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—Why Dimensionality Reduction in scCRNA-Seq?—

scRNA-seq data = thousands of genes x thousands of cells
high noise, redundancy, and sparsity

Challenge Solution

High-dimensional gene space contains

noise & redundancy Focus on the most informative gene patterns

Most genes are not useful to define cell identity Highlight key features that distinguish cell types
Many algorithms break with too many variables Simplify to a manageable feature space
Data too complex to interpret visually Enable 2D/3D visualization (UMAP, t-SNE)

Dimensionality reduction helps us find the real biological signal




It Is all about matrix
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Matrix Factorization

Columns of genetic, epigenetics, or
protein weights (each row is a unique
molecule) associated with a given
sample feature and often reflective of
co-regulation.
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Adapted from : Stein-O’'Brien, et al. Trends in Genetics (2018)




Matrix Factorization

A Data Amplitude Pattern

Columns of genetic, epigenetics, or
protein weights (each row is a unique
molecule) associated with a given
sample feature and often reflective of
co-regulation.
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Molecules of interest

X

Factors

Rows of continuous or binary weights
associate with samples (each sample is
a column) capturing relationships
including cell-types/lines, patients, or
Samples Factors experimental conditions

Molecules of interest, i.e. genes

From the Amplitude and Pattern matrices we can derive
biological insights

Adapted from : Stein-O’'Brien, et al. Trends in Genetics (2018)




— PCA recipe

Calculate the covariance matrix

« How each gene’s expression correlates with every other gene’s expression across cells
« High covariance suggests that two genes have similar patterns across cells

Eigen Decomposition

» Eigenvectors (Principal Components, PCs): Represent new axes (or directions) in the data
space along which the variation is maximized (aka gene weights)

« Eigenvalues: Indicate the amount of variance explained by each PC

Projection into the eigenvectors

» Genes are projected onto the new set of axes (PCs).

« Each cell now has a score (coordinate) on each PC, representing its position in the reduced-
dimension space.




Principal Component Analysis

PCA learns orthogonal factors ordered by the relative amount of variation of the data
that they explain

°
°
2 ) o °
°
e o °
°
[ ] g L XY .. )
1 o ¢ e © oo 2
° e %o o °
o o o0 °
N : o o g °o.o. ° o
e ° °® o ©°0o ° ® e
o) ° ®© o o o ° ° e %
O] ° ° ° o 0 ® % oo o
0 o ) e ® .'.. [ e %° R L]
. . .~oo ‘.... o.:O. : [ ° [
¢ . °%We %00’ +dh o lw e
i ®
o [ ] ..}...:. ° R . ® °
-1 ° :o. °
° ° ° ®e °°
° ] e
°
°
-2
-2 0 2
Gene_1




Principal Component Analysis
PCA identifies the two directions (PC1 and PC2) along which the data have the largest
spread.
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Principal Component Analysis
PCA identifies the two directions (PC1 and PC2) along which the data have the largest
spread.




Principal Component Analysis
PCA identifies the two directions (PC1 and PC2) along which the data have the largest
spread.
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—  Principal Component Analysis - Rotation

New axis that are linear combination of the original axes

Then the projection (PC score) of a cell onto PC1 is:

PCy = Wgene1,pc1 * €XPgene1 + Wyenez,pc1 * €XPgene2

PC, = Wgene1,pc2 * €XPgene1 T Wgene2,pc2 * €XPgene2
You multiply each gene by its weight in the PC vector and sum.




Principal Component Analysis

New axis that are linear combination of the original axes
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— Choosing the number of PCs —

The top PCs contain higher variance from the data and could help identifying interesting biological aspects
of your sample, but we can not include all the PCs

rsShR: PRI
i "
- LE%: L|N&067§6:
et gl
QUAS | ]
ST el
IFITM3 : Fchcs:%m:
s kit
ﬂ%éﬁﬁz FC—ESEF?V 1 e
jatf k] :
2SR ] RL{:
MALATI NKG7

4 0 .
.0.10 -0.05 0.00 0.05 0.10 0.1 0.0 0.1
PC_ 1 PC 2




— Choosing the number of PCs

The top PCs contain higher variance from the data and could help identifying interesting biological aspects
of your sample, but we can not include all the PCs

Late PCs are just noise

0
chg Adapted from: Linderman GC. Methods Mol Biol. 2021




Choosing the number of PCs

We could use some heuristic approaches:
* PCs that explain at least 1% of variance
* The first 5-10 PCs
* Elbow-Plot




— The Elbow-point —
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Practical Considerations —

Cell sizes and sequencing depth are usually captured in the top principal
components

Repeat downstream analyses with a different number of PCs: 10, 15, or even 50.
As you will observe, the results often do not differ dramatically.

Late PCs may define rare subsets of cells.

When selecting the number of PCs, it's better to choose more rather than
Performing downstream analyses with only 5 PC seriously weaken the analysis..




—Non-linear Methods for Dimensionality Reduction —




—t-SNE: t-distributed Stochastic Neighbourhood Embedding—

t-SNE take
map, wher
* Cells wit
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Paper: http://www.imlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf



http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

—t-SNE: t-distributed Stochastic Neighbourhood Embedding—

t-SNE takes high-dimensional

gene expression data and creates

a 2D or 3D map, where:

» Cells with very similar
expression profiles — placed
close together

« Cells with different programs
— placed far apart
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It focuses on preserving local
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intact.
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http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

—t-SNE: t-distributed Stochastic Neighbourhood Embedding—

t-SNE takes high-dimensional

gene expression data and creates

a 2D or 3D map, where:

» Cells with very similar
expression profiles — placed
close together

« Cells with different programs
— placed far apart

leveliclass
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endothelial-mural
interneurons

© microglia
oligodendrocytes

© pyramidal CA1
pyramidal SS

TSNE 2
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It focuses on preserving local
structure — meaning it keeps
neighborhoods of similar cells % : 2
intact.

cluster distances cannot be interpreted quantitatively

Paper: http://www.imlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf



http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

T-SNE recipe

. Measure similarity between every pair of cells
» Like saying “who are your closest neighbors?”

. Create probabilities of being neighbors in high-dimensional
space

. Start placing points randomly in 2D

. Move points gradually so that:
« Cells that were similar in gene expression — stay close

» Cells that were different — push apart
. Repeat until stable
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Computing distances
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Smaller distance = more similar cells.
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For each cell i, compute the distance to another cell j (usually Euclidean distance in PCA space)
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From distance to probability

Transforming distances into conditional
probabilities that represent the similarity
between every two points
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Conditional Probability

The conditional probability of point x; to be next to point x; is represented by a
Gaussian centered at x; with a standard deviation of o;

exp (—||xi — X;l|%/207)




From conditional probability to joint-probability —

The conditional probability of point x; to be next to point x; is represented by a
Gaussian centred at x; with a standard deviation of o;
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Creating data in a low dimension

A random set of points in 1D

< 00000 @

For this set of points, we will create their joint
probability distribution but this time we will be using
the t-distribution and not the Gaussian

Kullback-Leiber divergence to make the joint
probability distribution of the data points in the low
dimension as similar as possible to the one from
the original dataset



https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution

Creating data in a low dimension

A random set of points in 1D

€ 00000 @

For this set of points, we will create their joint
probability distribution but this time we will be using
the t-distribution and not the Gaussian

Kullback-Leiber (KL) divergence to make the joint
probability distribution of the data points in the low
dimension as similar as possible to the one from
the original dataset.

Similar Dissimilar
0 oo

Kullback-Leiber (KL) divergence



https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution

Creating data in a low dimension

t-SNE uses gradient descent to minimize is the
KL divergence of the joint probability distribution P from the
high-dimensional space and Q from the low-dimensional
space.

B 4 4 RN OO80—

Key parameters:

Gradient descent:

* |earning rate

* number of iterations
Perplexity: It is used for choosing the standard deviation o; of the Gaussian
representing the conditional distribution in the high-dimensional space. The model is
rather robust for perplexities between 5 to 50, but it has a huge impact on the final
plot.
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Note: t-SNE involves a random initialization, so we need to set the seed to ensure that the chosen results are reproducible
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The “perplexity” is an important parameter that determines the granularity of the
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—Non-linear Methods for Dimensionality Reduction —




— UMAP

Manifold Approximation and Projection

Authors: Mclnnes L. and Healy J.
Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-
prints 1802.03426, 2018

Non-linear dimensionality reduction approach. It offers several advantages over t-
SNE:

PRO:

* increased speed
* [t can use any distance metrics

* better preservation of the data's global structure

* Defines both LOCAL and GLOBAL distances

* Can be applied to new data points

* Works on original data, but best on PCA reduced dimension (default in Seurat)




UMAP Theory

Step 1: construct the initial high-dimensional graph, UMAP builds something called
a "fuzzy simplicial complex". This is really just a representation of a weighted
graph, with edge weights representing the likelihood that two points are connected.




UMAP Theory

Step 1: UMAP extends a radius outwards from each point
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UMAP Theory

Step 1: UMAP extends a radius outwards from each point
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UMAP Theory

Step 1: Connect points when those radii overlap




UMAP Theory

Choosing this radius is critical:
* too small a choice will lead to small, isolated clusters
* too large a choice will connect everything together
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UMAP Theory

Rather than using a fixed radius, UMAP uses a variable radius determined for each point based
on the distance to its k-th nearest neighbours.




UMAP Theory

Within this local radius, connectedness is then made “fuzzy” by making each connection a
probability, with further points less likely to be connected.




UMAP Theory

All points must be connected to at least its closest neighbouring point.
The final output of this process is a weighted graph, with edge weights representing
the likelihood that two points are “connected” in our high-dimensional manifold.




Final Step

Once the final, fuzzy simplicial complex is constructed, UMAP projects the data
into lower dimensions essentially via a force-directed graph layout algorithm




Key hyper-parameters

. n_neighbors: Determines the number of neighboring points considered when computing the local
structure of the data. It defines the balance between local and global structure in the UMAP
embedding.

* Typical Values: Ranges from 5 to 50. For scRNA-Seq data, values around 10-30 are often
used.
Lower values focus on capturing the local structure (more fine-grained clusters).
Higher values provide a more global view of the data, potentially merging cluster

. min_dist: Controls how tightly UMAP packs points together in the low-dimensional space. It sets the
minimum distance between points in the embedded space.

* Typical Values: Between 0.001 and 0.5. For scRNA-Seq, a common default is around 0.1.

Lower values (e.g., 0.001) will result in more compact clusters, making it easier to identify tight
groupings.

Higher values (e.g., 0.5) allow for more spread-out points, which can reveal broader patterns but
may blur smaller clusters.

. metric: Defines the distance metric used to measure how similar or dissimilar two data points are.
Common metrics include ‘euclidean,’ ‘manhattan,’ ‘cosine,” and more.

. 4. n_components: Specifies the number of dimensions in the output space. For visualization, this is
typically set to 2 (for 2D plots) or 3 (for 3D plots).




Notes on UMAP

1. Hyperparameters really matter

Run UMAP multiple times with a variety of hyperparameters, how is the projection
affected by its parameters?

2. Cluster sizes in a UMAP plot mean nothing
The size of clusters relative to each other is essentially meaningless

3. Distances between clusters might not mean anything
The distances between clusters is likely to be meaningless

4. Spurious clustering can be observed
Due to Random noise that doesn’t always look random (e.g. low values of n_neighbors)

5. UMAP is stochastic
Different runs with the same hyperparameters can yield different results




— Consideration

Choosing one over the other depends heavily on the dataset and the
goals of your analysis

UMAP is more time-saving due to the clever solution in creating a rough
estimation of the high dimensional graph instead of measuring every
point

UMAP gives a better balance between local versus global structure, thus
overall gives a more accurate presentation of the global structure. This
will come in handy in trajectory analysis




Summary

UMAP:

» Better for preserving global structure: UMAP often provides a better representation of larger
structures and relative distances between clusters, making it more effective for capturing hierarchical
relationships.

* More interpretable distances: UMAP’s distances between clusters are more meaningful, so it is
commonly used when comparing clusters and observing relationships at a broader level.

» Fast and scalable: UMAP is faster and scales well with large datasets, making it a preferred choice for
single-cell datasets with many thousands of cells.

t-SNE:

« Better for local structure: t-SNE is optimized to preserve local structure, so it excels at highlighting
small or subtle differences within clusters.

* More reliable for smaller datasets: For smaller datasets or when the primary interest is identifying
fine-grained details in cell subpopulations, t-SNE can sometimes give clearer, tighter clusters.

» Limited interpretability of distances: The distance between clusters in t-SNE plots may not be very
meaningful, so it's less ideal for analyzing relationships across clusters.

In summary:
» Use UMAP if you need a broad overview of the dataset and want to capture global patterns.

» Use t-SNE when focusing on identifying distinct subpopulations or fine-grained differences.




Consideration

it is mathematically impossible to avoid losing information when mapping data
from high to low dimensions, these algorithms inevitably lose some aspect of
the data, either by distortion or ommision, when plotting it in lower dimensions.

2D 1D

o O§><_‘ ° o

conclusions one draws from a dimensionality reduction plot have some
probability of not actually being true of the data




— Skepticism about this methods

PLOS COMPUTATIONAL BIOLOGY

PERSPECTIVE

The specious art of single-cell genomics

Tara Chari®', Lior Pachter'2*

1 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California,
United States of America, 2 Department of Computing and Mathematical Sciences, California Institute of
Technology, Pasadena, California, United States of America

* lpachter@caltech.edu

In UMAP and t-SNE plots specific cluster shapes, separations, and proximities can appear different depending
on algorithm parameters

Clusters can sometimes be artifacts of the method rather than true biological distinctions.

Groups or clusters that appear well-separated in the 2D plot might not actually be as distinct in the high-
dimensional space

UMAP and t-SNE are valuable tools for exploratory analysis, but let’s use them
with caution and validation

Chari, T., Banerjee, J. & Pachter, L. Plos Comp Biology (2023)




