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• Simplify complexity, so it becomes easier to  
work with.
• Reduce number of features (genes)

• In some: Transform non-linear relationships to linear

• “Remove” redundancies in thedata

• Identify the most relevant information (find and  
filternoise)

• Reduce computational time fordownstream  
procedures

• Facilitate clustering, since some algorithms  
struggle with too manydimensions

• Data visualization

Dimensionality Reduction



Dimentionality reduction: Algorithms



PCA- Principal component analysis

-PCA is based on variance
-PCA is the best angle to see and evaluate the 
data
-New axis that are linear combination of the 
original axes



PCA- Principal component analysis

Which and how ?



PCA- Principal component analysis



PCA- Principal component analysis

1. Largest variance first



PCA- Principal component analysis



PCA- Principal component analysis

2*e1 + 1.7*e2



PCA- Principal Component Analysis

2. Select uncorrelated principal axis
(orthogonal)



PCA- Principal Component Analysis



PCA- Principal Component Analysis

e1-1.2*e2



PCA- Principal Component Analysis

v1

v2



PCA- Principal Component Analysis



Mathematically

Calculate the eigenvectors of the Covariance matrix are the directions 
of the axes where there is the most variance (this is something you can
prove mathematically!)

eigenvalues are the coefficients attached to eigenvectors, which give
the amount of variance carried in each Principal Component.

After having the principal components, to compute the percentage of 
variance (information) accounted for by each component, we divide the 
eigenvalue of each component by the sum of eigenvalues.



https://towardsdatascience.com/a-one-stop-shop-for-principal-component-

analysis-5582fb7e0a9c



The PCA axis

• The PC are linear combination of the original axis.
• The estimated parameters of the linear combination is known and therefore

we can know positively or negatively how much it goes into one direction or 
the other one.

• Indeed as the original axis are g1,g2,g3… and the new axis are a1g1 +a2g2…, 
one takes the ai that are the highest, positively and negatively and therefore
knows which genes are mostly representing the axis you see.

• By default, 10 highest positive and negative values are displayed in R with the 
Seurat package.

• Observation : Scaling is important, if one variable is on a different scale than
another, it will dominate the PCA procedure as the largest variance might be
observed there, and the low dimension plot will really just be visualizing that
dimension.



Dimentionality reduction:  
PCA doesn’t fit

• It is a LINEAR method of dimensionality reduction

• It is an interpretabledimensionality reduction

• Data is usually SCALED prior to PCA (Z-score| see ScaleData in the Seurat)

• The TOP principal components contain higher variance from the data

• Can be used as FILTERING,by selecting only the top significant PCs

• PCs that explainat least 1%of variance

• Jackstraw of significantp-values

• The first 5-10PCs

• Scater library describes correlation between PCs and metadata, take PCs until
metadata information is covered

Problems:
• The two first PC in SC-RNAseq often account for only few percent of the total variance
• It performs poorly to separate cells in 0-inflated data types (because of it
non-linearity nature)



In R, Elbow plot

RunPCA – Computes the PCA with default : 20 pcs.
Check Elbow plot to see if 20 pcs are explaining well your data.
RunPCA will output a message with the genes contributing most to the PC (positif and 
negatif).
Uses irlba: Fast Truncated Singular Value Decomposition and Principal Components 
Analysis for Large Dense and Sparse Matrices (!!Approximation of PCA).
Usually first PCs only account for few percentages of the total variance.

obj <-RunPCA( obj )

ElbowPlot(obj,ndims=50)

Wikipedia: 
https://en.wikipedia.org/wiki/Scree_plot



T-SNE



T-SNE
T-SNE = t-distributed stochastic neighborhood

embedding

Laurens van der Maaten, Geoffrey Everest Hinton

http://www.jmlr.org/papers/volume9/vandermaate
n08a/vandermaaten08a.pdf

https://www.youtube.com/watch?v=NEaUSP4YerM

Many of the following figures are inspired by this
youtube link check out his channel ! 
(StatQuestion with Josh Starmer)

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.youtube.com/watch?v=NEaUSP4YerM


Start with a data-
set



Find a right way to 
reduce dimension



Basic idea (!! set a 
seed)



Normal distribution 
around a point



We calculate
The similarity of datapoint A to datapoint B is 

the conditional probability, that A would 
pick B as its neighbor, if neighbors were 
picked in proportion to their probability 
density under a Gaussian centered at B, 
written p_A|B.

p_A|A = 0

The variance of this normal distribution 
depends on the density around C (the more 
cells closer to C the lower the variance of 
this normal distribution will be). 



Steps

1. Take a point A.

2. Take another point B

3. Plot that point on a normal 

distribution distributed around A.

4. Take another point B and plot it 

on that distribution, this will be 

called the unscaled similarity.



Steps

5. This is done for all the points. Distant 
points will have a very low similarity, 
whereas close points a very high similarity.
6.These unscaled similarities are then scaled 
so that they add up to one.
7. The similarity between A and B might be 
different than the similarity between B and 
A, so to correct for that the mean of the two 
values is taken.



Illustration



On the projection
Do the same into the randomly projected 

points.
Using a t-distribution instead of a normal 

distribution.



On the projection
Move points little by little and redo calculation 
until you are « as close as possible » to the 

original similarity matrix or you reach a certain 
number of iteration (chosen by the user).



« As close as possible »
To measure the minimization of the sum of 

difference of conditional probability t-SNE 
minimizes the sum of Kullback-Leibler
divergence of overall data points using a 
gradient descent method.

In other words : tSNE minimizes the divergence 
between two distributions: a distribution that 
measures pairwise similarities of the input 
objects and a distribution that measures 
pairwise similarities of the corresponding low-
dimensional points in the embedding



To measure the minimization of the sum of 
difference of conditional probability t-SNE 

minimizes the sum of Kullback-Leibler
divergence of overall data points using a 

gradient descent method.



Parameters for T-sne

perplexity = 30L => linked to parameter σi

momentum = 0.5, => linked to optimisation

final_momentum = 0.8, => linked to 

optimisation



A cool 
webpage:

https://distill.pub/2016/misread-tsne/

(used to generate the figures in the next slides)

https://distill.pub/2016/misread-tsne/


Getting the most from t-SNE may 
mean analyzing multiple plots with 
different perplexities.

The perplexity can be interpreted as a smooth 
measure of the effective number of neighbors



Between cluster 
distances do not matter !



Dimentionality reduction:  
UMAP

UMAP: UniformManifold Approximationand Projection

• It is a NON-LINEAR graph-based method of  

dimensionality reduction

• UMAP assumes that there isa manifold in the dataset.

• Very efficient - O(n)

• Can be run from the top PCs (e.g.:PC1 to PC10)

• Can use any distance metrics!

• Can integratebetween differentdata types (text,  

numbers, classes)

• It is no longer completely stochastic as t-SNE

• Defines both LOCAL and GLOBAL distances

• Can be applied to new data points

• Works on original data, but best on PCA reduced dimension (default in Seurat)

McInnes et al(2018) BioRxiv
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html



UMAP
UMAP: Uniform Manifold Approximation and Projection for 

Dimension Reduction

Leland McInnes (Mathematician), John Healy (Computing 
theorist), James Melville (Computing in R)

https://arxiv.org/abs/1802.03426

https://www.youtube.com/watch?v=nq6iPZVUxZU

https://umap.scikit-tda.org/parameters.html

https://arxiv.org/abs/1802.03426
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://umap.scikit-tda.org/parameters.html


Simplices

From L.McInnes, SciPy 2018



What it enables you 
to represent 

From L.McInnes, SciPy 2018

1. Combinatorial
2. Simple to implement
3. Keeps the information of
the global structure
4.Nice theorems exist on those
(Nerve theorem)



How do we build a 
simplicial complex on top 
of a data set?



Example-UMAP

From L.McInnes, SciPy 2018



Step 1: draw unit-balls 
with a certain metric

From L.McInnes, SciPy 2018



Step 2: Draw the 
Nerve of that cover

From L.McInnes, SciPy 2018



The data is not uniformly 
distributed on the 

underlying manifold

From L.McInnes, SciPy 2018



However… Data is not 
so nicely distributed

Solution: We vary the notion of metric and effectively the 
data will be with that metric uniformly distributed on the 

underlying manifold



How it looks like on the 
example

The radius of 
each ball is 

equal to one. 

From L.McInnes, SciPy 2018



How it looks like on 
the example

Equivalent to choosing 
a cover of balls with 
varying radia. This is 
what Fuzzy covers 

try to do.

There are nice 
theorems again 

justifying that all of 
this is valid.

From L.McInnes, SciPy 2018



New directed graph

From L.McInnes, SciPy 2018



But we needed a 
(weighted) simplicial 
complex…

f(a,b) = a+b - a*b

Solving the problem…



New simplicial 
complex

From L.McInnes, SciPy 2018



2nd assumption

The second assumption : the manifold is locally 
connected. 

They use that for mathematics to work but has as an 
implication that in practice you will not find isolated 

points in your dataset.



Dimension reduction

Now, UMAP is a dimension reduction method. Let us say you 
would like to project the data onto IR2

It will therefore take Y ={y1,…,yN}  in IR2

Compute the fuzzy topological considering IR2 to be the 
underlying manifold.



Optimizing this 
dimension reduction

Given fuzzy simplicial set representations : X and Y , a means of comparison is 
required. 

For the purpose of calculations only the 1-skeleton of the fuzzy simplicial sets is 
considered (the l-skeletons are calculated using the 1-skeleton and can 

therefore be shown to be negligible)

To compare two fuzzy sets we will make use of fuzzy set cross entropy. 



Summary

The first phase consists of constructing a fuzzy topological 
representation (edges and weights).

The second phase is optimizing the low dimensional 
representation to have as close as possible a fuzzy 

topological representation as measured by cross entropy.



New simplicial 
complex

From L.McInnes, SciPy 2018



How the UMAP 
embedding looks

From L.McInnes, SciPy 2018



Input parameters
X: the data

n: the neighborhood parameter: number of neighbors to consider when 
approximating the local metric

d: the target embedding dimension (2 usually)

min-dist: »beauty» parameter for the local embedding in 2D: the desired 
separation between close points in the embedding space: this determines 

how closely points can be packed together in the low dimensional 
representation

n-epochs: optimization parameter for the local embedding in 2D the number of 
training epochs (batches) to use when optimizing the low dimensional 

representation.



Some parameters in 
Seurat:

n_neighbors = 30L,
min_dist = 0.3, 

metric = "correlation", 
seed.use = 42,
n_epochs=200



Comparing tSNE and 
UMAP in terms of 
computation time



PCA is good, but one 
can do better!

From L.McInnes, SciPy 2018



T-SNE manages to see 
the local structure

From L.McInnes, SciPy 2018



UMAP

From L.McInnes, SciPy 2018



PCA is good, but one can 
do better!

From L.McInnes, SciPy 2018

See the 
global structure
and
Interpretable axis



T-SNE manages to see 
the local structure

From L.McInnes, SciPy 2018



UMAP



Paper comparing dimensionality reduction techniques:  
https://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf

obj <-RunPCA( obj )  
obj <-RunTSNE( obj )  
obj <-RunUMAP( obj )

http://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf
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• Why do weintegrate?

Integration analysis

Same tissue from different donors Cross condition comparisons

Courtesy form AhmedMahfouz



Integration analysis

• 8 maps from the humanpancreas (Seurat tutorial)



Integration analysis

• 8 maps from the humanpancreas
(Seurat tutorial)



1.Technical variability

• Changes in samplequality/processing

• Library prep or sequencing technology

Technical ‘batch effects’ confound downstreamanalysis

2.Biological variability

• Patient differences

• Evolution! (cross-species analysis)

Biological ‘batch effects’ confound comparisons of scRNA-seq  
data

Integration analysis:  
Confounders and batch effect

Shaham et al. (https://doi.org/10.1093/bioinformatics/btx196)



Confounded design

Hicks et al. (https://doi.org/10.1093/biostatistics/kxx053)

Not confounded design

Good experimental design does not remove batch effects,  
it prevents them from biasingyour results.

Integration analysis:  
Confounders and batch effect



• MNNcorrect (https://doi.org/10.1038/nbt.4091)

• CCA + anchors (Seurat v3) (https://doi.org/10.1101/460147)

• CCA + dynamic time warping (Seurat v2)  

(https://doi.org/10.1038/nbt.4096)

• LIGER (https://doi.org/10.1101/459891)

• Harmony (https://doi.org/10.1101/461954)

• Conos (https://doi.org/10.1101/460246)

• Scanorama (https://doi.org/10.1101/371179)

• scMerge (https://doi.org/10.1073/pnas.1820006116)

• STACAS (https://doi.org/10.1093/bioinformatics/btaa755)

Integration analysis:  
Batch correction method

https://doi.org/10.1073/pnas.1820006116


• MNNcorrect (https://doi.org/10.1038/nbt.4091)

• CCA + anchors (Seurat v3) (https://doi.org/10.1101/460147)

• CCA + dynamic time warping (Seurat v2)  

(https://doi.org/10.1038/nbt.4096)

• LIGER (https://doi.org/10.1101/459891)

• Harmony (https://doi.org/10.1101/461954)

• Conos (https://doi.org/10.1101/460246)

• Scanorama (https://doi.org/10.1101/371179)

• scMerge (https://doi.org/10.1073/pnas.1820006116)

• STACAS (https://doi.org/10.1093/bioinformatics/btaa755)

Integration analysis:  
Batch correction method

https://doi.org/10.1073/pnas.1820006116


Integration analysis:
Mutual Nearest Neighbors (MNN)

Haghverdi (https://doi.org/10.1038/nbt.4091)

https://www.nature.com/articles/nbt.4091
https://doi.org/10.1038/nbt.4091


Integration analysis:
Mutual Nearest Neighbors (MNN)



Integration analysis:
Mutual Nearest Neighbors (MNN)



Integration analysis:
Mutual Nearest Neighbors (MNN)



Integration analysis:
Mutual Nearest Neighbors (MNN)



Integration analysis:
Mutual Nearest Neighbors (MNN)



Integration analysis:
Mutual Nearest Neighbors (MNN)

Haghverdi (https://doi.org/10.1038/nbt.4091)

https://www.nature.com/articles/nbt.4091
https://doi.org/10.1038/nbt.4091


Integration analysis:  
CCA + anchors (Seurat v3)

1. Find corresponding cells acrossdatasets

2. Compute a data adjustment based on  
correspondences betweencells

3. Apply theadjustment

Stuart et al. (https://doi.org/10.1101/460147)



Integration analysis:  
CCA + anchors (Seurat v3)

Stuart et al. (https://doi.org/10.1101/460147)

1. Find corresponding cells acrossdatasets



Integration analysis:  
CCA + anchors (Seurat v3)

1. Find corresponding cells acrossdatasets



1. Find corresponding cells acrossdatasets  

Anchors: Mutual nearestneighbors

Integration analysis:  
CCA + anchors (Seurat v3)

FindIntegrationAnchors()



2. Data integration

Integration analysis:  
CCA + anchors (Seurat v3)

IntegrateData()



Integration analysis:  
CCA + anchors

Retinal bipolar datasets: 51K cells, 6 technologies, 2 Species



Label transfer:
CCA + anchors



STACAS

• STACAS (https://doi.org/10.1093/bioinformatics/btaa755)
• Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq

data
• Corrected version of Seurat
• Based on labelling of cells-removes "wrong" anchors.


