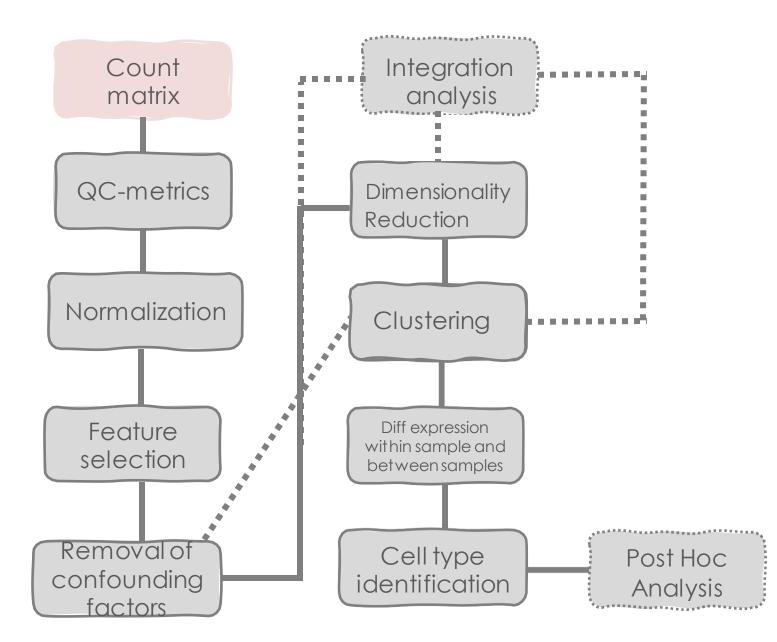


Swiss Institute of Bioinformatics

Day 2 : Single cell RNA sequencing: The bioinformatic downstream analysis

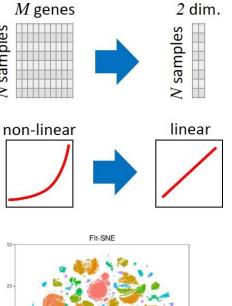
Geert van Geest, Rachel Marcone, Tania Wyss

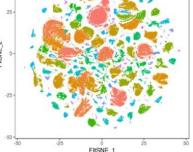
www.sib.swiss



Dimensionality Reduction

- **Simplify complexity**, so it becomes easier to work with.
 - Reduce number of features (genes)
 - In some: Transform non-linear relationships to linear
- "Remove" redundancies in the data
- Identify the **most relevant** information (find and filter noise)
- Reduce computational time for downstream procedures
- **Facilitate dustering**, since some algorithms struggle with too many dimensions
- Data visualization





Dimentionality reduction: Algorithms

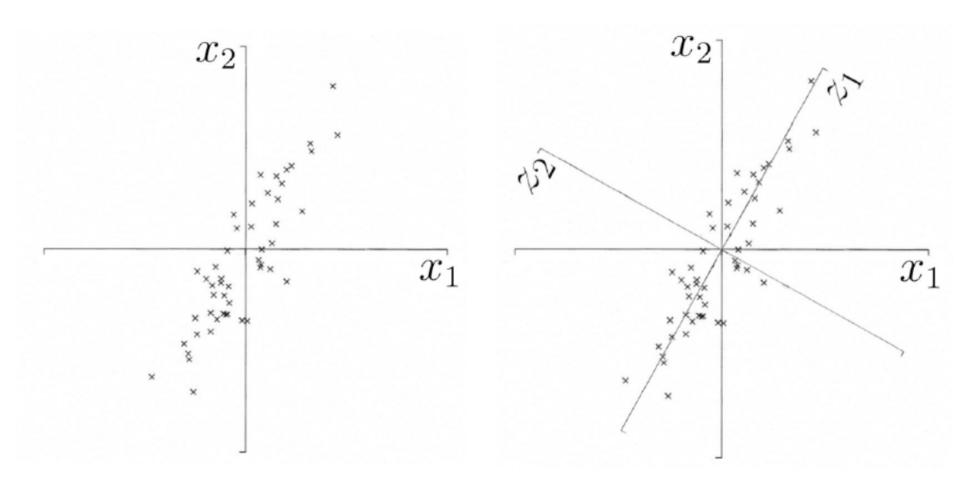
	PCA	linear	Matrix Factorization		
	ICA	linear	Matrix Factorization		
	MDS	non-linear	Matrix Factorization		
	Sparce NNMF	non-linear	Matrix Factorization	2010	https://pdfs.semanticscholar.org/664d/40258f12ad28ed0b7d4 c272935ad72a150db.pdf
	cPCA	non-linear	Matrix Factorization		https://doi.org/10.1038/s41467-018-04608-8
	ZIFA	non-linear	Matrix Factorization	2015	https://doi.org/10.1186/s13059-015-0805-z
	ZINB-WaVE	non-linear	Matrix Factorization	2018	https://doi.org/10.1038/s41467-017-02554-5

	Diffusion maps	non-linear	graph-based	2005	https://doi.org/10.1073/pnas.0500334102
	Isomap	non-linear	graph-based	2000	10.1126/science.290.5500.2319
\Rightarrow	t-SNE	non-linear	graph-based	2008	https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
	- BH t-SNE	non-linear	graph-based	2014	https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
	- Flt-SNE	non-linear	graph-based	2017	arXiv:1712.09005
	LargeVis	non-linear	graph-based	2018	arXiv:1602.00370
\Rightarrow	UMAP	non-linear	graph-based	2018	arXiv:1802.03426
-	PHATE	non-linear	graph-based	2017	https://www.biorxiv.org/content/biorxiv/early/2018/06/28/12037 8.full.pdf

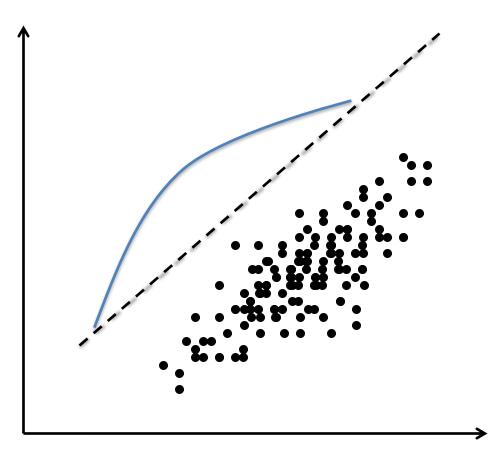
scvis	non-linear	Autoencoder (MF)	2018	https://doi.org/10.1038/s41467-018-04368-5
VASC	non-linear	Autoencoder (MF)	2018	https://doi.org/10.1016/j.gpb.2018.08.003

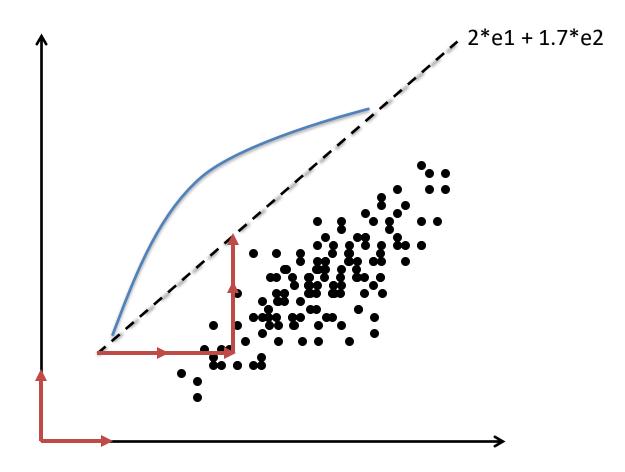
- -PCA is based on variance
- -PCA is the best angle to see and evaluate the data
- -New axis that are linear combination of the original axes

Which and how ?

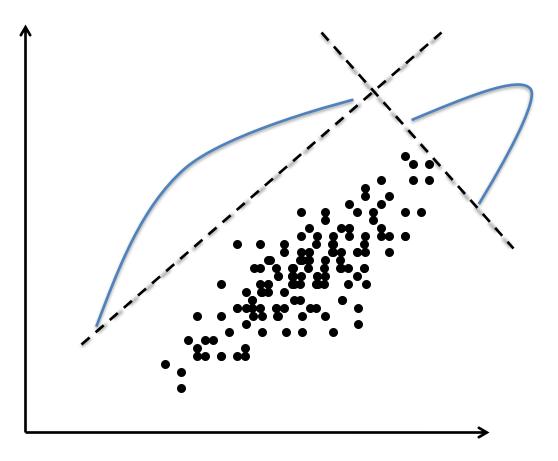


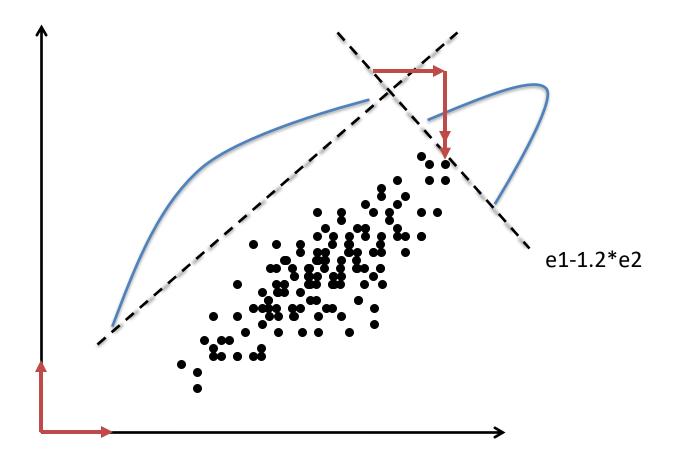
1. Largest variance first

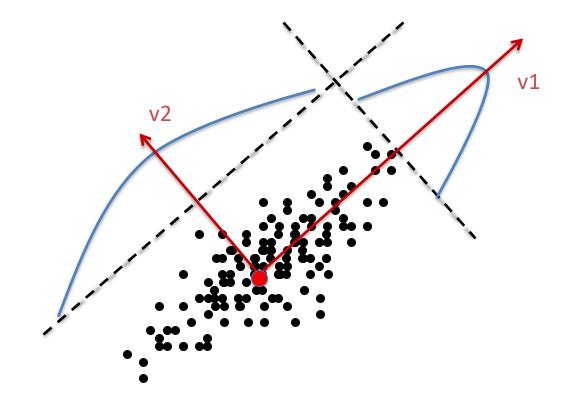


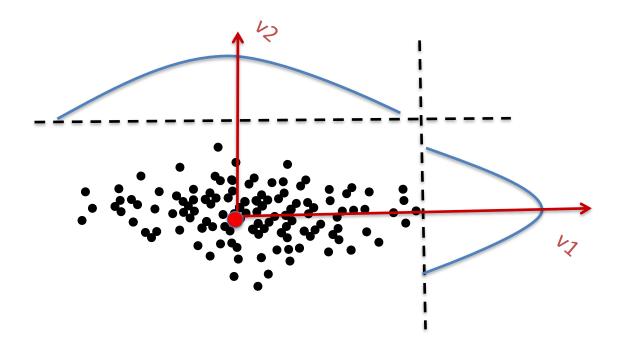


2. Select uncorrelated principal axis (orthogonal)

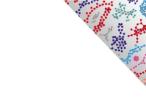








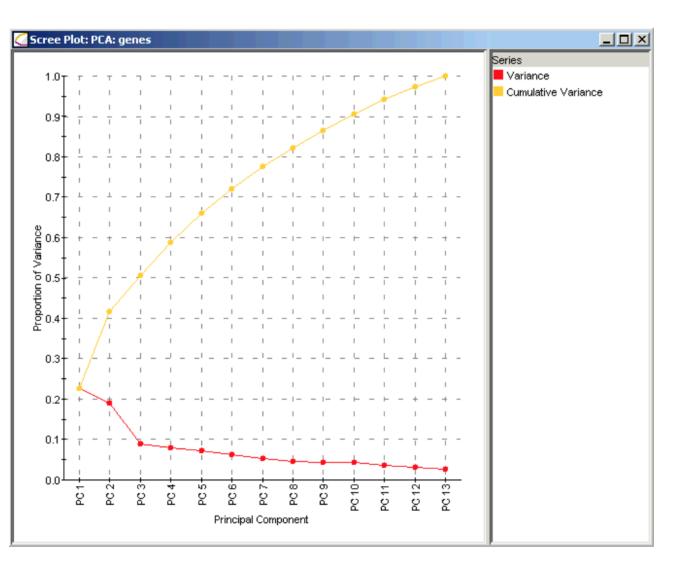
Mathematically



Calculate the eigenvectors of the **Covariance matrix** are the directions of the axes where there is the most variance (this is something you can prove mathematically!)

eigenvalues are the coefficients attached to eigenvectors, which give the *amount of variance carried in each Principal Component*.

After having the principal components, to compute the percentage of variance (information) accounted for by each component, we divide the eigenvalue of each component by the sum of eigenvalues.



Scree Plot for Genetic Data. (Source.)

https://towardsdatascience.com/a-one-stop-shop-for-principal-componentanalysis-5582fb7e0a9c

The PCA axis

- The PC are linear combination of the original axis.
- The estimated parameters of the linear combination is known and therefore we can know positively or negatively how much it goes into one direction or the other one.
- Indeed as the original axis are g1,g2,g3... and the new axis are a1g1 +a2g2..., one takes the ai that are the highest, positively and negatively and therefore knows which genes are mostly representing the axis you see.
- By default, 10 highest positive and negative values are displayed in R with the Seurat package.
- Observation : **Scaling** is important, if one variable is on a different scale than another, it will dominate the PCA procedure as the largest variance might be observed there, and the low dimension plot will really just be visualizing that dimension.

Dimentionality reduction: PCA doesn't fit

- It is a **LINEAR** method of dimensionality reduction
- It is an **interpretable** dimensionality reduction
- Data is usually **SCALED** prior to PCA (Z-score | see ScaleData in the Seurat)
- The **TOP** principal components contain higher variance from the data
- Can be used as **FILTERING**, by selecting only the top significant PCs
 - PCs that explain at least 1% of variance
 - Jackstraw of significant p-values
 - The first 5-10 PCs
 - Scater library describes correlation between PCs and metadata, take PCs until metadata information is covered

Problems:

- The two first PC in SC-RNAseq often account for only few percent of the total variance
- It performs poorly to separate cells in 0-inflated data types (because of it non-linearity nature)

In R, Elbow plot

RunPCA – Computes the PCA with default : 20 pcs.

Check Elbow plot to see if 20 pcs are explaining well your data.

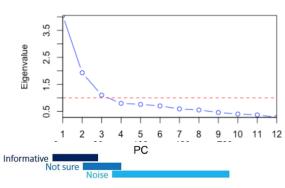
RunPCA will output a message with the genes contributing most to the PC (positif and negatif).

Uses irlba: Fast Truncated Singular Value Decomposition and Principal Components Analysis for Large Dense and Sparse Matrices (!!Approximation of PCA).

Usually first PCs only account for few percentages of the total variance.

obj <-RunPCA(obj) ElbowPlot(obj,ndims=50)

> Wikipedia: https://en.wikipedia.org/wiki/Scree plot

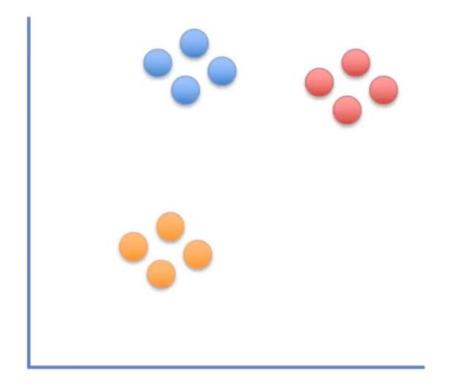


T-SNE

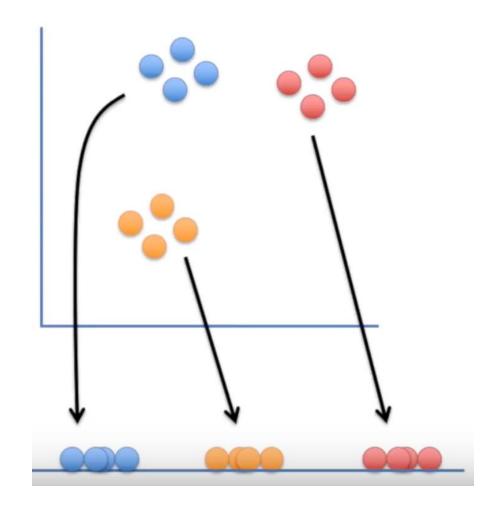
T-SNE

- T-SNE = t-distributed stochastic neighborhood embedding
- Laurens van der Maaten, Geoffrey Everest Hinton
- http://www.jmlr.org/papers/volume9/vandermaate n08a/vandermaaten08a.pdf
- https://www.youtube.com/watch?v=NEaUSP4YerM
- Many of the following figures are inspired by this youtube link check out his channel ! (StatQuestion with Josh Starmer)

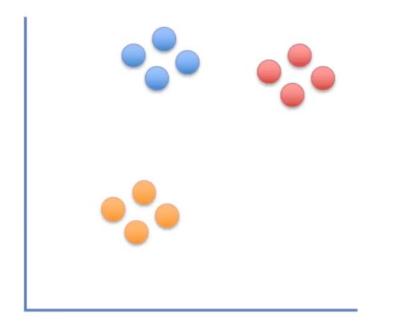
Start with a dataset



Find a right way to reduce dimension

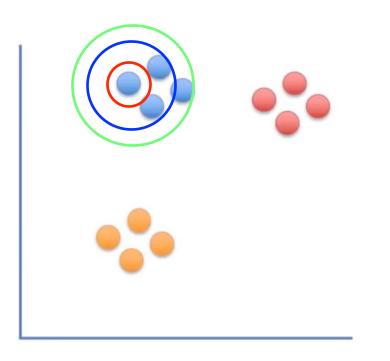


Basic idea (!! set a seed)





Normal distribution around a point



We calculate

The similarity of datapoint A to datapoint B is the conditional probability, that A would pick B as its neighbor, if neighbors were picked in proportion to their probability density under a Gaussian centered at B, written p_A|B.

 $p_A|A = 0$

The variance of this normal distribution depends on the density around C (the more cells closer to C the lower the variance of this normal distribution will be).

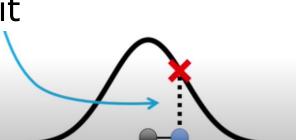
Steps

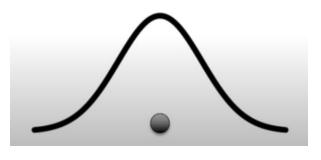
- 1. Take a point A.
- 2. Take another point B
- 3. Plot that point on a normal

distribution distributed around A.

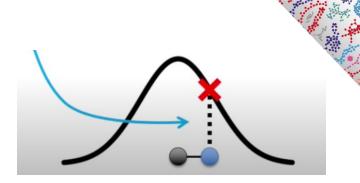
- 4. Take another point B and plot it
- on that distribution, this will be

called the unscaled similarity.



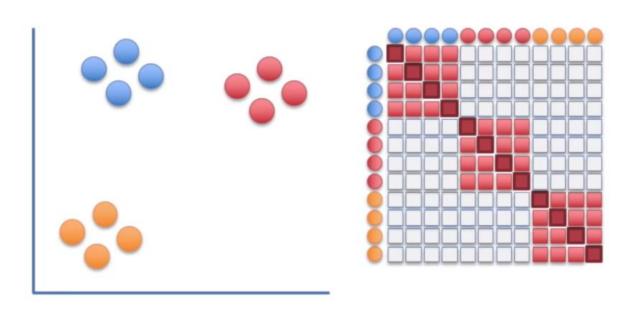


Steps



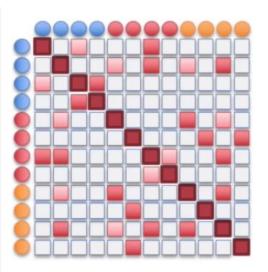
5. This is done for all the points. Distant points will have a very low similarity, whereas close points a very high similarity. 6. These unscaled similarities are then scaled so that they add up to one. 7. The similarity between A and B might be different than the similarity between B and A, so to correct for that the mean of the two values is taken.

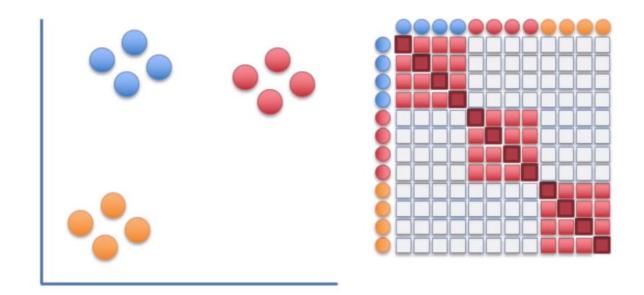
Illustration



On the projection

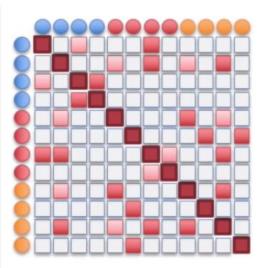
Do the same into the randomly projected points. Using a t-distribution instead of a normal distribution.

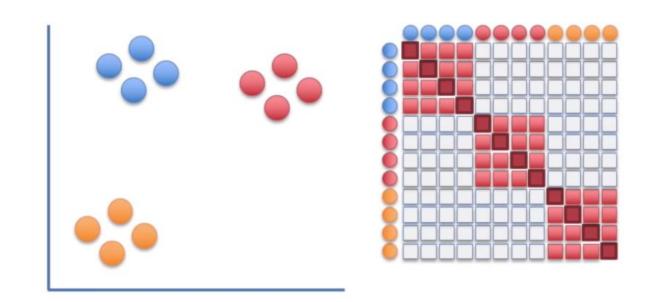




On the projection

Move points little by little and redo calculation until you are « as close as possible » to the original similarity matrix or you reach a certain number of iteration (chosen by the user).





« As close as possible »

To measure the minimization of the sum of difference of conditional probability t-SNE minimizes the sum of Kullback-Leibler divergence of overall data points using a gradient descent method.

In other words : tSNE minimizes the divergence between two distributions: a distribution that measures pairwise similarities of the input objects and a distribution that measures pairwise similarities of the corresponding *low*dimensional points in the embedding To measure the minimization of the sum of difference of conditional probability t-SNE minimizes the sum of Kullback-Leibler divergence of overall data points using a gradient descent method.

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Parameters for T-sne

perplexity = 30L => linked to parameter σ i momentum = 0.5, => linked to optimisation final_momentum = 0.8, => linked to optimisation

A cool webpage:

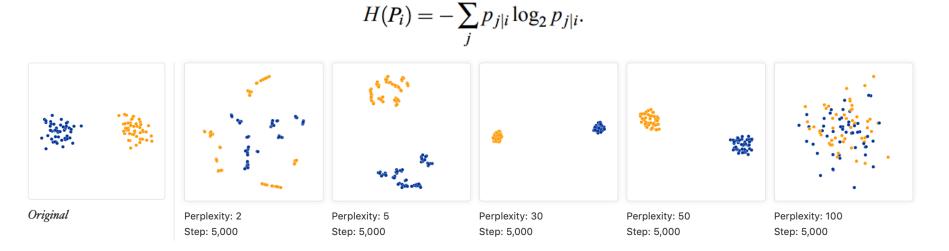
https://distill.pub/2016/misread-tsne/

(used to generate the figures in the next slides)

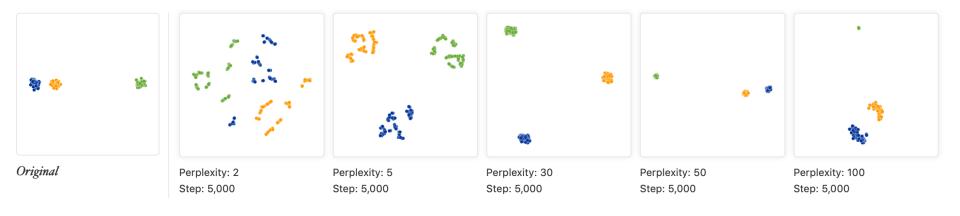
The perplexity can be interpreted as a smooth measure of the effective number of neighbors

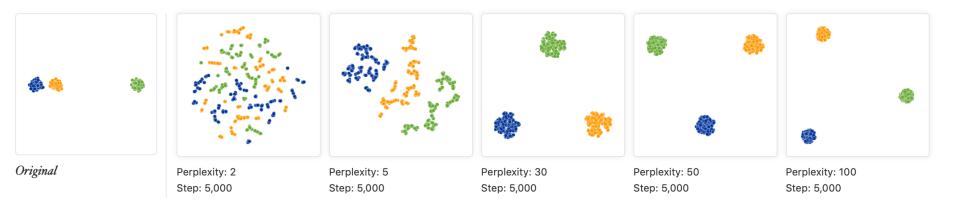
 $Perp(P_i) = 2^{H(P_i)},$

where $H(P_i)$ is the Shannon entropy of P_i measured in bits



Between cluster distances do not matter !



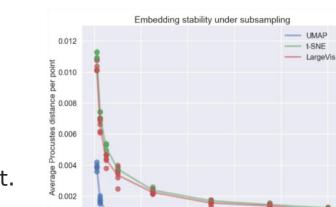


Dimentionality reduction: UMAP

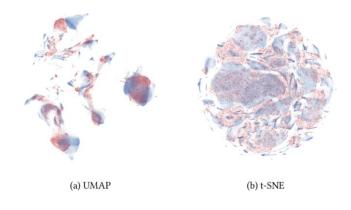
UMAP: Uniform Manifold Approximation and Projection

- It is a NON-LINEAR graph-based method of dimensionality reduction
- UMAP assumes that there is a manifold in the dataset.
- Very efficient O(n)
- Can be run from the top PCs (e.g.: PC1 to PC10)
- Can use any distance metrics!
- Can integrate between different data types (text, numbers, classes)
- It is no longer completely stochastic as t-SNE
- Defines both LOCAL and GLOBAL distances
- Can be applied to new data points
- Works on original data, but best on PCA reduced dimension (default in Seurat)

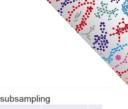
McInnes et al (2018) BioRxiv https://umap-learn.readthedocs.io/en/latest/how_umap_works.html



0.000



Subsample size



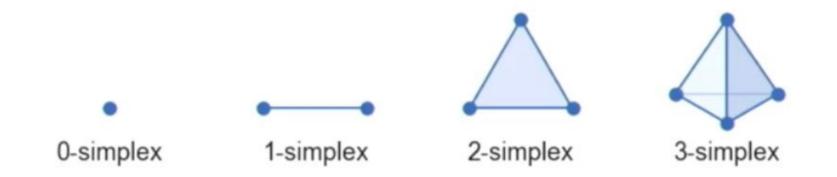
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

Leland McInnes (Mathematician), John Healy (Computing theorist), James Melville (Computing in R)

https://arxiv.org/abs/1802.03426

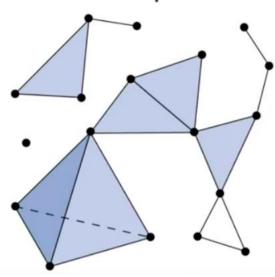
https://www.youtube.com/watch?v=nq6iPZVUxZU

https://umap.scikit-tda.org/parameters.html



What it enables you to represent

Simplicial complex



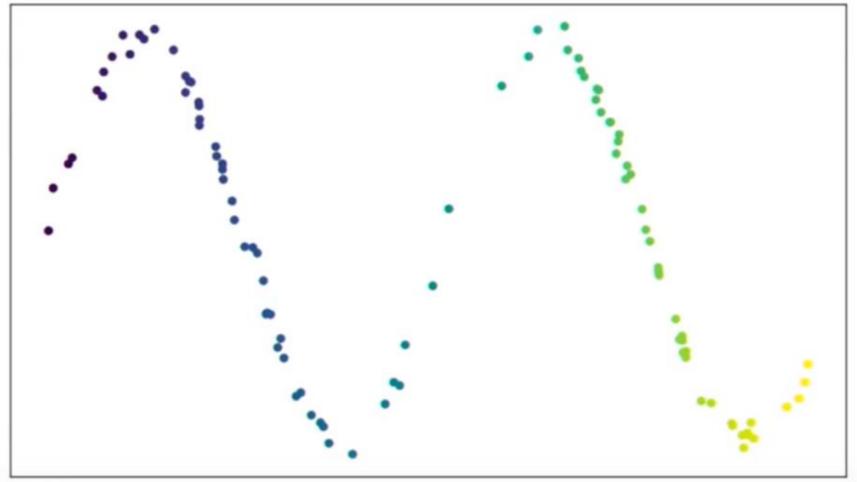
1. Combinatorial

- 2. Simple to implement
- 3. Keeps the information of

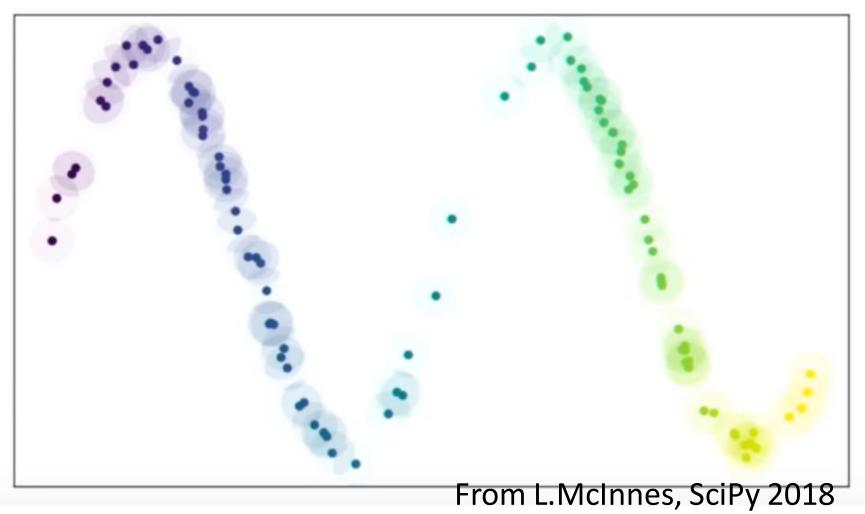
the global structure

4.Nice theorems exist on those (Nerve theorem)

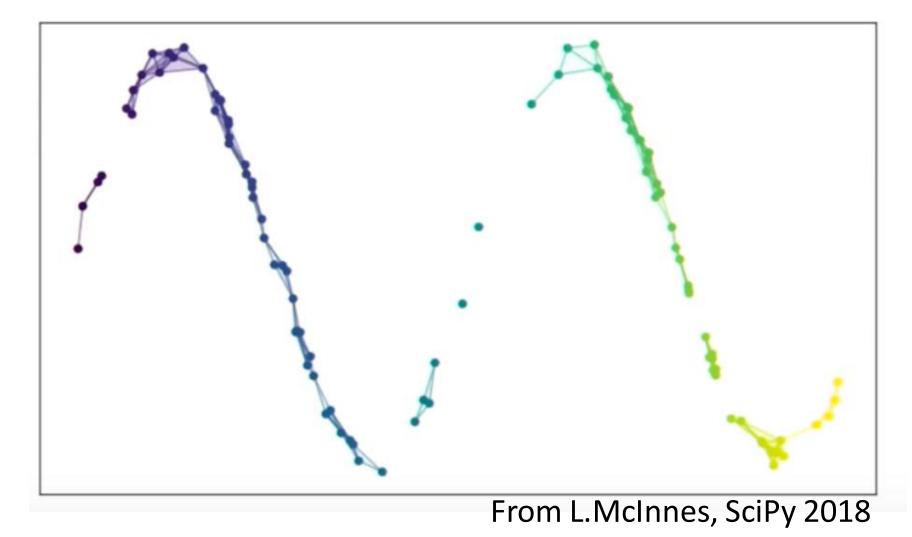
How do we build a simplicial complex on top of a data set?



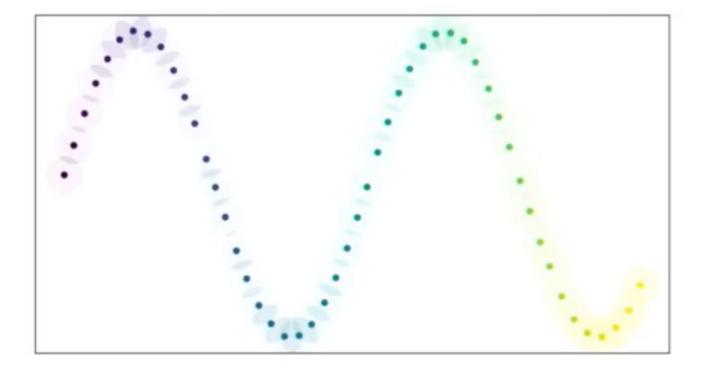
Step 1: draw unit-balls with a certain metric



Step 2: Draw the Nerve of that cover



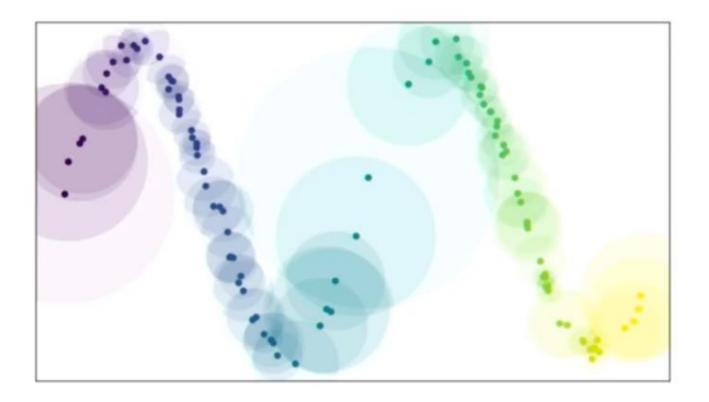
The data is not uniformly distributed on the underlying manifold



However... Data is not so nicely distributed

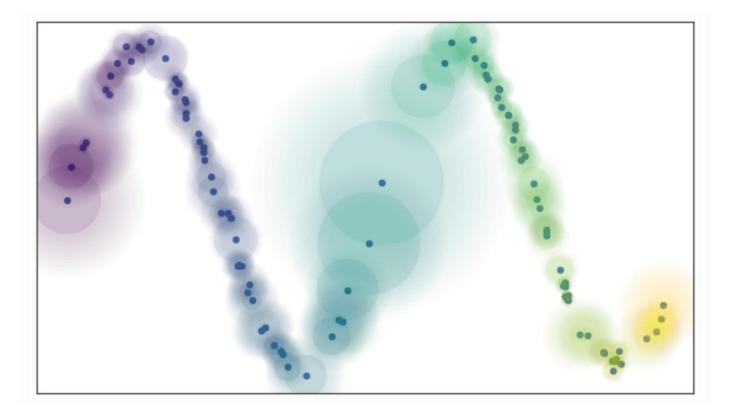
Solution: We vary the notion of metric and effectively the data will be with that metric uniformly distributed on the underlying manifold

How it looks like on the example



The radius of each ball is equal to one.

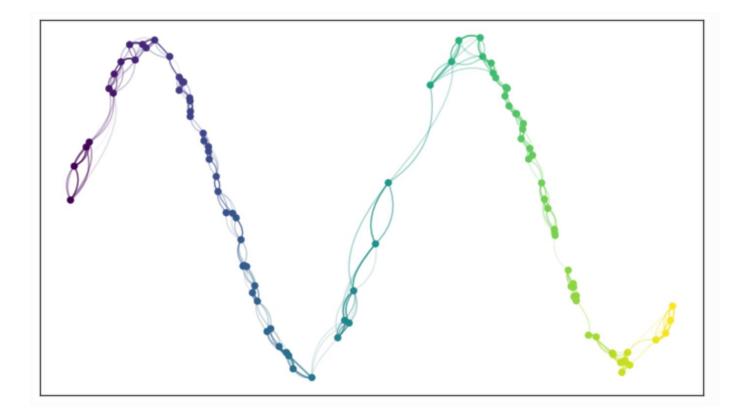
How it looks like on the example



Equivalent to choosing a cover of balls with varying radia. This is what Fuzzy covers try to do.

> There are nice theorems again justifying that all of this is valid.

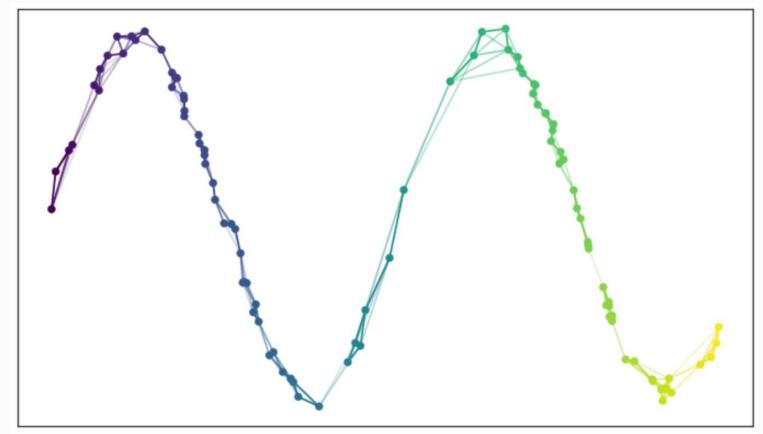
New directed graph



But we needed a (weighted) simplicial complex...

f(a,b) = a+b - a*b

Solving the problem...



2nd assumption

The second assumption : the manifold is locally connected.

They use that for mathematics to work but has as an implication that in practice you will not find isolated points in your dataset.

Dimension reduction

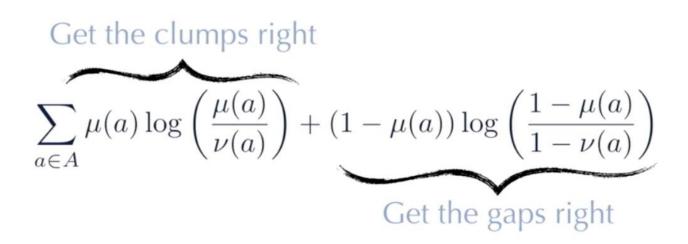
Now, UMAP is a dimension reduction method. Let us say you would like to project the data onto IR² It will therefore take Y ={y1,...,yN} in IR² Compute the fuzzy topological considering IR² to be the underlying manifold.

Optimizing this dimension reduction

Given fuzzy simplicial set representations : X and Y, a means of comparison is required.

For the purpose of calculations only the 1-skeleton of the fuzzy simplicial sets is considered (the I-skeletons are calculated using the 1-skeleton and can therefore be shown to be negligible)

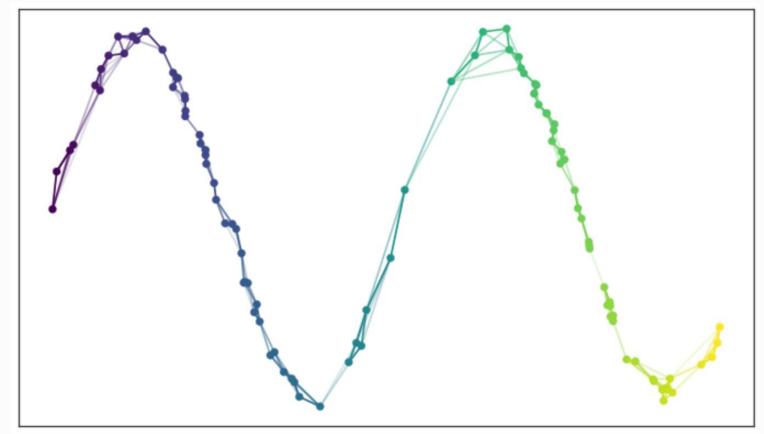
To compare two fuzzy sets we will make use of fuzzy set *cross entropy*.



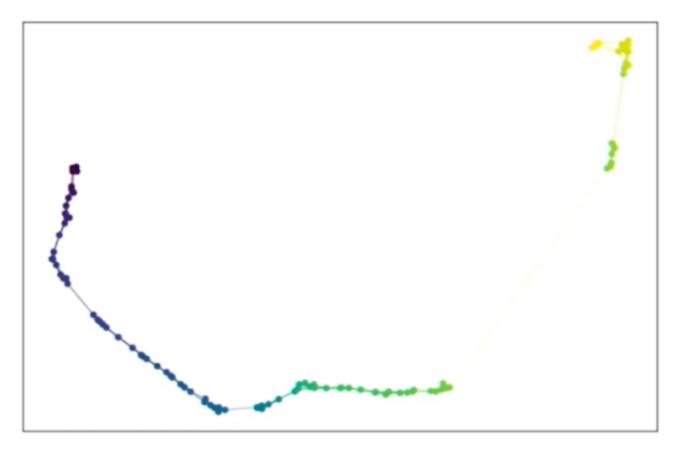
Summary

The first phase consists of constructing a fuzzy topological representation (edges and weights).

The second phase is optimizing the low dimensional representation to have as close as possible a fuzzy topological representation as measured by cross entropy.



How the UMAP embedding looks



Input parameters

X: the data

n: the neighborhood parameter: number of neighbors to consider when approximating the local metric

d: the target embedding dimension (2 usually)

min-dist: »beauty» parameter for the local embedding in 2D: the desired separation between close points in the embedding space: this determines how closely points can be packed together in the low dimensional representation

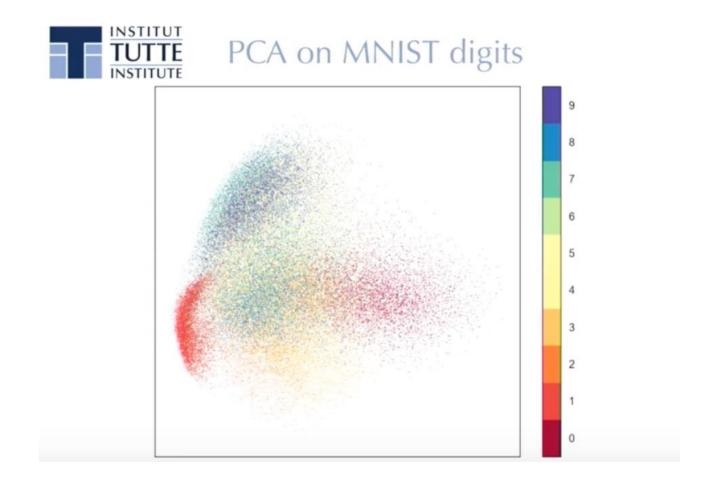
n-epochs: optimization parameter for the local embedding in 2D the number of training *epochs (batches)* to use when optimizing the low dimensional representation.

Some parameters in Seurat:

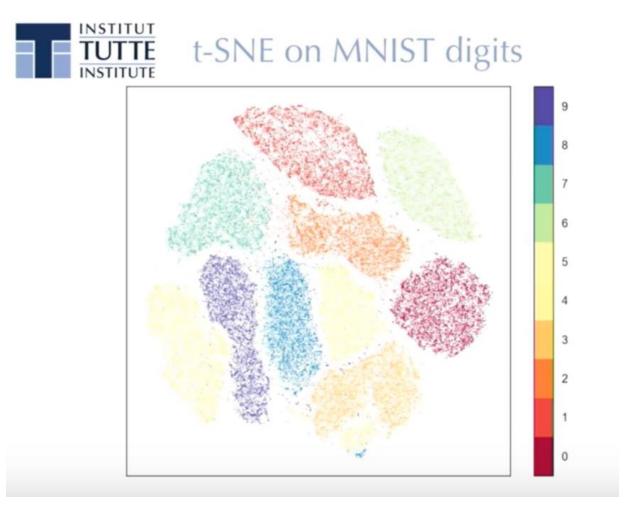
n_neighbors = 30L, min_dist = 0.3, metric = "correlation", seed.use = 42, n_epochs=200

t-SNE		UMAP	
COIL20	20 seconds	7 seconds	
MNIST	22 minutes	98 seconds	
Fashion MNIST	15 minutes	78 seconds	
GoogleNews	4.5 hours	14 minutes	

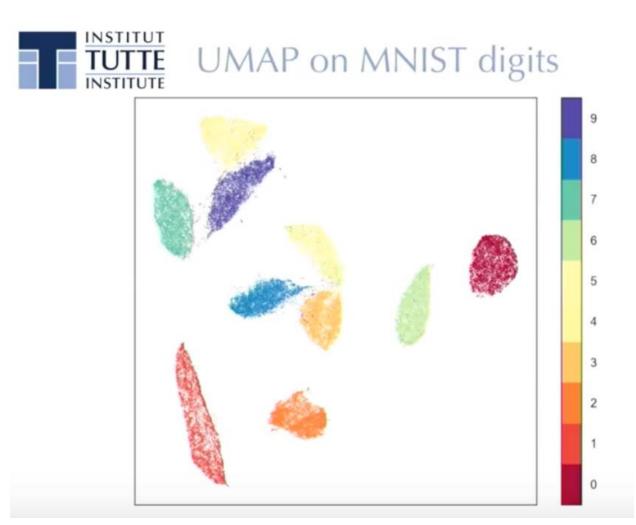
PCA is good, but one can do better!



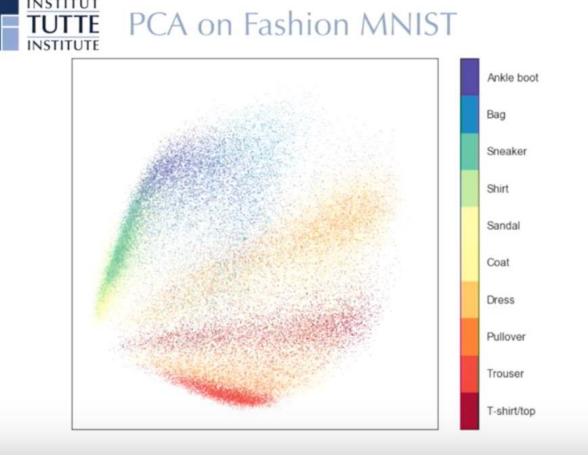
T-SNE manages to see the local structure



UMAP



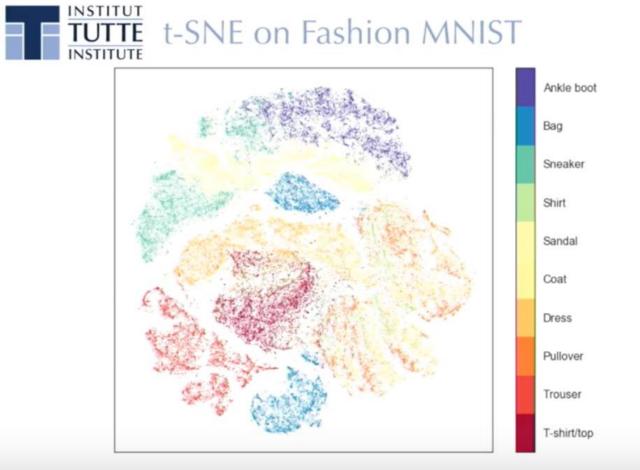
PCA is good, but one can do better!



INSTITUT

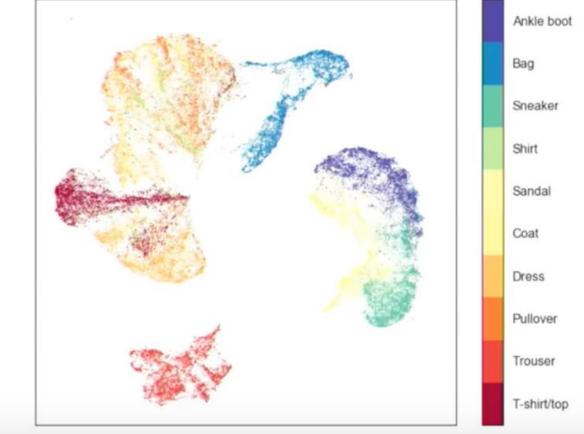
See the global structure and Interpretable axis

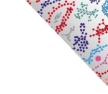
T-SNE manages to see the local structure



UMAP

TUTTE UMAP on Fashion MNIST

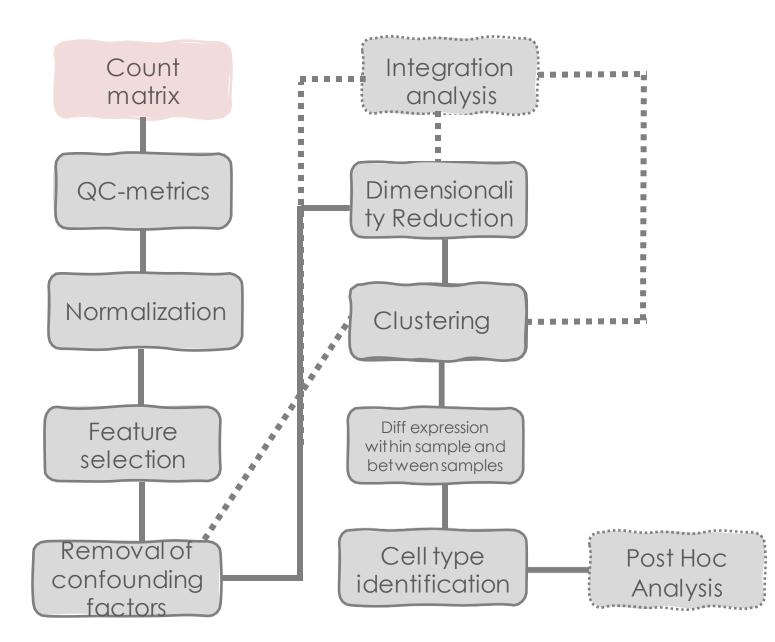




	Seurat v3	Scater	Pagoda v2	Monocle v3
	PCA ICA	PCA - MDS	PCA - -	PCA ICA
=	tSNE (BH, Flt)	tSNE (BH)	tSNE (BH)	tSNE (BH)
-	UMAP - Diff. Maps	UMAP - Diff. Maps	- LargeVis Isomap	UMAP - - DDRTree
	PHATE -	-	-	SimplePPT

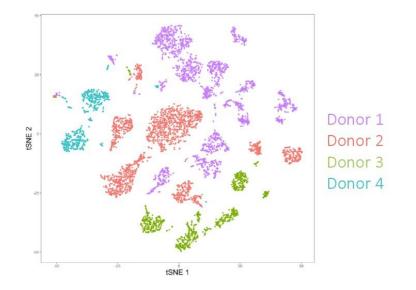
obj <-RunPCA(obj) obj <-RunTSNE(obj) obj <-RunUMAP(obj)

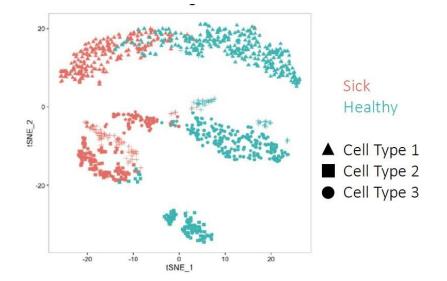
> Paper comparing dimensionality reduction techniques: https://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf



Integration analysis

• Why do we integrate?



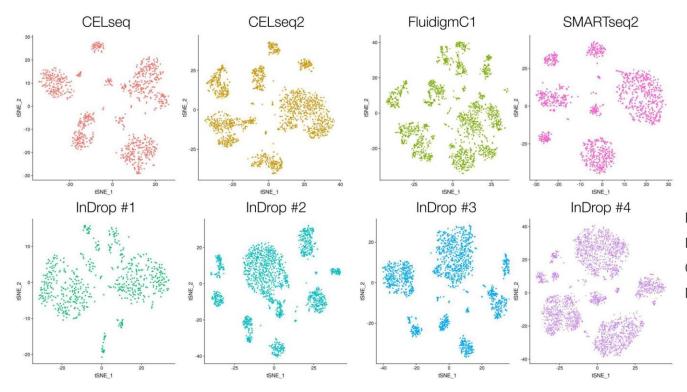


Same tissue from different donors

Cross condition comparisons

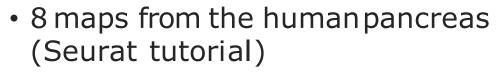
Integration analysis

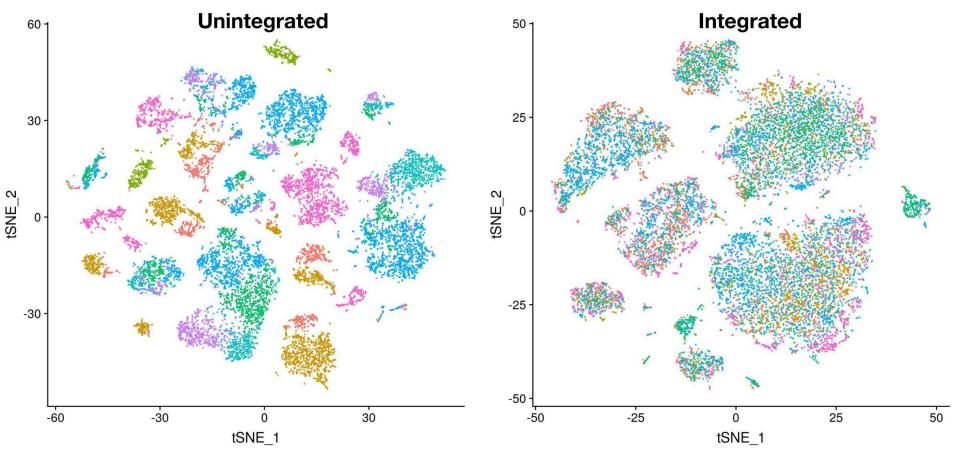
• 8 maps from the human pancreas (Seurat tutorial)



Baron et al. 2016, *Cell Syst.* Lawlor et al. 2017, *Genome Res.* Grun et al. 2016, *Cell Stem Cell* Muraro et al. 2016, *Cell Syst.*

Integration analysis





Integration analysis: Confounders and batch effect

1. Technical variability

- Changes in sample quality/processing
- Library prep or sequencing technology

Technical 'batch effects' confound downstream analysis

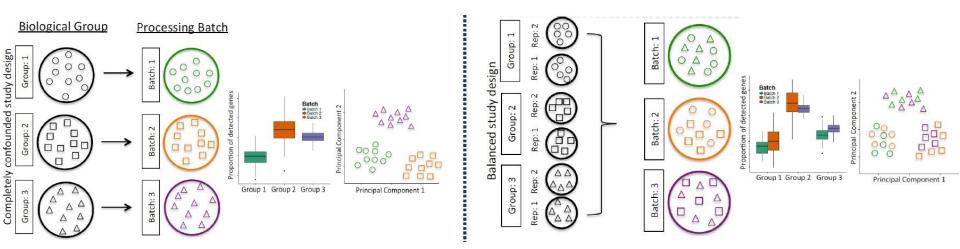
2. Biological variability

- Patient differences
- Evolution! (cross-species analysis)

Biological 'batch effects' confound comparisons of scRNA-seq data

Confounded design

Not confounded design



Good experimental design *does not remove batch effects*, it prevents them from biasing your results.

Hicks et al. (https://doi.org/10.1093/biostatistics/kxx053)

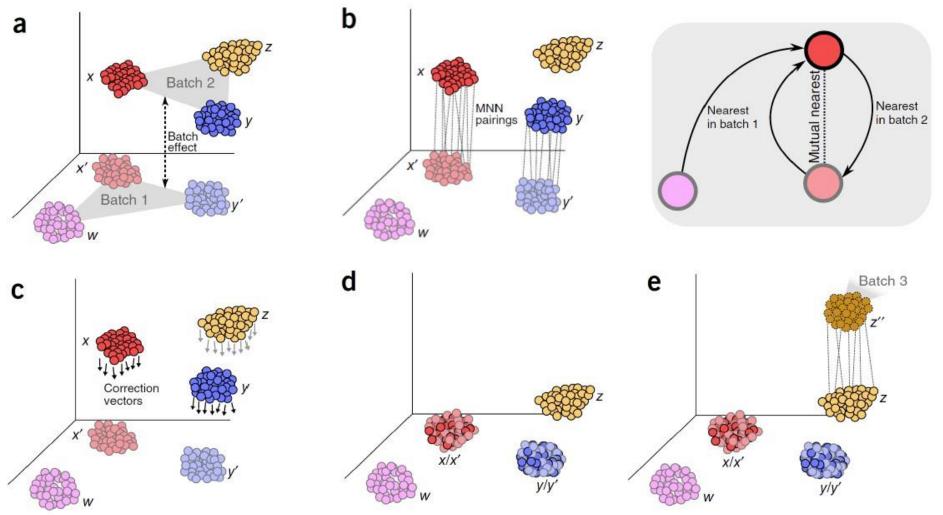
Integration analysis: Batch correction method

- MNNcorrect (<u>https://doi.org/10.1038/nbt.4091</u>)
- CCA +anchors (Seurat v3) (<u>https://doi.org/10.1101/460147</u>)
- CCA +dynamic time warping (Seurat v2) (<u>https://doi.org/10.1038/nbt.4096</u>)
- LIGER (<u>https://doi.org/10.1101/459891</u>)
- Harmony (<u>https://doi.org/10.1101/461954</u>)
- Conos (<u>https://doi.org/10.1101/460246</u>)
- Scanorama (<u>https://doi.org/10.1101/371179</u>)
- scMerge (<u>https://doi.org/10.1073/pnas.1820006116</u>)
- STACAS (https://doi.org/10.1093/bioinformatics/btaa755)

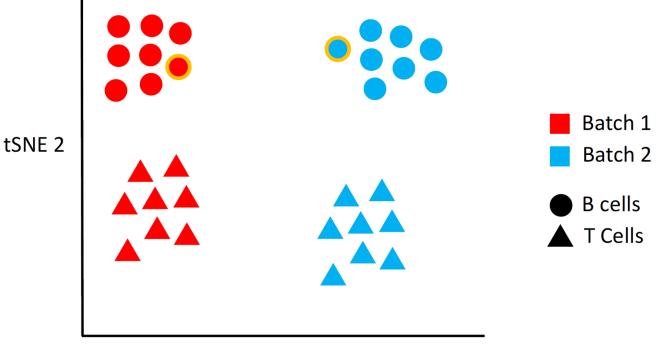
Integration analysis: Batch correction method

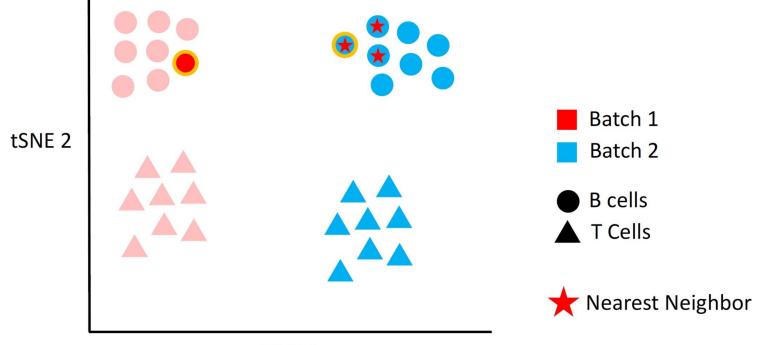
- MNNcorrect (<u>https://doi.org/10.1038/nbt.4091</u>)
- CCA +anchors (Seurat v3) (<u>https://doi.org/10.1101/460147</u>)
- CCA +dynamic time warping (Seurat v2) (<u>https://doi.org/10.1038/nbt.4096</u>)
- LIGER (<u>https://doi.org/10.1101/459891</u>)
- Harmony (<u>https://doi.org/10.1101/461954</u>)
- Conos (<u>https://doi.org/10.1101/460246</u>)
- Scanorama (<u>https://doi.org/10.1101/371179</u>)
- scMerge (<u>https://doi.org/10.1073/pnas.1820006116</u>)
- STACAS (https://doi.org/10.1093/bioinformatics/btaa755)

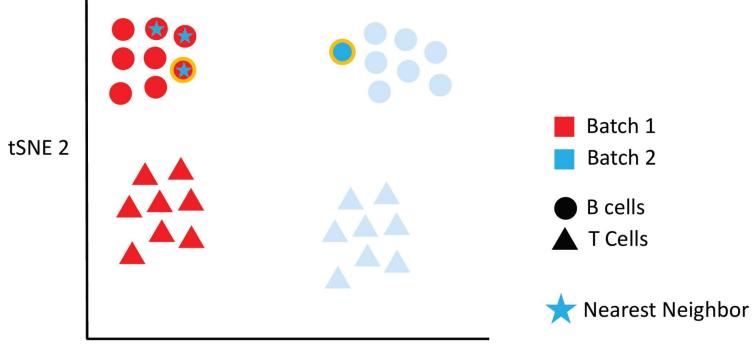
Integration analysis: Mutual Nearest Neighbors (MNN)

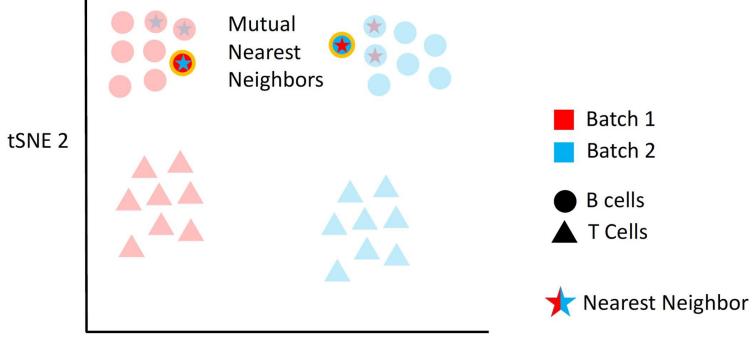


Haghverdi (https://doi.org/10.1038/nbt.4091)



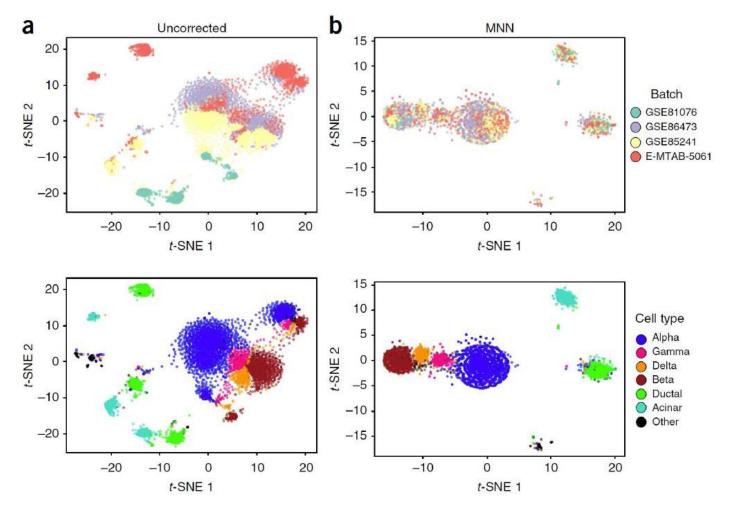






Integration analysis: Mutual Nearest Neighbors (MNN) $V_x = \begin{pmatrix} gene1_a - gene1_b \\ gene2_a - gene2_b \\ gene3_a - gene3_b \\ \dots \\ geneN_a - geneN_b \end{pmatrix}$ Cell i from 1) For each MNN pair, a pair-specific batch-correction Batch B vector is computed as the vector difference between the expression profiles of the paired cells. Cell j from Batch A Gaussian Kernel 2) A cell-specific batch- V_x Batch Correction vector Smoothing correction vector is then for each cell calculated as a weighted average of these pair-specific Real valued function vectors, as computed with a $f: \mathbb{R}^p \to \mathbb{R}$ Gaussian kernel. as the weighted average of neighboring observed data batch A batch B Corrected Batch B merge Genes Genes Genes Batch Correction Vector for each cell

Integration analysis: Mutual Nearest Neighbors (MNN)

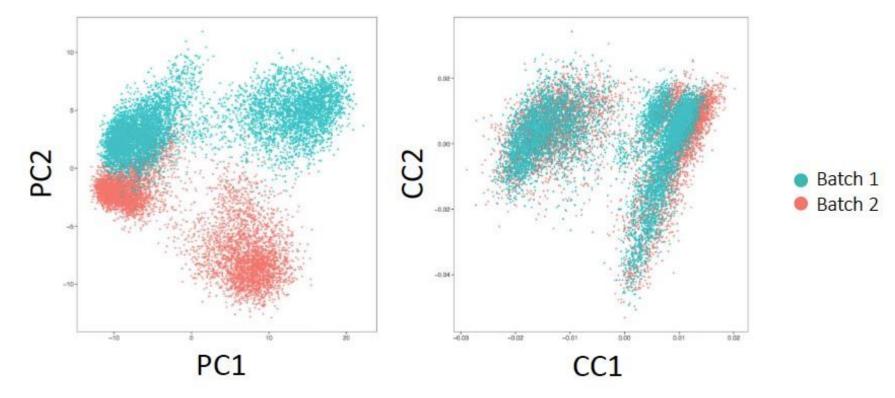


Haghverdi (https://doi.org/10.1038/nbt.4091)

- 1. Find corresponding cells across datasets
- 2. Compute a data adjustment based on correspondences between cells
- 3. Apply the adjustment

Integration analysis: CCA +anchors (Seurat v3)

1. Find corresponding cells across datasets

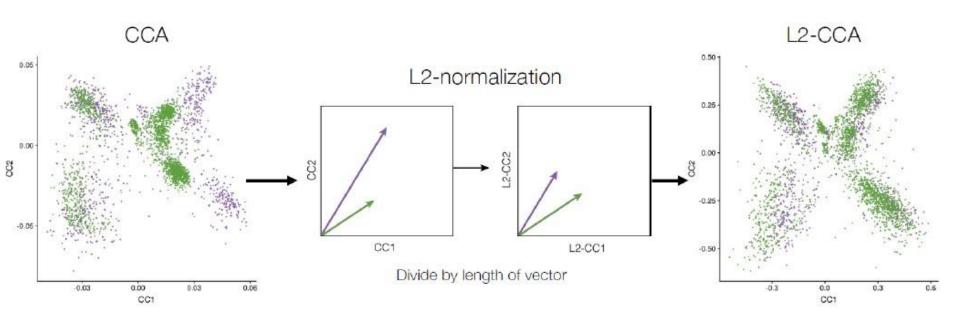


CCA captures correlated sources of variation between two datasets

2

Integration analysis: CCA +anchors (Seurat v3)

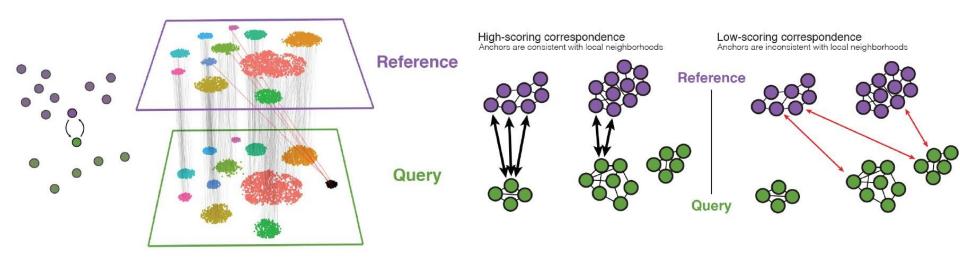
1. Find corresponding cells across datasets



L2-normalization corrects for differences in scale

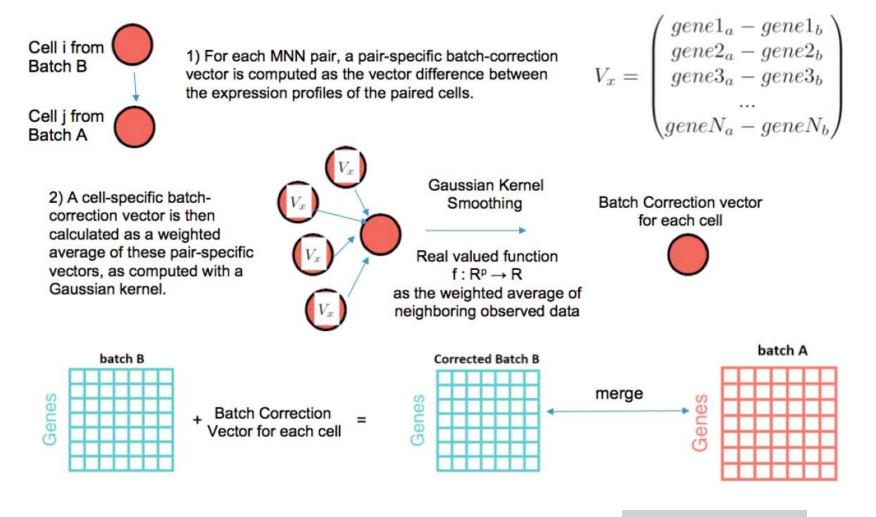
Integration analysis: CCA +anchors (Seurat v3)

1. Find corresponding cells across datasets Anchors: Mutual nearest neighbors



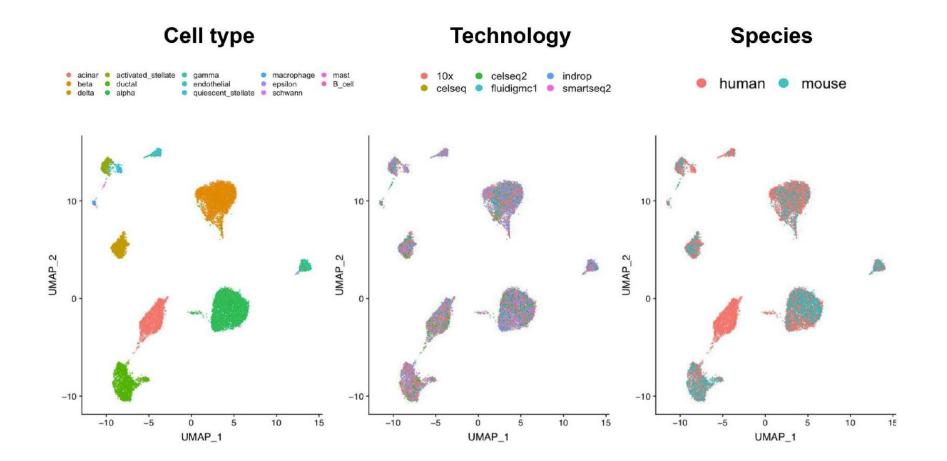
FindIntegrationAnchors()

2. Data integration



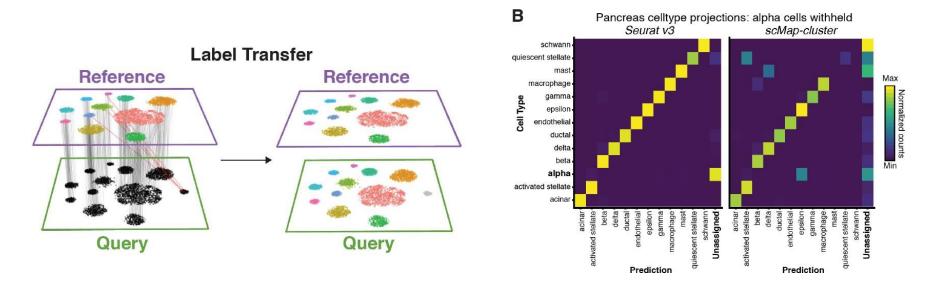
IntegrateData()

Integration analysis: CCA +anchors



Retinal bipolar datasets: 51K cells, 6 technologies, 2 Species

Label transfer: CCA +anchors



STACAS

- STACAS (https://doi.org/10.1093/bioinformatics/btaa755)
- Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data
- Corrected version of Seurat
- Based on labelling of cells-removes "wrong" anchors.

