# Single cell transcriptomics

10x genomics Chromium



# All captured **transcripts** from **single** cell: **identical** + **unique** barcode



- 1
- reverse transcription
- breaking GEMs
- fragmentation
- primer ligation
- index PCR

p5 read1 barcode UMI polydT read2 sample p7 index



fragmentation

primer ligation

index PCR



## Sequencing output

```
ETV6-RUNX1_1_S1_L001_I1_001.fastq.gz

ETV6-RUNX1_1_S1_L001_R1_001.fastq.gz

ETV6-RUNX1_1_S1_L001_R2_001.fastq.gz

sample ID lane
```

- Dual indexing: second index in I2
- Indexes can also be added to fastq titles

# After sequencing (preprocessing)

- 1. Assign reads to cell
- 2. Alignment
- 3. Quantification: # UMI/gene
- 4. Cell calling

For 10x all with cellranger count

Alternatives:

STARSolo Alevin

### cellranger references

- Human & mouse: download pre-built from 10x website
- Other organisms: custom reference with cellranger mkref
- Exogenous marker genes (e.g. GFP): add sequence to both fasta and gtf
- Features (e.g.) hashing or surfaceproteins: feature barcode reference csv

# Why count UMI (and not read alignments?)

- UMI: Unique Molecular Identifier:
  - Identifies each molecule (i.e. sequence) uniquely
- Molecules from a common PCR template
  - -> carry the same UMI
- By counting UMI: correct for PCR duplicates

# Cellranger report

#### ETV6-RUNX1\_1

#### **Alerts**

The analysis detected 🛕 1 warning.

|   | Alert                 | Value | Detail                                                                                                       |
|---|-----------------------|-------|--------------------------------------------------------------------------------------------------------------|
| A | Fraction of RNA read  | 59.4% | Fraction of RNA read bases with Q-score >= 30 should be above 65%. A lower fraction might indicate poor      |
|   | bases with Q-score >= |       | sequencing quality. This is Read 1 for the Single Cell 3' v1 chemistry and Single Cell 5' paired end, Read 2 |
|   | 30 is low             |       | for the Single Cell 3' v2/v3 chemistry and Single Cell 5' R2-only)                                           |

Summary

Analysis

3,091
Estimated Number of Cells

68,259 1,717

Mean Reads per Cell Median Genes per Cell

| Number of Reads               | 210,987,037 |
|-------------------------------|-------------|
| Number of Short Reads Skipped | 6           |
| Valid Barcodes                | 98.2%       |
| Valid UMIs                    | 100.0%      |
| Sequencing Saturation         | 84.4%       |
| Q30 Bases in Barcode          | 96.4%       |
| Q30 Bases in RNA Read         | 59.4%       |
| Q30 Bases in UMI              | 96.5%       |



| Mapping ③                                      |       |
|------------------------------------------------|-------|
| Reads Mapped to Genome                         | 95.8% |
| Reads Mapped Confidently to Genome             | 92.9% |
| Reads Mapped Confidently to Intergenic Regions | 5.2%  |
| Reads Mapped Confidently to Intronic Regions   | 25.5% |
| Reads Mapped Confidently to Exonic Regions     | 62.2% |
| Reads Mapped Confidently to Transcriptome      | 58.2% |
| Reads Mapped Antisense to Gene                 | 1.29  |



## Cell calling







Background 'cells': low #UMI/cell

## Other parameters

- Captured cells: 1,000-8,000
- Reads/cell: 30,000-100,000 (or more)
- Sequencing saturation
- Reads mapped to genome/transcriptome

