment score ES(S)

clusterProfiler:

gseGO(): GSEA of GO terms using all ranked genes
gseKEGG(): GSEA of KEGG pathways using all ranked genes
GSEA(): GSEA of custom gene set collection using all ranked genes

Subramanian et al. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.

Genes are ranked based on
their phenotypes.

Given apriori defined set of
gene S, the goal of GSEA is to
determine whether the
members of S are randomly
distributed throughout the
ranked gene list (L) or
primarily found at the top or
bottom.




Gene-Set Enrichment Analysis

ORA fails to detect situations where all genes in a predefined set change in
a small but coordinated way
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clusterProfiler:

gseGO(): GSEA of GO terms using all ranked genes
gseKEGG(): GSEA of KEGG pathways using all ranked genes
GSEA(): GSEA of custom gene set collection using all ranked genes

Subramanian et al. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.

Genes are ranked based on
their phenotypes.

Given apriori defined set of
gene S, the goal of GSEA is to
determine whether the
members of S are randomly
distributed throughout the
ranked gene list (L) or
primarily found at the top or
bottom.




How Can | Rank the Genes?
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How can | rank the genes?

Research Article | Open access | Published: 12 May 2017

Ranking metrics in gene set enrichment analysis: do
they matter?

Joanna Zyla, Michal Marczyk &, January Weiner & Joanna Polanska

BMC Bioinformatics 18, Article number: 256 (2017) | Cite this article

45k Accesses | 43 Citations | 22 Altmetric | Metrics

Abstract

Background

There exist many methods for describing the complex relation between changes of gene
expression in molecular pathways or gene ontologies under different experimental conditions.
Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used
(over 10,000 citations). An important parameter, which could affect the final result, is the
choice of a metric for the ranking of genes. Applying a default ranking metric may lead to poor
results.




How can | rank the genes?

Research Article | Open access | Published: 12 May 2017

Ranking metrics in gene set enrichment analysis: do
they matter?

Joanna Zyla, Michal Marczyk &, January Weiner & Joanna Polanska

BMC Bioinformatics 18, Article number: 256 (2017) | Cite this article

45k Accesses | 43 Citations | 22 Altmetric | Metrics

Abstract

Background

There exist many methods for describing the complex relation between changes of gene
expression in molecular pathways or gene ontologies under different experimental conditions.
Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used
(over 10,000 citations). An important parameter, which could affect the final result, is the
choice of a metric for the ranking of genes. Applying a default ranking metric may lead to poor
results.

My ranking metric: sign(log2FC) * -loglo(p-value)
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