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Dimensionality Reduction %
« Simplify complexity, so it becomes easierto  gEneE AEE,
work with. £ = 24
- Reduce number of features (genes) g il 1 e [
« In some: Transform non-linear relationships to linear
non-linear linear

« "Remove” redundancies in thedata

- Identify the mostrelevantinformation (find and J » /

filter noise)

- Reduce computational time fordownstream ‘ @r;-_w-
procedures Ay AL
. i _ _ ; ' ?‘:’,9’..’!---,
- Facilitate dustering, since some algorithms B o 1l
struggle with too manydimensions | We A
- Data visualization I



Dimentionality reduction: Algorithms

) PCA linear
ICA linear
MDS non-linear

Sparce NNMF  non-linear

cPCA non-linear
ZIFA non-linear
ZINB-WaVE non-linear

Diffusion maps non-linear
Isomap non-linear

m) t-SNE non-linear
- BH t-SNE non-linear

- FIt-SNE non-linear
LargeVis non-linear
@) UMAP non-linear
PHATE non-linear

scvis non-linear

VASC non-linear

Matrix Factorization
Matrix Factorization
Matrix Factorization

Matrix Factorization

Matrix Factorization
Matrix Factorization
Matriix Factorization

graph-based
graph-based
graph-based
graph-based
graph-based
graph-based
graph-based

graph-based

Autoencoder (MF)
Autoencoder (MF)
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2018
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2014
2017
2018
2018

2017

2018
2018

https://pdfs.semanticscholar.org/664d/40258f12ad28ed0b7d4
€272935ad72a150db.pdf
https://doi.org/10.1038/541467-018-04608-8

https://doi.org/10.1186/s13059-015-0805-z
https://doi.org/10.1038/s41467-017-02554-5

https://doi.org/10.1073/pnas.0500334102
10.1126/science.290.5500.2319
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
https://lvdmaaten.github.io/publications/papers/JIMLR_2014.pdf
arXiv:1712.09005

arXiv:1602.00370

arXiv:1802.03426

https://www.biorxiv.org/content/biorxiv/early/2018/06/28/12037
8.full.pdf

https://doi.org/10.1038/s541467-018-04368-5
https://doi.org/10.1016/j.gpb.2018.08.003



PCA- Principal component analysis %

-PCA is based on variance
-PCA is the best angle to see and evaluate the

data
-New axis that are linear combination of the

original axes
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PCA- Principal component analysis R

Which and how ?
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PCA- Principal component analysis

1. Largest variance first

agetess



PCA- Principal component analysis




PCA- Principal component analysis

A , 2%el +1.7%e2




PCA- Principal Component Analysis

2. Select uncorrelated principal axis
(orthogonal)



PCA- Principal Component Analysis
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PCA- Principal Component Analysis







Mathematically Y

Calculate the eigenvectors of the Covariance matrix are the directions
of the axes where there is the most variance (this is something you can
prove mathematically!)

eigenvalues are the coefficients attached to eigenvectors, which give
the amount of variance carried in each Principal Component.

After having the principal components, to compute the percentage of
variance (information) accounted for by each component, we divide the
eigenvalue of each component by the sum of eigenvalues.
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Principal Componernt

Scree Plot for Genetic Data. (Source.)

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-

analysis-5582fb7e0a9c



The PCA axis

The PC are linear combination of the original axis.

The estimated parameters of the linear combination is known and therefore
we can know positively or negatively how much it goes into one direction or
the other one.

Indeed as the original axis are g1,g2,g3...and the new axis are algl +a2g2...,
one takes the ai that are the highest, positively and negatively and therefore
knows which genes are mostly representing the axis you see.

By default, 10 highest positive and negative values are displayed in R with the
Seurat package.

Observation : Scaling is important, if one variable is on a different scale than
another, it will dominate the PCA procedure as the largest variance might be
observed there, and the low dimension plot will really just be visualizing that
dimension.



Dimentionality reduction: %
PCA doesn’tfit

Itisa LINEAR method of dimensionality reduction

Itis an interpretable dimensionality reduction

Data is usually SCALED priorto PCA (Z-score| see ScaleData in the Seurat)

The TOP principal components contain higher variance from the data

Can be used as FILTERING, by selecting only the top significant PCs

» PCs thatexplain at least 1% of variance
 Jackstraw of significant p-values
* The first 5-10 PCs

« Scater library describes correlation between PCs and metadata, take PCs until
metadata informationis covered

Problems:
* The two first PC in SC-RNAseq often account for only few percent of the total variance

« It performs poorly to separate cells in O-inflated data types (because of it
non-linearity nature)



In R, Elbow plot

RunPCA — Computes the PCA with default: 20 pcs.

Check Elbow plot to see if 20 pcs are explaining well your data.

RunPCA will output a message with the genes contributing most to the PC (positif and
negatif).

Uses irlba: Fast Truncated Singular Value Decomposition and Principal Components
Analysis for Large Dense and Sparse Matrices (!!Approximation of PCA).

Usually first PCs only account for few percentages of the total variance.

Scree Plot

Eigenvalue
[

!

obj <-RUnPCA( obj ) D

05 15 25 35

ElbowPlot(obj,ndims=50) o
Wikipedia:

https://en.wikipedia.org/wiki/Scree_plot



T-SNE



T-SNE

T-SNE = t-distributed stochastic neighborhood
embedding

Laurens van der Maaten, Geoffrey Everest Hinton

http://www.imlr.org/papers/volume9/vandermaate

n08a/vandermaaten08a.pdf

https://www.yvoutube.com/watch?v=NEaUSP4YerM

Many of the following figures are inspired by this
youtube link check out his channel !

(StatQuestion with Josh Starmer)


http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.youtube.com/watch?v=NEaUSP4YerM

Start with a data-
set




Find a right way to
reduce dimension
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Basic idea (!! set a
seed)




Normal distribution
around a point




We calculate

The similarity of datapoint A to datapoint B is
the conditional probability, that A would
pick B as its neighbor, if neighbors were
picked in proportion to their probability

density under a Gaussian centered at B,
written p_A|B.

p AIA=0

The variance of this normal distribution

depends on the density around C (the more
cells closer to C the lower the variance of
this normal distribution will be).



Steps

1. Take a point A.
2. Take another point B B
3. Plot that point on a normal

distribution distributed around A.

4. Take another point B and plot it

on that distribution, this will be 5@\
called the unscaled similarity. 6—0



v A

5. This is done for all the points. Distant
points will have a very low similarity,
whereas close points a very high similarity.
6.These unscaled similarities are then scaled
so that they add up to one.

/. The similarity between A and B might be
different than the similarity between B and
A, so to correct for that the mean of the two
values is taken.



[llustration




On the projection

Do the same into the randomly projected
points.
Using a t-distribution instead of a normal
distribution.




On the projection

Move points little by little and redo calculation
until you are « as close as possible » to the
original similarity matrix or you reach a certain
number of iteration (chosen by the user).
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« As close as possible »

To measure the minimization of the sum of
difference of conditional probability t-SNE
minimizes the sum of Kullback-Leibler
divergence of overall data points using a
gradient descent method.

In other words : tSNE minimizes the divergence
between two distributions: a distribution that
measures pairwise similarities of the input
objects and a distribution that measures
pairwise similarities of the corresponding /low-
dimensional points in the embedding



To measure the minimization of the sum of
difference of conditional probability t-SNE
minimizes the sum of Kullback-Leibler
divergence of overall data points using a
gradient descent method.

C= ZKL (P||0)) = ZZp;hlog q

f|1



Parameters for T-snhe

perplexity = 30L => linked to parameter oi
momentum = 0.5, => linked to optimisation
final_momentum = 0.8, => linked to

optimisation



A COOl
webpage:

https://distill.pub/2016/misread-tsne/

(used to generate the figures in the next slides)


https://distill.pub/2016/misread-tsne/

Getting the most from t-SNE may
mean analyzing multiple plots with
different perplexities.

The perplexity can be interpreted as a smooth
measure of the effective number of neighbors
Perp(P) = 2117

where H(P;) is the Shannon entropy of P; measured in bits

H(P)=— ZP jli log, Piji-
j
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Orz;gimzl Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
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Between cluster

distances do not matter
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Dimentionality reduction: &

0.012

UMAP: Uniform Manifold Approximationand Projection 5 oo . Largov
. Ttisa NON-LINEAR graph-based method of X
dimensionality reduction Soe i‘
« UMAP assumes that there isa manifold in the dataset. "'! .
. Very effident - O(n) - . A
« Can be run from the top PCs (e.g.: PC1 to PC10)
« Can use any distance metrics!
« Can integrate between differentdata types (text, % o
numbers, classes) '- ‘ o \
« kisno longer completely stochastic as t-SNE "‘\ g 2 ’ ‘
» Defines both LOCAL and GLOBAL distances D 4 S
() UMAP (0 LSNE

 Can be applied to new data points
« Works on original data, but best on PCA reduced dimension (default in Seurat)

Mclnnes et al(2018) BioRxiv
https://umap-leam.readthedocs.io/en/latest/how_umap_works.html



UMAP

UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction

Leland Mclnnes (Mathematician), John Healy (Computing
theorist), James Melville (Computingin R)

https://arxiv.org/abs/1802.03426

https://www.youtube.com/watch?v=nq6iPZVUxZU

https://umap.scikit-tda.org/parameters.html



https://arxiv.org/abs/1802.03426
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://umap.scikit-tda.org/parameters.html

0-simplex

e

1-simplex

2-simplex 3-simplex

From L.Mclnnes, SciPy 2018



What it enables you
to represent

Simplicial
complex 1. Combinatorial

2. Simple to implement
3. Keeps the information of
the global structure

v 4. Nice theorems exist on those
(Nerve theorem)

From L.Mclnnes, SciPy 2018



How do we build a
simplicial complex on top
of a data set?
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From L.Mclnnes, SciPy 2018



Step 1: draw unit-balls
with a certain metric
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L.Mclnnes, SCiPy 2018~



Step 2: Draw the
Nerve of that cover

From L.Mclnnes, SciPy 2018



The data is not uniformly
distributed on the
underlying manifold

From L.Mclnnes, SciPy 2018



However... Data is not
so nicely distributed

Solution: We vary the notion of metric and effectively the
data will be with that metric uniformly distributed on the
underlying manifold



How it looks like on the A
example

The radius of
3 each ball is
equal to one.

From L.Mclnnes, SciPy 2018



How it looks like on |
the example

" ‘ Equivalent to choosing

a cover of balls with
varying radia. This is
what Fuzzy covers

[ ]
% try to do.
[]
There are nice
P theorems again
B . justifying that all of
& ..' this is valid.
e°
g

From L.Mclnnes, SciPy 2018



New directed graph

o A
2\ /

From L.Mclnnes, SciPy 2018




But we needed a
(weighted) simplicial
complex...

f(a,b) =a+b-a*b

Solving the problem...



New simplicial
complex

A
ave

From L.Mclnnes, SciPy 2018




2Nnd assumption

The second assumption : the manifold is locally
connected.
They use that for mathematics to work but has as an
implication that in practice you will not find isolated
points in your dataset.



Dimension reduction

Now, UMAP is a dimension reduction method. Let us say you
would like to project the data onto IR?
It will therefore take Y ={y1,...,yN} in IR?
Compute the fuzzy topological considering IR? to be the
underlying manifold.
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Optimizing this
dimension reduction

Given fuzzy simplicial set representations : Xand Y, a means of comparison is
required.

For the purpose of calculations only the 1-skeleton of the fuzzy simplicial sets is
considered (the |-skeletons are calculated using the 1-skeleton and can

therefore be shown to be negligible)

To compare two fuzzy sets we will make use of fuzzy set cross entropy.

> + (1 — p(a)) log <1 :ZEZ;)

3 ) ) A1 |




Summary

The first phase consists of constructing a fuzzy topological
representation (edges and weights).

The second phase is optimizing the low dimensional
representation to have as close as possible a fuzzy
topological representation as measured by cross entropy.



New simplicial
complex

ave

From L.Mclnnes, SciPy 2018




How the UMAP
embedding looks

From L.Mclnnes, SciPy 2018



Input parameters

X: the data

n: the neighborhood parameter: number of neighbors to consider when
approximating the local metric

d: the target embedding dimension (2 usually)

min-dist: »beauty» parameter for the local embedding in 2D: the desired
separation between close pointsin the embedding space: this determines
how closely points can be packed togetherin the low dimensional
representation

n-epochs: optimization parameter for the local embeddingin 2D the number of
training epochs (batches) to use when optimizing the low dimensional
representation.
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Some parameters in
Seurat:

n_neighbors = 30L,
min_dist =0.3,
metric = "correlation”,
seed.use =42,
n_epochs=200



Comparing tSNE and <
UMAP in terms of
computation time

COIL20 20 seconds 7 seconds
MNIST 22 minutes 98 seconds
FLHLEGLUNE 15 minutes 78 seconds

e 4.5 hours 14 minutes



PCA is good, but one
can do better!

INSTITUT \ ) e
allg TUTTE  PCA on MNIST digits
INSTITUTE
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2

1

0

From L.Mclnnes, SciPy 2018




T-SNE manages to see
the local structure

INSTITUT ) ] ) .
SE= TUTTE t-SNE on MNIST digits
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From L.Mclnnes, SciPy 2018
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UMAP

INSTITUT

== T1ITTE
- AL

UMAP on MNIST digits

\

o, @

l L

From L.Mclnnes, SciPy 2018



PCA is good, but one can &
do better!

INSTITUT , , I
migm TUTTE PCA on Fashion MNIST
. . INSTITUTE
Ankle boot
Beo See the
P s global structure
:(J!f’ E " -l Shirt and
5 Sandal .
£ - Interpretable axis
4 Coat
Dres
Pullover
Trouser
T-shirt/top

From L.Mclnnes, SciPy 2018



22

T-SNE manages to see
the local structure

INSTITUT

TUTTE t-SNE on Fashion MNIST
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From L.Mclnnes, SciPy 2018
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UMAP

INSTITUT

sHle TUTTE UMAP on Fashion MNIST

| NS

Ankle boot

Bag

Sneaker

Shirt
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Trouser

T-shirt/top




Seurat v3 Scater Pagoda v2 Monocle v3
PCA PCA PCA PCA
ICA - - ICA

- MDS - -
tSNE (BH, Flt) tSNE (BH) tSNE (BH) tSNE (BH)
UMAP UMAP - UMAP
- - LargeVis -

Diff. Maps Diff. Maps Isomap -

- - - DDRTree
PHATE - - -
- - SimplePPT

obj <-RunPCA( obj )
obj <-RunTSNE( obj )
obj <-RunUMAP( obj)

Paper comparing dimensionality reduction techniques:

https://www.biorxiv.org/content/biorxiv/eady/2018/06/28/120378.full.pdf


http://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf
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Integration analysis

- Why do weintegrate?

Donor 1
Donor 2
Donor 3
Donor 4

Same tissue from different donors

20+

-204

ad gedd ‘s R

L Y i
G ST S S F
LhE, ey
B i
ey
Y&,

&
-

VR
*’?é" ;
y 'A: |8 0 #

s

Sick
Healthy

A Cell Type 1
B Cell Type 2
@® Cell Type 3

Cross condition comparisons

Courtesy form AhmedMahfouz



Integration analysis
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« 8 maps from the humanpancreas (Seurat tutorial)

CELseq

CELseqg2

5

FluidigmCH1

SMARTseq?2

ISNE_1

InDrop #1

0 20

ISNE_1

InDrop #2

-10 0 10
ISNE_1

InDrop #4

Baron et al. 2016, Cell Syst.
Lawlor et al. 2017, Genome Res.
Grun et al. 2016, Cell Stem Cell
Muraro et al. 2016, Cell Syst.



tSNE_2

Integration analysis

« 8 maps from the humanpancreas
(Seurat tutorial)

60 1

30 1

-30 4

Unintegrated

l.

50 1

251

25

50



Integration analysis: g

Confounders and batch effect

1. Technical variability
» Changes in samplequality/processing
* Library prep or sequencing technology

Technical ‘batch effects’ confound downstream analysis
2.Biological variability

« Patient differences
 Evolution! (cross-species analysis)

Biological ‘batch effects’ confound comparisons of scRNA-seq
data

Shaham et al. (https://doi.org/10.1093/bioinformatics/btx196)



Completely confounded study design

Integration analysis: g
Confounders and batch effect

Biological Group Processing Batch 2 (8%
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Good experimental design does not remove batch effects,
it prevents them from biasingyour results.

Hicks et al. (https://doi.org/10.1093/biostatistics/kxx053)



Integration analysis:
Batch correction method

« MNNcorrect (https://doi.org/10.1038/nbt.4091)

« CCA +anchors (Seuratv3) (https://doi.org/10.1101/460147)
« CCA +dynamic time warping (Seuratv2)
(https://doi.org/10.1038/nbt.4096)

 LIGER (https://doi.org/10.1101/459891)

« Harmony (https://doi.org/10.1101/461954)

« Conos (https://doi.org/10.1101/460246)

« Scanorama (https://doi.org/10.1101/371179)

« scMerge (https://doi.org/10.1073/pnas.1820006116)
» STACAS (https://doi.org/10.1093/bioinformatics/btaa755)
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https://doi.org/10.1073/pnas.1820006116

Integration analysis:
Batch correction method

« MNNcorrect (https://doi.org/10.1038/nbt.4091)

« CCA +anchors (Seuratv3) (https://doi.org/10.1101/460147)
« CCA +dynamic time warping (Seuratv2)
(https://doi.org/10.1038/nbt.4096)

 LIGER (https://doi.org/10.1101/459891)

« Harmony (https://doi.org/10.1101/461954)

« Conos (https://doi.org/10.1101/460246)

« Scanorama (https://doi.org/10.1101/371179)

« scMerge (https://doi.org/10.1073/pnas.1820006116)
« STACAS (https://doi.org/10.1093/bioinformatics/btaa755)



https://doi.org/10.1073/pnas.1820006116

Integration analysis: Tt

Mutual Nearest Neighbors (MNN)
b

Nearest
in batch 2

Nearest
in batch 1

)

Batch 1

d e Batch 3

!

Correction
vectors

g

Haghverdi (https://doi.org/10.1038/nbt.4091)



https://www.nature.com/articles/nbt.4091
https://doi.org/10.1038/nbt.4091

Integration analysis: gt

Mutual Nearest Neighbors (MNN)

tSNE 2

tSNE 1

B Batch1
B Batch 2

@ B cells
A TCells



Integration analysis: ‘:ﬂ"‘%;;;
Mutual Nearest Neighbors (MNN)

*
* * ® &
® ®
e ©
B Batch1
ESiNE 2 B Batch 2
A AA @ B cells
A:A A TCells
A
* Nearest Neighbor

tSNE 1
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Integration analysis: g
Mutual Nearest Neighbors (MNN)

00g

00, o

o0
B Batch 1

tSNE 2 A A W Batch2

AAA @ B cells

AAA A TCells
* Nearest Neighbor

tSNE 1
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Integration analysis: %ﬁ
Mutual Nearest Neighbors (MNN)

Mutual

Nearest ®

Neighbors
B Batch 1

tSNE 2 B Batch 2

@ B cells
A TCells
* Nearest Neighbor

tSNE 1



Integration analysis: %’?
Mutual Nearest Neighbors (MNN) :

( J(‘ll(‘l,, — genel,, \
gell lhfrBom ‘ 1) For each MNN pair, a pair-specific batch-correction gene2, — genezy,
alc vector is computed as the vector difference between AT ge ne3, — g('ne3 b
the expression profiles of the paired cells.
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Integration analysis:

Mutual Nearest Neighbors (MNN)
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Haghverdi (https://doi.org/10.1038/nbt.4091)



https://www.nature.com/articles/nbt.4091
https://doi.org/10.1038/nbt.4091

Integration analysis: %
CCA +anchors (Seurat v3)

. Find corresponding cells across datasets

. Compute a data adjustment based on
correspondences between cells

. Apply the adjustment

Stuart et al. (https://doi.org/10.1101/460147)
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Integration analysis: %
CCA +anchors (Seurat v3)
Find corresponding cells across datasets
S S
® Batch 1
i = an ® Batch 2
PC1 cC1
CCA captures correlated sources of variation between two datasets 4

Stuart et al. (https://doi.org/10.1101/460147)
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Integration analysis: gt

CCA +anchors (Seurat v3)

1. Find corresponding cells across datasets
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Integration analysis: 5
CCA +anchors (Seurat v3)

1. Find corresponding cells across datasets
Anchors: Mutual nearest neighbors

Low sconng correspondence

ngh scormg correspondence
cal neighborhoods

sistent with local neighborhoods sistent with lo

@ Reference ; @

FindIntegrationAnchors()



Integration analysis:
CCA +anchors (Seurat v3) )

2. Data integration

genel, — genel,,
(B:ell lhfrBom ‘ 1) For each MNN pair, a pair-specific batch-correction gene2, — genezy,
alc | vector is computed as the vector difference between Ve = | geneld, — genel,
¢ the expression profiles of the paired cells.
Cell j from oK . ” r
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2) A cell-specific batch- V, \ Smoothing Batch Correction vector
correction vector is then e for each cell
calculated as a weighted :‘ - >
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Integration analysis:
CCA +anchors

Cell type Technology Species
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Retinal bipolar datasets: 51K cells, 6 technologies, 2 Species



Label transfer:
CCA +anchors

B Pancreas celltype projections: alpha cells withheld
Seurat v3 scMap-cluster
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STACAS

STACAS (https://doi.org/10.1093/bioinformatics/btaa755)

Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq

data
Corrected version of Seurat
Based on labelling of cells-removes "wrong" anchors.

c No alignment Seurat 3 CCA E

STACAS
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