

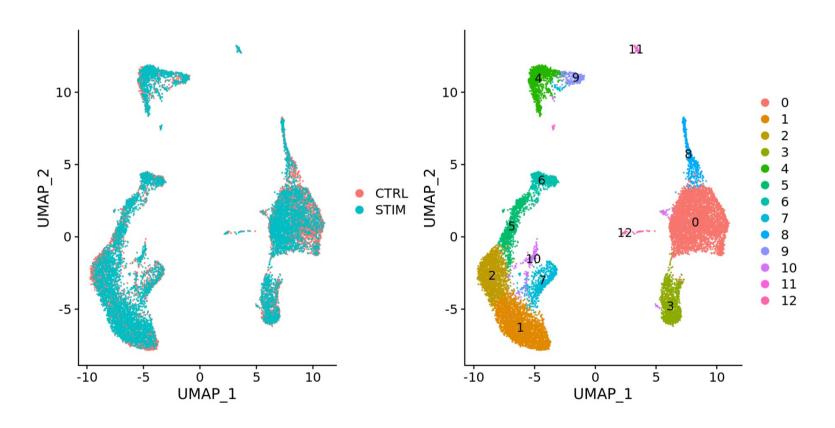
Integration

Luciano Cascione, PhD Bioinformatics Core Unit

LUCIANO CASCIONE, PHDBELLINZONA, OCT. 30TH 2024

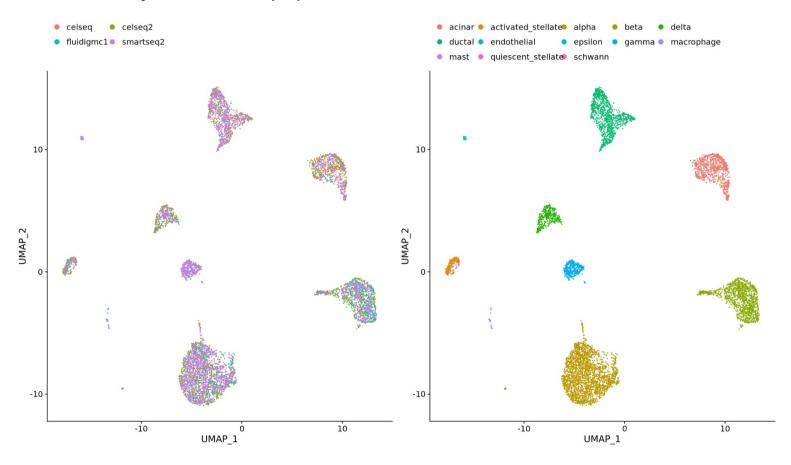
What for?

Goal: identify shared subpopulations across conditions or datasets



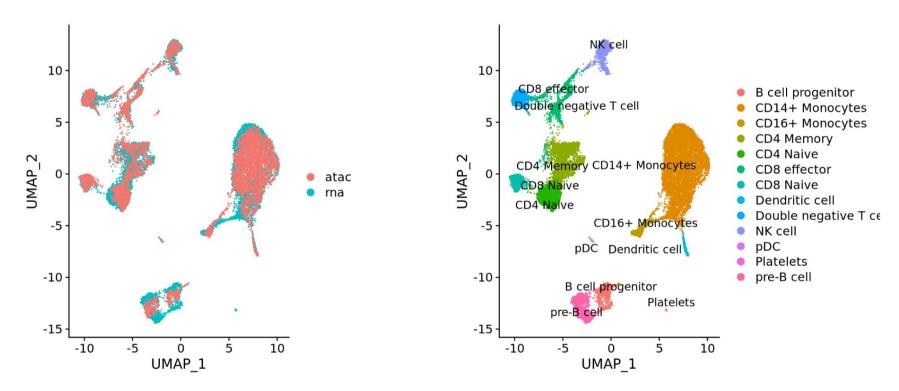
What for?

Goal: identify shared subpopulations across conditions or datasets



What for?

Goal: identify shared subpopulations across conditions or datasets enabling comprehensive analysis



Pro

Enhanced Resolution: a more comprehensive view of cell populations, e.g. identify rare cell types

Improved Robustness: findings more robust across different biological conditions and more generalizable

Greater Statistical Power: improving the ability to detect subtle trends that could be missed in smaller datasets.

Cons

Computational Complexity: Integrating large datasets requires sophisticated algorithms

Potential Loss of Information: Masking biological signals specific to individual datasets

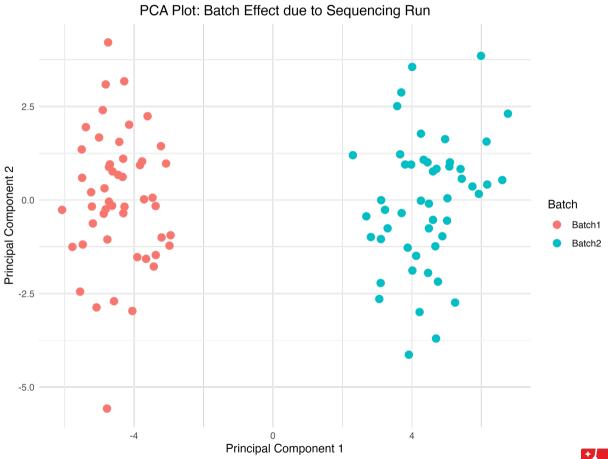
Batch Effects: batches effects introduce unwanted variability that complicates integration and analysis.

Unwanted Sources of Variation

Batch Effect is systematic techincal variations due to differences in:

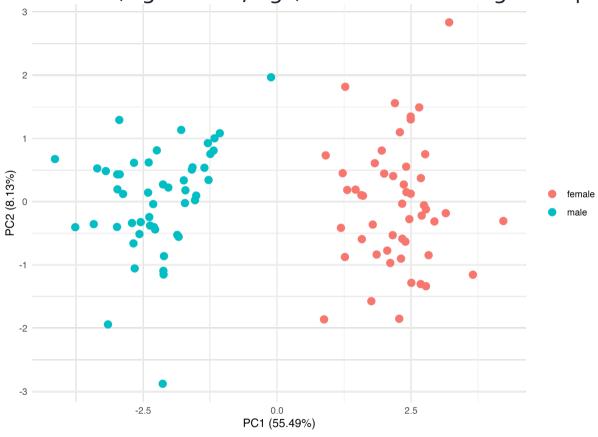
- a) cell isolation and handling protocols,
- b) library preparation technology, and sequencing platforms

Batch effects can obscure true biological signals, making it difficult to compare datasets



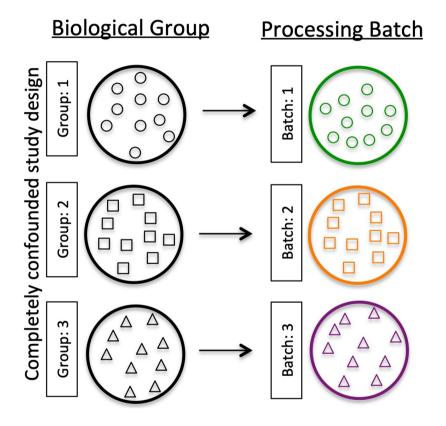
Unwanted Sources of Variation

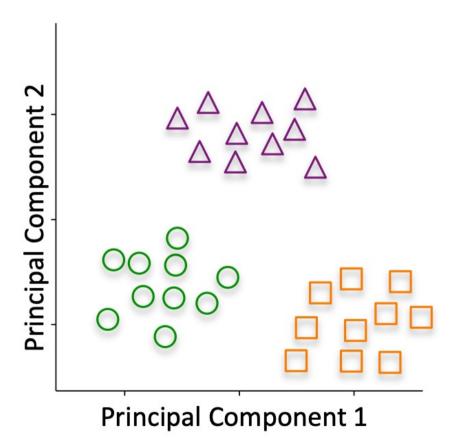
Confounders are variables (e.g. Gender, Age) that could influce gene expression



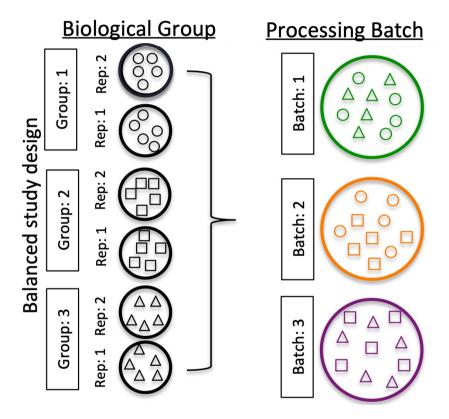
If they are not properly accounted for in the analysis they could potentially lead to misleading associations.

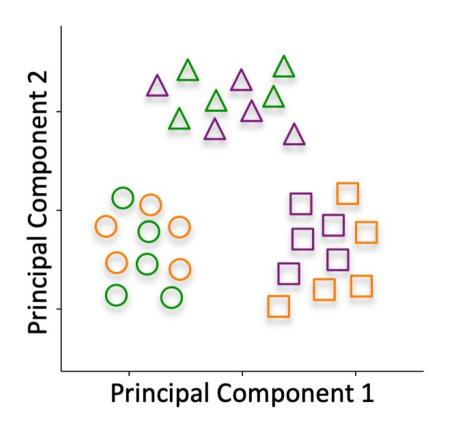
Experimental Design metters





Experimental Design metters





÷/ SİB

How to integrate

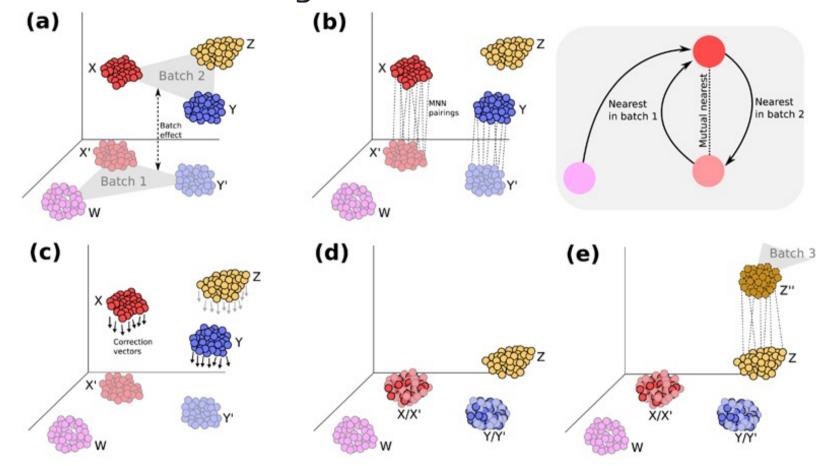
1 2 3

Find corresponding cells across datasets (by computing a distance between cells in a certain space)

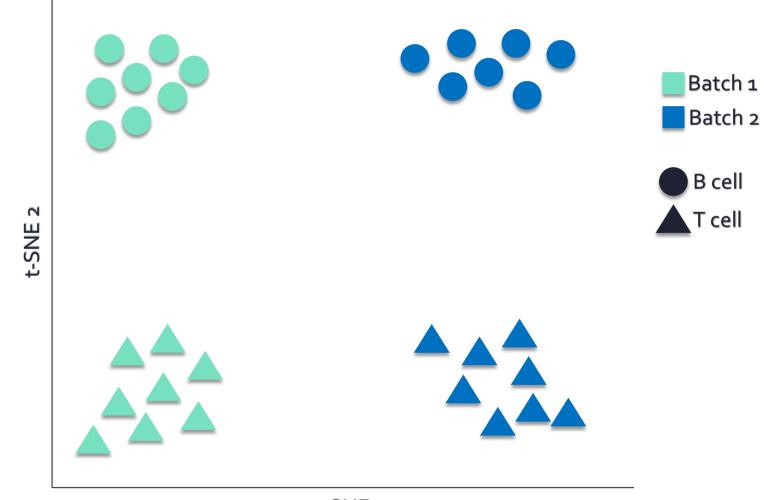
Compute a data adjustment based on correspondences between cells

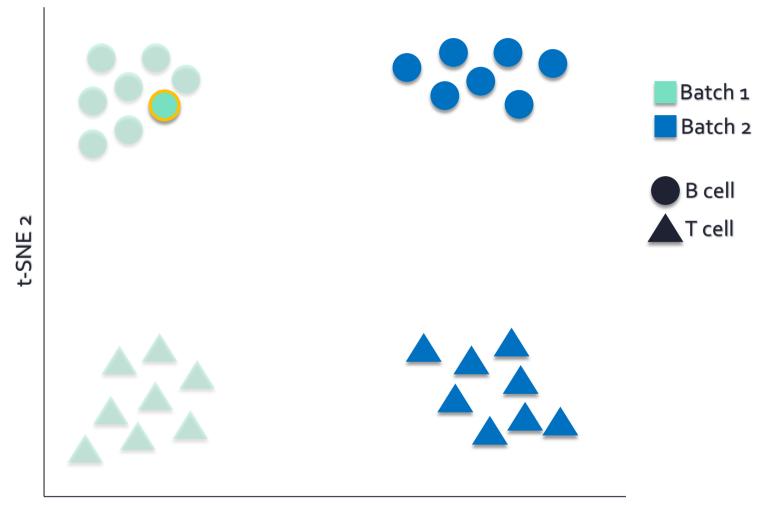
Apply the adjustment

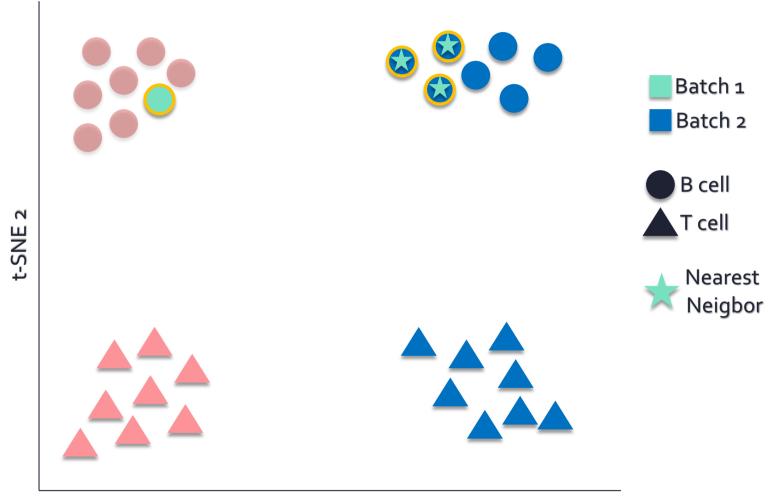
Mutual Nearest Neighbours

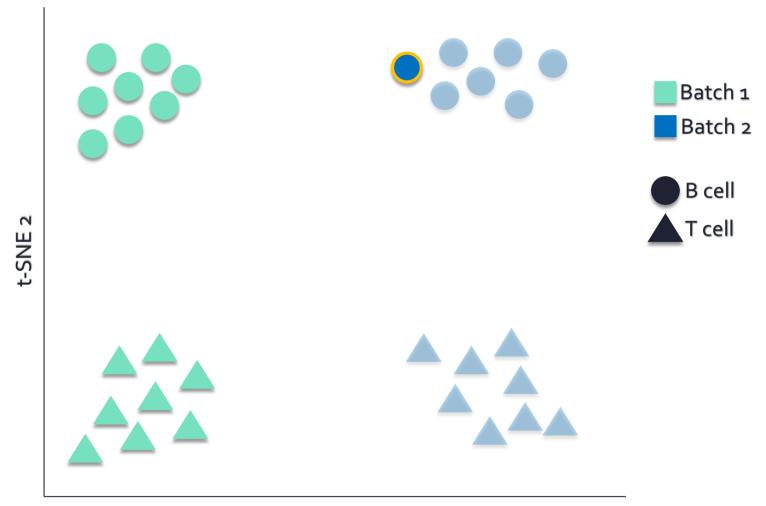


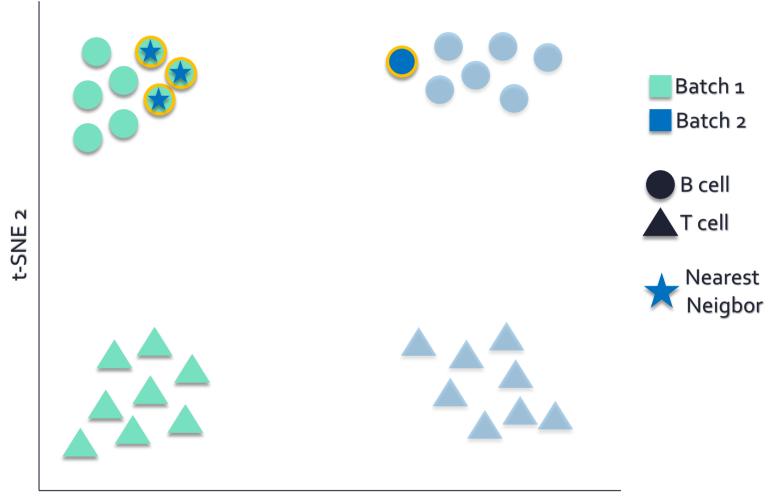
Example

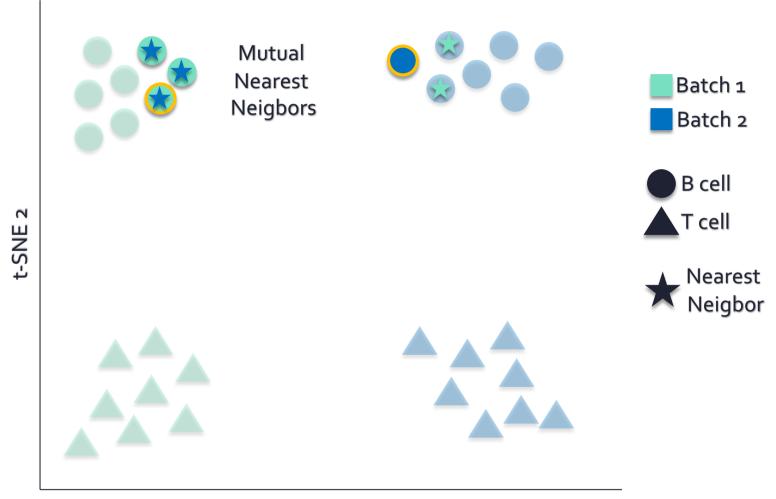




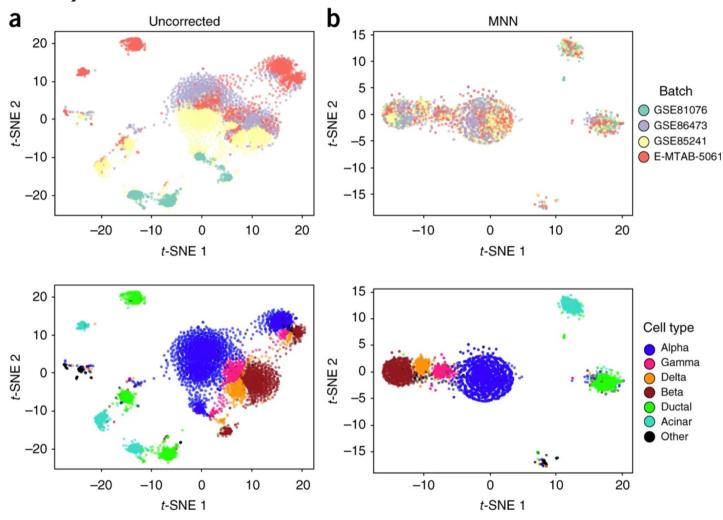








Final Integration



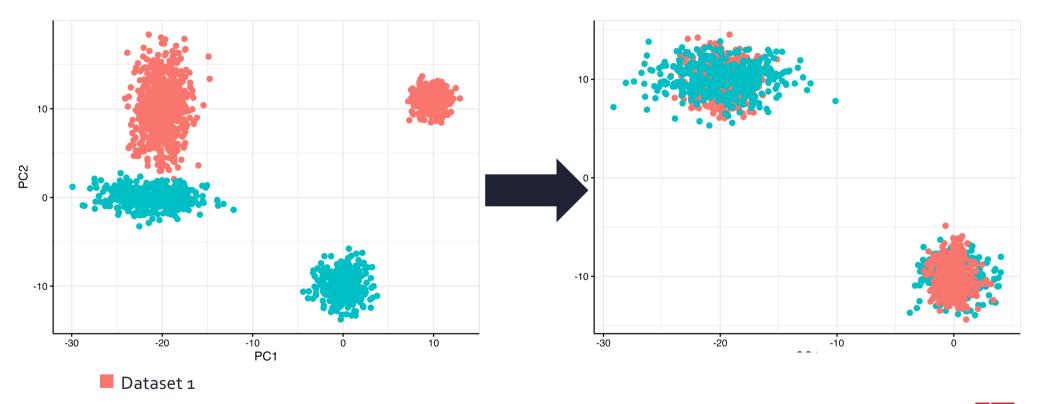
Canonical Correlation Analysis (CCA) + anchors

Find Compute Apply Find corresponding cells across datasets (anchors) in L2-normalized CCA Compute a data adjustment based on correspondences between cells Apply Apply Apply Apply Apply the adjustment based on correspondences adjustment between cells

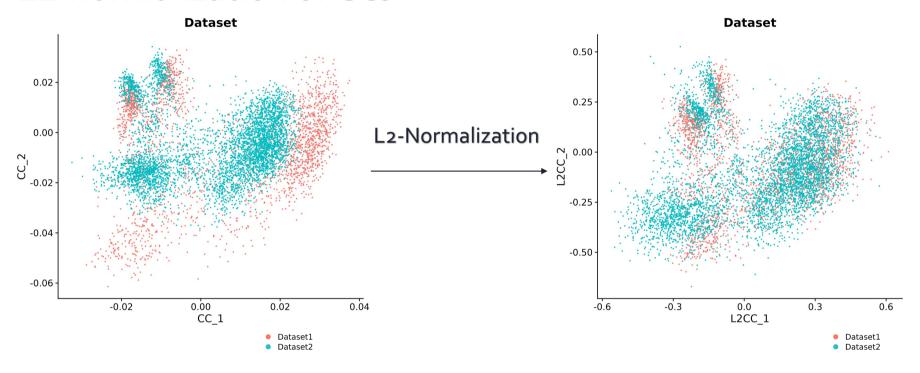
Step1

Dataset 2

Find corresponding cells across datasets



L2-normalization of CCs

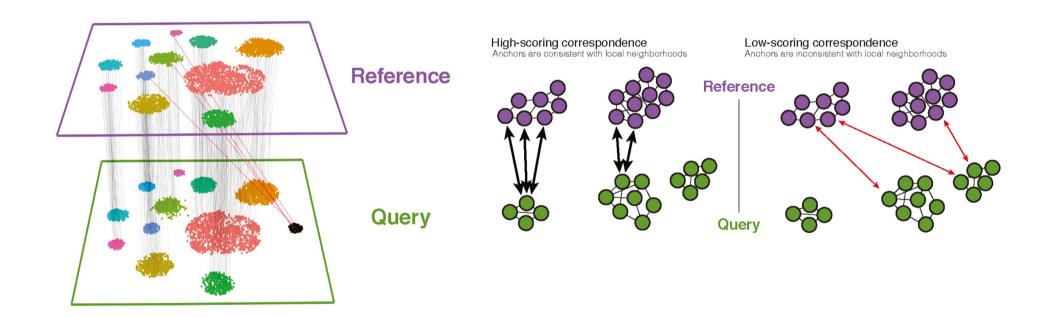


Imagine you have two datasets, A and B, each with a set of genes. CCA tries to find **linear combinations of genes** in A that correlate with corresponding combinations in B.

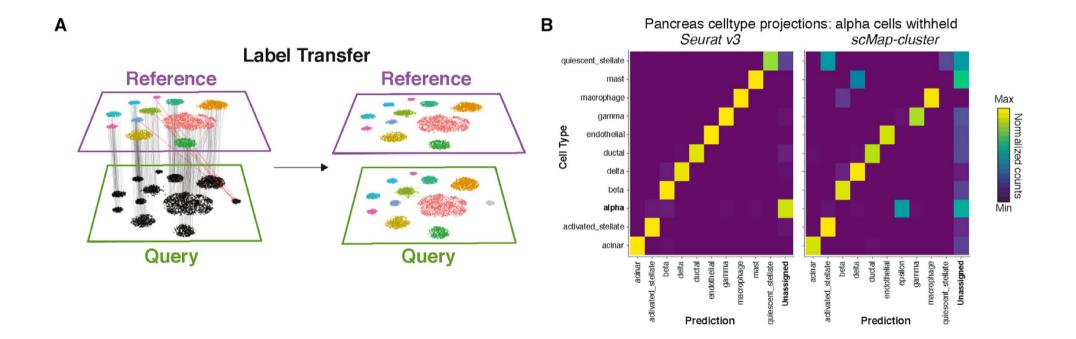
CCA looks for **pairs of "canonical" variables** (one from each dataset) that are maximally correlated with each other, capturing the shared structure

Anchors Identification

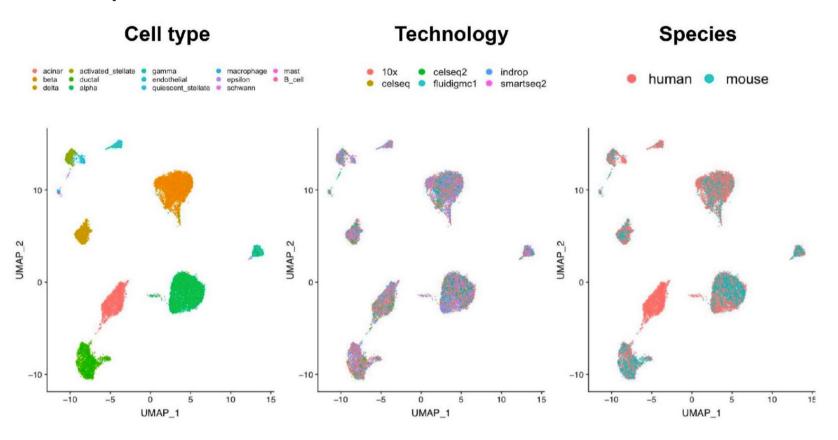
Seurat first performs **mutual nearest neighbours (MNN) matching** to identify cell pairs that are closest in gene expression space across datasets.

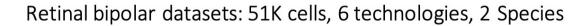


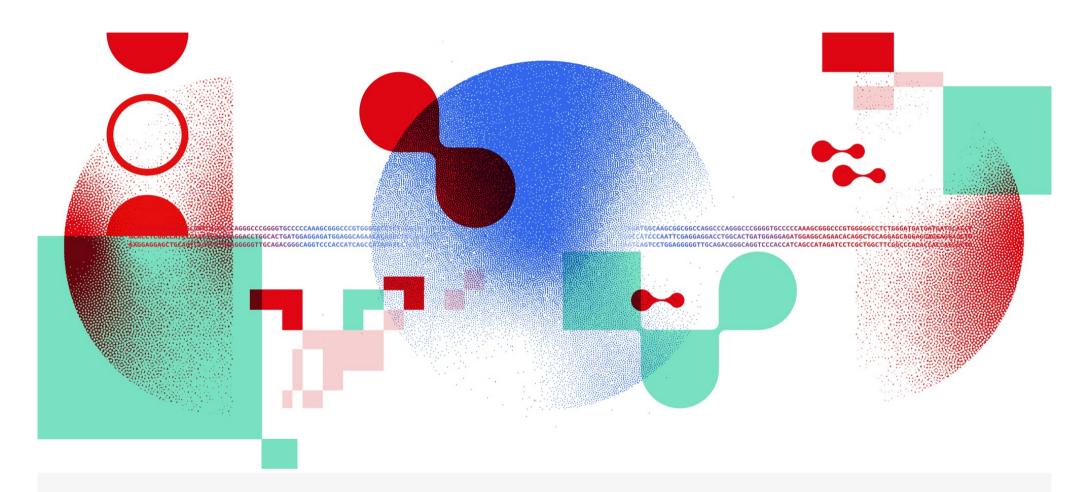
Label transfer: CCA + anchor



Good performarce







Thank you

DATA SCIENTISTS FOR LIFE sib.swiss

