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Why Dimensionality Reduction in scRNA-Seq?
scRNA-seq data = thousands of genes × thousands of cells

high noise, redundancy, and sparsity

Challenge Solution

High-dimensional gene space contains 
noise & redundancy Focus on the most informative gene patterns

Most genes are not useful to define cell identity Highlight key features that distinguish cell types

Many algorithms break with too many variables Simplify to a manageable feature space

Data too complex to interpret visually Enable 2D/3D visualization (UMAP, t-SNE)

Dimensionality reduction helps us find the real biological signal



It is all about matrix

Adapted from : Stein-O’Brien, et al. Trends in Genetics (2018)



Matrix Factorization

Adapted from : Stein-O’Brien, et al. Trends in Genetics (2018)



Matrix Factorization

Adapted from : Stein-O’Brien, et al. Trends in Genetics (2018)

From the Amplitude and Pattern matrices we can derive 
biological insights



PCA recipe

Calculate the covariance matrix
• How each gene’s expression correlates with every other gene’s expression across cells
• High covariance suggests that two genes have similar patterns across cells

Eigen Decomposition
• Eigenvectors (Principal Components, PCs): Represent new axes (or directions) in the data 

space along which the variation is maximized (aka gene weights)
• Eigenvalues: Indicate the amount of variance explained by each PC 

Projection into the eigenvectors
• Genes are projected onto the new set of axes (PCs). 
• Each cell now has a score (coordinate) on each PC, representing its position in the reduced-

dimension space.



Principal Component Analysis
PCA learns orthogonal factors ordered by the relative amount of variation of the data 
that they explain



Principal Component Analysis
PCA identifies the two directions (PC1 and PC2) along which the data have the largest 
spread. 
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PCA identifies the two directions (PC1 and PC2) along which the data have the largest 
spread. 



Principal Component Analysis - Rotation
New axis that are linear combination of the original axes
Then the projection (PC score) of a cell onto PC1 is:

𝑃𝐶! = 𝑤"#$#!,&'! ∗ 𝑒𝑥𝑝"#$#! + 𝑤"#$#(,&'! ∗ 𝑒𝑥𝑝"#$#(
𝑃𝐶( = 𝑤"#$#!,&'( ∗ 𝑒𝑥𝑝"#$#! + 𝑤"#$#(,&'( ∗ 𝑒𝑥𝑝"#$#(

You multiply each gene by its weight in the PC vector and sum.



Principal Component Analysis
New axis that are linear combination of the original axes



Choosing the number of PCs
The top PCs contain higher variance from the data and could help identifying interesting biological aspects 
of your sample, but we can not include all the PCs



Late PCs are just noise

Adapted from: Linderman GC. Methods Mol Biol. 2021
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Choosing the number of PCs
We could use some heuristic approaches: 

• PCs that explain at least 1% of variance 

• The first 5-10 PCs 

• Elbow-Plot



The Elbow-point

How to identify the Elbow point:

1. The point where the principal components
only contribute 5% of standard deviation and
the principal components cumulatively
contribute 90% of the standard deviation

2. The point where the percent change in
variation between the consecutive PCs is
less than 0.1%.
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Practical Considerations

Cell sizes and sequencing depth are usually captured in the top principal 
components

Repeat downstream analyses with a different number of PCs: 10, 15, or even 50. 
As you will observe, the results often do not differ dramatically.

Late PCs may define rare subsets of cells. 

When selecting the number of PCs, it’s better to choose more rather than 
Performing downstream analyses with only 5 PC seriously weaken the analysis..



Non-linear Methods for Dimensionality Reduction

UMAP         vs          t-SNE



t-SNE: t-distributed Stochastic Neighbourhood Embedding

Paper: http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

t-SNE takes high-dimensional gene expression data and creates a 2D or 3D 
map, where:
• Cells with very similar expression profiles → placed close together
• Cells with different programs → placed far apart

It focuses on preserving local structure → meaning it keeps neighborhoods of 
similar cells intact.

Step-by-step
1.Measure similarity between every pair of cells
2.Like saying “who are your closest neighbors?”
3.Create probabilities of being neighbors in high-dimensional space
4.Start placing points randomly in 2D
5.Move points gradually so that:
6.Cells that were similar in gene expression → stay close
7.Cells that were different → push apart
8.Repeat until stable

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf


t-SNE: t-distributed Stochastic Neighbourhood Embedding

Paper: http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

t-SNE takes high-dimensional 
gene expression data and creates 
a 2D or 3D map, where:

• Cells with very similar
expression profiles → placed 
close together

• Cells with different programs 
→ placed far apart

It focuses on preserving local 
structure → meaning it keeps 
neighborhoods of similar cells 
intact.

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf


t-SNE: t-distributed Stochastic Neighbourhood Embedding

Paper: http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

t-SNE takes high-dimensional 
gene expression data and creates 
a 2D or 3D map, where:

• Cells with very similar
expression profiles → placed 
close together

• Cells with different programs 
→ placed far apart

It focuses on preserving local 
structure → meaning it keeps 
neighborhoods of similar cells 
intact.

cluster distances cannot be interpreted quantitatively

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf


T-SNE recipe

1. Measure similarity between every pair of cells
• Like saying “who are your closest neighbors?”

2. Create probabilities of being neighbors in high-dimensional 
space

3. Start placing points randomly in 2D
4. Move points gradually so that:

• Cells that were similar in gene expression → stay close
• Cells that were different → push apart

5. Repeat until stable



t-SNE - Example
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First-Step
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Computing distances
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For each cell i, compute the distance to another cell j (usually Euclidean distance in PCA space)



From distance to probability
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Transforming distances into conditional 
probabilities that represent the similarity 

between every two points



Conditional Probability
The conditional probability of point xⱼ to be next to point xᵢ is represented by a 
Gaussian centered at xᵢ with a standard deviation of σᵢ



From conditional probability to joint-probability
The conditional probability of point xⱼ to be next to point xᵢ is represented by a 
Gaussian centred at xᵢ with a standard deviation of σᵢ

joint probability distribution:



Creating data in a low dimension

A random set of points in 1D

For this set of points, we will create their joint 
probability distribution but this time we will be using 

the t-distribution and not the Gaussian

Kullback-Leiber divergence to make the joint 
probability distribution of the data points in the low 
dimension as similar as possible to the one from 

the original dataset

https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution


Creating data in a low dimension
A random set of points in 1D

For this set of points, we will create their joint 
probability distribution but this time we will be using 

the t-distribution and not the Gaussian

Kullback-Leiber (KL) divergence to make the joint 
probability distribution of the data points in the low 
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Kullback-Leiber (KL) divergence 
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Creating data in a low dimension
t-SNE uses gradient descent to minimize is the 

KL divergence of the joint probability distribution P from the 
high-dimensional space and Q from the low-dimensional 

space. 

Key parameters: 
Gradient descent:

• learning rate
• number of iterations

Perplexity: It is used for choosing the standard deviation σᵢ of the Gaussian 
representing the conditional distribution in the high-dimensional space. The model is 
rather robust for perplexities between 5 to 50, but it has a huge impact on the final 
plot. 



Perplexity
The “perplexity” is an important parameter that determines the granularity of the 
visualization. 

Note: t-SNE involves a random initialization, so we need to set the seed to ensure that the chosen results are reproducible



Non-linear Methods for Dimensionality Reduction

UMAP         vs          t-SNE



UMAP
Manifold Approximation and Projection

Authors: McInnes L. and Healy J.
Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-
prints 1802.03426, 2018 
Non-linear dimensionality reduction approach. It offers several advantages over t-
SNE:
PRO:

• increased speed
• It can use any distance metrics
• better preservation of the data's global structure
• Defines both LOCAL and GLOBAL distances
• Can be applied to new data points
• Works on original data, but best on PCA reduced dimension (default in Seurat)



UMAP Theory
Step 1: construct the initial high-dimensional graph, UMAP builds something called
a "fuzzy simplicial complex". This is really just a representation of a weighted
graph, with edge weights representing the likelihood that two points are connected.



UMAP Theory
Step 1: UMAP extends a radius outwards from each point



UMAP Theory
Step 1: UMAP extends a radius outwards from each point



UMAP Theory
Step 1: Connect points when those radii overlap



UMAP Theory
Choosing this radius is critical:
• too small a choice will lead to small, isolated clusters 
• too large a choice will connect everything together



UMAP Theory
Rather than using a fixed radius, UMAP uses a variable radius determined for each point based 
on the distance to its k-th nearest neighbours.



UMAP Theory
Within this local radius, connectedness is then made “fuzzy” by making each connection a 
probability, with further points less likely to be connected. 



UMAP Theory
All points must be connected to at least its closest neighbouring point. 
The final output of this process is a weighted graph, with edge weights representing 
the likelihood that two points are “connected” in our high-dimensional manifold.



Final Step
Once the final, fuzzy simplicial complex is constructed, UMAP projects the data 
into lower dimensions essentially via a force-directed graph layout algorithm



Key hyper-parameters
1. n_neighbors: Determines the number of neighboring points considered when computing the local 

structure of the data. It defines the balance between local and global structure in the UMAP 
embedding.

• Typical Values: Ranges from 5 to 50. For scRNA-Seq data, values around 10-30 are often 
used.

Lower values focus on capturing the local structure (more fine-grained clusters).
Higher values provide a more global view of the data, potentially merging cluster

2. min_dist: Controls how tightly UMAP packs points together in the low-dimensional space. It sets the 
minimum distance between points in the embedded space.

• Typical Values: Between 0.001 and 0.5. For scRNA-Seq, a common default is around 0.1.

Lower values (e.g., 0.001) will result in more compact clusters, making it easier to identify tight 
groupings.

Higher values (e.g., 0.5) allow for more spread-out points, which can reveal broader patterns but 
may blur smaller clusters.

3. metric: Defines the distance metric used to measure how similar or dissimilar two data points are. 
Common metrics include ‘euclidean,’ ‘manhattan,’ ‘cosine,’ and more.

4. 4. n_components: Specifies the number of dimensions in the output space. For visualization, this is 
typically set to 2 (for 2D plots) or 3 (for 3D plots).



Notes on UMAP
1. Hyperparameters really matter

Run UMAP multiple times with a variety of hyperparameters, how is the projection 
affected by its parameters?

2. Cluster sizes in a UMAP plot mean nothing
The size of clusters relative to each other is essentially meaningless

3. Distances between clusters might not mean anything
The distances between clusters is likely to be meaningless 

4. Spurious clustering can be observed 
Due to Random noise that doesn’t always look random (e.g. low values of n_neighbors)

5. UMAP is stochastic 
Different runs with the same hyperparameters can yield different results



Consideration

Choosing one over the other depends heavily on the dataset and the 
goals of your analysis

UMAP is more time-saving due to the clever solution in creating a rough 
estimation of the high dimensional graph instead of measuring every 
point

UMAP gives a better balance between local versus global structure, thus 
overall gives a more accurate presentation of the global structure. This 
will come in handy in trajectory analysis



Summary
UMAP:
• Better for preserving global structure: UMAP often provides a better representation of larger 

structures and relative distances between clusters, making it more effective for capturing hierarchical 
relationships.

• More interpretable distances: UMAP’s distances between clusters are more meaningful, so it is 
commonly used when comparing clusters and observing relationships at a broader level.

• Fast and scalable: UMAP is faster and scales well with large datasets, making it a preferred choice for 
single-cell datasets with many thousands of cells.

t-SNE:
• Better for local structure: t-SNE is optimized to preserve local structure, so it excels at highlighting 

small or subtle differences within clusters.

• More reliable for smaller datasets: For smaller datasets or when the primary interest is identifying 
fine-grained details in cell subpopulations, t-SNE can sometimes give clearer, tighter clusters.

• Limited interpretability of distances: The distance between clusters in t-SNE plots may not be very 
meaningful, so it’s less ideal for analyzing relationships across clusters.

In summary:
• Use UMAP if you need a broad overview of the dataset and want to capture global patterns.

• Use t-SNE when focusing on identifying distinct subpopulations or fine-grained differences.



Consideration
it is mathematically impossible to avoid losing information when mapping data 
from high to low dimensions, these algorithms inevitably lose some aspect of 
the data, either by distortion or ommision, when plotting it in lower dimensions.

conclusions one draws from a dimensionality reduction plot have some 
probability of not actually being true of the data



Skepticism about this methods

Chari, T., Banerjee, J. & Pachter, L. Plos Comp Biology (2023)

In UMAP and t-SNE plots specific cluster shapes, separations, and proximities can appear different depending 
on algorithm parameters

Clusters can sometimes be artifacts of the method rather than true biological distinctions.

Groups or clusters that appear well-separated in the 2D plot might not actually be as distinct in the high-
dimensional space

UMAP and t-SNE are valuable tools for exploratory analysis, but let’s use them 
with caution and validation


